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Abstract: Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor
gene frequently found to be inactivated in over 30% of human cancers. PTEN encodes a 54-kDa
lipid phosphatase that serves as a gatekeeper of the phosphoinositide 3-kinase pathway involved
in the promotion of multiple pro-tumorigenic phenotypes. Although the PTEN protein plays a
pivotal role in carcinogenesis, cumulative evidence has implicated it as a key signaling molecule in
several other diseases as well, such as diabetes, Alzheimer’s disease, and autism spectrum disorders.
This finding suggests that diverse cell types, especially differentiated cells, express PTEN. At the
cellular level, PTEN is widely distributed in all subcellular compartments and organelles. Surprisingly,
the cytoplasmic compartment, not the plasma membrane, is the predominant subcellular location of
PTEN. More recently, the finding of a secreted ‘long’ isoform of PTEN and the presence of PTEN
in the cell nucleus further revealed unexpected biological functions of this multifaceted molecule.
At the regulatory level, PTEN activity, stability, and subcellular distribution are modulated by a
fascinating array of post-translational modification events, including phosphorylation, ubiquitination,
and sumoylation. Dysregulation of these regulatory mechanisms has been observed in various human
diseases. In this review, we provide an up-to-date overview of the knowledge gained in the last
decade on how different functional domains of PTEN regulate its biological functions, with special
emphasis on its subcellular distribution. This review also highlights the findings of published studies
that have reported how mutational alterations in specific PTEN domains can lead to pathogenesis
in humans.
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1. Introduction

Phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) was originally discovered
as a bona fide tumor suppressor gene on human chromosome 10q23.3, a region frequently lost in
prostate cancer and glioblastoma multiforme [1–3]. In the subsequent decades, intensive surveys on
PTEN mutations in human cancers have revealed widespread genetic and epigenetic inactivation of
this gene. The rate of point mutations varies between different tumor types, being as high as 37% in
human endometrial cancer [4,5]. Loss of heterozygosity is frequently responsible for the complete
inactivation of a tumor suppressor gene (NF1 or TP53). PTEN is unique in the respect that the loss of
its single allele can lead to carcinogenesis. This haploinsufficiency of the PTEN gene has been shown
to promote prostate cancer [6,7]. Furthermore, the PTEN gene expression is subject to modulation by a
host of noncoding RNAs (ncRNAs) in various human cancers [8]. These ncRNAs include more than a
dozen microRNAs (miRNAs) and long ncRNAs. Dysregulated interactions between miRNAs and
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competing endogenous RNAs that share similar miRNA response elements can lead to reduced PTEN
expression and promote tumor progression [9].

Inactivation of PTEN’s biochemical function appears to be the major mechanism underlying
cancer pathogenesis. PTEN is a dual-specificity lipid and protein phosphatase. It mediates
the dephosphorylation of the 3′ phosphate of phosphatidylinositol 3,4,5-triphosphate (PIP3) to
phosphatidylinositol 4,5-bisphosphate (PIP2) [10] and dephosphorylates itself at threonine 366 (T366),
thereby unmasking its ability to inhibit cell invasion [11]. Numerous signaling molecules have been
shown to physically interact with PTEN (Figure 1). Proteins that are known to be the direct substrates
of PTEN include PTK6, UBB, AKT1, PLK1, RAB7, IKBKB, IRS1, and CREB1 [12]. Overall, PTEN
plays a pivotal role as a gatekeeper of the phosphoinositide 3-kinase (PI3K) pathway and represses
downstream signaling events that control cell proliferation, cell survival, and protein synthesis [13].
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encodes a focal adhesion protein linking actin filaments and integrins and the auxilin gene that 
encodes a C2 domain containing protein tyrosine phosphatase-like molecule [12,14]. Interestingly, all 
three members of the tensin family—namely, tensin 1, 2, and 3—possess a protein tyrosine 
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protein association networks database (https://string-db.org).

The partial crystal structure of PTEN resolved previously has revealed the signature motif
HCXXGXXR in its catalytic pocket [14]. The pocket size is larger than that of conventional protein
phosphatases, presumably required for accommodating the larger PIP3 substrate. The C-terminal
half of PTEN possesses a C2 domain responsible for phospholipid binding and critical for membrane
targeting [15]. The tail region of ~90 amino acids is referred to as the PEST domain that is rich
in negatively charged amino acid residues [16]. The protein then terminates in a four-amino acid
protein–protein interaction domain called the PDZ-binding motif (PDZ-BM) [17,18].

