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ABSTRACT Here, we report whole-genome sequences (WGS) of eight clinical iso-
lates of Burkholderia pseudomallei obtained from melioidosis patients with sepsis in
eastern Sri Lanka.

Whole-genome sequencing of Burkholderia pseudomallei, the causative agent of
melioidosis, provides a better understanding about the phylogeography, trans-

mission, evolution, virulence, epidemiology, and antibiotic resistance (1) of this organ-
ism. It is now clearly established that melioidosis is endemic in Sri Lanka with a wide
geographic distribution (2). Whole-genome sequences (WGS) of B. pseudomallei are
available for Southeast Asian (3) and northern Australian (4) strains. However, only a few
WGS data sets have been published for the Indian subcontinent (5).

Here, we report eight complete genome sequences of clinical isolates of B. pseu-
domallei (BPs110, BPs111, BPs112, BPs114, BPs115, BPs116, BPs122, and BPs133) from
melioidosis patients with acute sepsis in eastern Sri Lanka.

Strains were isolated from blood samples collected from melioidosis patients under
sterile conditions, and blood agar base (Oxoid, UK) supplemented with 5% blood was
used for the isolation of the organism. Subculturing was done several times on the
same medium. One well-isolated single colony was restreaked on the fresh medium,
a few well-isolated single colonies were pooled, and genomic DNA was extracted
using a mini-QIAamp DNA isolation kit as recommended by the manufacturer
(Qiagen, Germany). Multiple real-time PCR assays (Yersinia-like fimbrial/Burkholderia
thailandensis-like flagellum and chemotaxis region [YLF/BTFC]) were performed (6, 7).
Further, real-time lpxo PCR was used for confirmation of presumptive B. pseudomallei
(6). High-quality genomic DNA of each isolate was subjected to whole-genome se-
quencing from a paired end with 300 nucleotide reads (Nextera DNA library prep kit)
using the MiSeq 2000 platform at Agiomix FZ LLC in the United Arab Emirates.

Raw sequence data were processed with Trimmomatic 0.36 (8) and FASTX-Toolkit
0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/) to remove Illumina adaptor sequences
and low-quality bases and reads. The quality of the raw sequence data was assessed
using FastQC 0.11.4 (9) and MultiQC 1.0 (10). The Burrows-Wheeler Aligner (BWA)
0.7.12-r1039 (11) and Qualimap 2.2.1 (12) were used for raw read alignments and
quality control of the alignment sequencing data. SPAdes 3.10.1 (13), ABACAS 1.3.1 (14),
NCBI local BLAST 2.6.0, and online RAST (15) were used for genome assembly, anno-
tation, and validation. All tools were used with default parameters, and cleaned
sequences were used for downstream analysis. The assemblies were reorganized
relative to the closed B. pseudomallei K96243 genome (GenBank accession numbers
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NC_006350 and NC_006351). All genomes reported here have been annotated using
a best-placed reference protein set, GeneMarkS-2�, and the NCBI annotation pro-
vider (NCBI Prokaryotic Genome Annotation Pipeline (https://www.ncbi.nlm.nih.gov/
genome/annotation_prok/). The genomes of the B. pseudomallei isolates reported here
contain two chromosomes, and the features annotated are reported in Table 1.

Data availability. All of the whole-genome sequencing projects have been depos-
ited in GenBank, and the accession numbers are given in Table 1. The raw data are also
publicly accessible under the accession numbers SRR8658974, SRR8618097, SRR8741027,
SRR8759108, SRR8661621, SRR8660934, SRR8867837, and SRR8867836.
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TABLE 1 Characteristics and accession numbers of genomes of Burkholderia pseudomallei isolates sequenced in this study

Strain
designation

Multilocus
sequence
typea

Genome size (bp)
(GC content [%])

No. of
ncRNAsb

No. of
CDSsc

YLF/
BTFC
PCRd

No. of
pseudogenes

No. of
RNA
genes

No. of
tRNA
genes

No. of
contigs

N50

(bp)
No. of
raw reads

GenBank
accession no.

BPs110 1152 6,962,327 (68.39) 4 6,670 BTFC 514 77 61 132 115,980 2,192,501 CP036451, CP036452
BPs111 1364 6,721,089 (68.17) 4 6,670 YLF 513 76 60 147 113,263 2,007,588 CP036453, CP036454
BPs112 1442 6,258,284 (68.36) 4 6,608 YLF 537 78 62 163 83,750 1,993,557 CP037975, CP037976
BPs114 594 6,022,338 (68.39) 4 6,638 BTFC 508 77 77 158 101,821 2,617,163 CP037973, CP037974
BPs115 1413 6,756,482 (68.24) 4 6,663 YLF 504 77 61 160 103,836 2,427,392 CP037757, CP037758
BPs116 1179 6,693,503 (68.32) 4 6,593 BTFC 512 76 61 141 106,427 2,009,396 CP037759, CP037760
BPs122 594 6,242,888 (68.36) 4 6,709 BTFC 504 77 61 129 122,561 4,042,684 CP038194, CP038195
BPs133 594 6,106,529 (68.39) 4 6,647 BTFC 509 77 61 138 122,504 3,362,629 CP037971, CP037972
a Based on the scheme at http://pubmlst.org/bpseudomallei.
b ncRNAs, noncoding RNAs.
c CDSs, protein-coding sequences.
d YLF, Yersinia-like fimbrial region; BTFC, Burkholderia thailandensis-like flagellum chemotaxis region.
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