At the evolutionary level, PTEN is a unique protein as it is not closely related to other lipid or
protein phosphatases. Orthologs of human PTEN gene have been reported in evolutionarily distant
organisms, including zebrafish, Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces pombe
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(Figure 2). The human PTEN protein has sequence similarity with the human Tensin that encodes a
focal adhesion protein linking actin filaments and integrins and the auxilin gene that encodes a C2
domain containing protein tyrosine phosphatase-like molecule [12,14]. Interestingly, all three members
of the tensin family—namely, tensin 1, 2, and 3—possess a protein tyrosine phosphatase domain, albeit
inactive, in their N-terminus [19]. It is believed that PTEN belongs to a class of molecules containing
the protein tyrosine phosphatase (PTP)-C2 superdomain that was formed prior to the fungi, plant,
and animal kingdom divergence [19]. This review article will provide an up-to-date overview of the
functional domains of PTEN involved in the regulation of its biochemical and biological functions
with special emphasis on its role in different subcellular compartments.
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2. Domains of PTEN

2.1. N-Terminal Domain

The 1209-bp coding region of PTEN encodes a 403-amino acid protein with a predicted molecular
mass of ~47 kDa. The primary amino acid sequence of PTEN encodes a bipartite molecule and is flanked
by flexible protease-sensitive sequences in the amino (N)- and carboxyl (C)-termini. The N-terminal
32-amino acid region is unstructured and possesses three overlapping motifs with distinct biological
functions. First, a 10-amino acid PIP2-binding motif (PBM) encompassing residue 6 to 15 that binds
either PI(4,5)P2 or PI(5)P to allosterically stimulate the intrinsic lipid phosphatase activity toward
PIP3 [10,20]. Three basic residues at K13, K14, and R15 are critical for PTEN activation and are mutated
in multiple human tumors (Figure 3) [21]. Second, a nuclear localization sequence of monopartite type
between residues 7 and 31, which is characterized by a stretch of basic residues from 13 to 15 (RNKRR).
Interestingly, the K13 residue has been shown to undergo both mono- and polyubiquitination [22].
However, the sequence in the vicinity of K13 does not possess the classical consensus sequence Ψ-K-x-E,
where Ψ is a large hydrophobic residue, K is the lysine residue being modified, X is any amino acid,
and E is glutamate residue [23]. In fact, most online ubiquitination site prediction software failed to
register a high score for K13. Nevertheless, K13 has been demonstrated to be ubiquitinated in in vivo
assays and has been shown to be responsible for PTEN nuclear import [22]. In addition, a short stretch
of sequence from residue 19 to 25 enriched in negatively charged amino acids (DGFDLDL) has been
shown to mediate cytoplasmic localization [24].
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CAT, catalytic.

2.2. Catalytic Domain

The N-terminal 179-amino acid region from residue 7 to 185 was originally found to display
sequence similarity with the dual-specificity phosphatase (DSP), vaccinia virus VH1-related
phosphatase, and the PTP1B [14]. A search in the BLAST protein database revealed transmembrane
phosphatase with tensin homology, TPTE, demonstrating the highest level of protein sequence
similarities [25]. Similar to other DSPs and PTPs, PTEN harbors a HCXXGXXR signature motif between
residues 123 and 130, which is referred to as the P loop located at the bottom region of the active
site. Residues C124 and R130 are essential for catalysis, whereas H123 and G127 are critical for the
P loop conformation. Mutations are frequently identified in this region [4] (Figure 3). In addition,
the D92 residue in the “WPD” loop serves as a general acid to mediate the protonation of the leaving
oxygen group. However, there are several structural distinctions. First, the active site pocket in PTEN
is ~5 × 11 Å wide, which is two times wider than that of PTPB1, although they have a similar depth
of ~8 Å. Second, there is an 11-amino acid insertion between residues 42 and 52 and a 4-amino acid
insertion between residues 163 and 166. The latter insertion is referred to as the “TI” loop (because
of the conserved threonine and isoleucine residues), and this rigid structure has been suggested to
cause the extension of the active site in PTEN [14]. The wider and deeper opening of the active site in
PTEN allows accessibility for PIP3, phosphoserine, phosphothreonine, and phosphotyrosine substrates,
which reflects the biological versatility of PTEN. Indeed, the G129E mutation found in human tumors
highlight the structural determinant of lipid versus protein substrate specificity. G129 is located at the
bottom of the active site. The mutation of the glycine residue to glutamate impedes PIP3 access but
without affecting protein substrate binding. Thus, G129E mutant is lipid phosphatase dead but protein
phosphatase competent [26]. Interestingly, mutagenesis analysis revealed a PTEN Y138L mutant with
preserved lipid phosphatase activity but abolished protein phosphatase activity [27]. Thus, PTEN is
unique in having dual substrate specificity primarily because of its unique primary coding sequences.

https://cancer.sanger.ac.uk/cosmic
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2.3. C2 Domain

The C-terminal 166-amino acid region from residue 186 to 351 exhibits structural topology similar
to that of the C2 domains of protein kinase Cδ (PKCδ), phospholipase C δ1 (PLCδ1), and phospholipase
A2 (cPLA2) [28]. The overall structure comprises two antiparallel β sheets with two short α helices
positioned between the two strands [14]. The ability of both PLCδ1 and cPLA2 to bind calcium
(Ca2+) through their three Ca2+-binding loops—namely, Ca2+-binding region 1 (CBR1), CBR2, and
CBR3—induces a change in the electrical potential that modulates lipid-binding affinity [29]. However,
the C2 domain of PTEN lacks all but one of the Ca2+-binding motifs and is predicted to not bind Ca2+.
Instead, the C2 domain of PTEN has a CBR3 loop between residues 259 and 268, and it possesses five
positively charged residues at K260, K263, K266, K267, and K269, which interface with the negatively
charged groups of phospholipids on the plasma membrane. Furthermore, the CBR3 loop is positioned
perpendicularly to the membrane interphase. The presence of two hydrophobic residues at M264 and
L265 near the tip of the CBR3 loop is believed to mediate membrane insertion and anchoring of PTEN
to the lipid bilayer. Using POPC/POPS anionic vesicles, the C2 domain alone binds with 30 times
weaker affinity than the full-length molecule, suggesting that the N-terminal phosphatase domain, not
the C2 domain, is critical for driving membrane recruitment [15]. In addition, PTEN does not have a
high affinity toward the nuclear membrane [15].

2.4. Tail Region

The C-terminal 52-amino acid region between residues 352 and 403 constitutes the tail region of
PTEN. It comprises two regulatory motifs: the PEST domain and the PDZ-BM [14]. This tail region is
unstructured, and its flexible nature confers auto-inhibitory properties. The PEST domain constitutes
the region from amino acid 352 to 399, which is rich in acidic (aspartate and glutamate) as well as
serine and threonine residues. In contrast to the PEST domains in other signaling molecules, which
normally promote protein degradation, the PEST domain of PTEN is associated with enhanced protein
stability as its deletion has been shown to drastically decrease the PTEN protein expression. The C-tail
region of PTEN is also populated by seven serine/threonine residues known to be phosphorylated
by several key signaling molecules. These molecules include casein kinase II (CKII) that mediates
phosphorylation at S370, S380, T382, T383, and S385; glycogen synthase kinase 3 beta (GSK-3β) that
mediates phosphorylation at S362 and T366; and polo-like kinase 3 that mediates phosphorylation at
T366 and S370 [30]. Among these phosphorylation sites, T366 appears to be an auto-dephosphorylation
site, and its phosphorylation plays a role in tumor invasion [11].

2.5. PDZ-BM

The penultimate four amino acids of PTEN, namely ITKV, from residue 400 to 403 constitute the
PDZ-BM, which is a short protein–protein interaction sequence that mediates the binding of PTEN
to the PDZ domain containing signaling molecules frequently localized to the cell–cell junctions.
PDZ domains are categorized into three classes. PTEN PDZ-BM has a shared consensus sequence,
S/T-X-Φ-COOH, where X is any amino acid and Φ is any hydrophobic residues, with peptide ligands
that bind to class I PDZ domains [31,32]. Physiological functions normally ascribed to PDZ domain
proteins are mostly dynamic and transient in nature, such as synaptic transmission [33]. In total,
12 proteins are known to interact with PTEN through its PDZ-BM, namely hDLG, hMAST205, MAGI3,
MAGI2, MAGI1, Bazooka/PAR-3, NHERF/EBP50, MPZ-1, PSD95, MAST2, PTPN13, and KIN-4. PTEN
PDZ-BM is evolutionarily conserved, with similar sequences found in zebrafish, sea urchin, and D.
melanogaster. NMR spectroscopy analysis of the binding between PTEN and MAST2-PDZ has revealed
that although the last three amino acids of PTEN PDZ-BM, namely TKV, can account for 86% of the
binding affinity, the phenylalanine residue at 392 can form hydrophobic interactions with residues
in the β2, β3, and β5 strands of MAST2-PDZ [34]. Thus, these results indicate that PTEN PDZ-BM
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binds to the PDZ domain primarily through the C-terminal canonical motif, but also uses some distal
N-terminal sequences.

3. Subcellular Distribution of PTEN

The Human Protein Atlas database (https://www.proteinatlas.org) reveals ubiquitous expression
of PTEN in different organs (Figure 4). PTEN was previously believed to be localized in the cytoplasm.
However, recent studies have shown that PTEN is also present in various subcellular compartments,
such as the nucleus and mitochondria, and can even be secreted into the extracellular environment.
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3.1. Cytoplasmic PTEN

Cytoplasmic PTEN converts PIP3 to PIP2, thus antagonizing PI3K/AKT pathway activation. Under
normal conditions, only a small fraction of PTEN dynamically interacts with the plasma membrane [35].
PTEN can be activated and recruited from the cytoplasm to the inner face of the plasma membrane
under some biological conditions to exert its anti-proliferative functions [15,35]. Cytoplasmic PTEN
also plays an important role in facilitating apoptosis. Several mechanisms have been proposed. As a
lipid phosphatase, cytoplasmic PTEN mainly suppresses the activation of the pro-survival kinase AKT,
thus promoting the activation of a spectrum of pro-apoptotic genes such as GSK-3β, forkhead box
O3a (FOXO3a), and caspase-9 [36,37]. Indeed, a positive correlation has been shown to exist between
cytoplasmic PTEN and cell death in cancer cells [38]. As expected, the loss of cytoplasmic PTEN can
lead to excessive PIP3 accumulation and the activation of a host of downstream signaling pathways, the
overactivation of which can stimulate cell survival, growth, proliferation, angiogenesis, metabolism,
and migration [39,40].

https://www.proteinatlas.org
https://www.proteinatlas.org
https://www.proteinatlas.org
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3.2. Nuclear PTEN

Accumulating evidence has suggested that compared with cytoplasmic PTEN, nuclear PTEN
plays a totally different role in tumor suppression. Multiple clinical studies have detected nuclear PTEN
in normal rather than cancer cells [41,42]. For example, the loss of nuclear PTEN has been documented
in various cancers such as melanoma [43] and thyroid carcinomas [41]. An inverse correlation has been
reported between nuclear PTEN expression and the mitotic index, suggesting that a lack of nuclear
PTEN facilitates tumor cell proliferation [43]. Moreover, the expression level of nuclear PTEN has been
used as a prognostic marker in various cancers [44,45]. At the cellular level, nuclear PTEN is critical
for chromosome integrity, DNA repair, cell cycle arrest, and genomic stability. Accumulating evidence
has suggested that nuclear PTEN functions as a guardian of chromosome integrity. Defective PTEN
in mouse embryonic stem cells has been shown to cause genetic instability [46]. PTEN phosphatase
activity is required for maintaining chromosome integrity [47] and preventing genomic alterations
during cell division [48]. Nuclear PTEN can function as a mitotic phosphatase and physically interact
with and dephosphorylate PLK1, thereby preventing polyploidy [48]. Cells lacking nuclear PTEN are
hypersensitive to DNA damage, implying that PTEN plays an important role in DNA repair [49].

Multiple studies have revealed that nuclear PTEN can function as a brake for uncontrolled
cell proliferation and regulate cell cycle progression. During the G1-S transition, nuclear PTEN
downregulates cyclin D1 (CDK1) to inhibit G1 progression [50]. PTEN can also interact with p300 to
maintain p53 acetylation, which, in turn, promotes PTEN–p53 interaction and regulates G1 arrest [51].
Moreover, nuclear PTEN activation has been shown to arrest G2/M progression. An overactivated
Notch signaling pathway can lead to PTEN phosphorylation, thus promoting gastric tumorigenesis,
whereas dephosphorylated nuclear PTEN can interact with a cyclin B1–CDK1 complex to arrest cells at
the prometaphase [52]. Finally, DNA topoisomerase-2 alpha (TOP2A) mediates DNA decatenation
and prevents chromatin entanglement and chromosome bridges during segregation. PTEN has been
shown to physically interact with TOP2A to prevent its degradation [53].

3.3. PTEN in Cell Organelles

Emerging evidence has suggested that PTEN also plays a pivotal role in cell organelles other
than the cytoplasm and nucleus. PTEN can function as a protein phosphatase in the endoplasmic
reticulum (ER) to regulate ER-induced apoptosis. ER-localized PTEN physically competes with
F-box/LRR-repeat protein 2 for type 3 IP3 receptor binding, which inactivates AKT and induces a
subsequent ER-to-mitochondrial Ca2+ transfer, causing Ca2+-dependent apoptosis [54,55]. PTEN also
mediates mitochondria-related apoptosis. One study showed a gradual accumulation of PTEN in
the mitochondria of rat hippocampus during staurosporine-induced apoptosis. PTEN was found
to increase cellular reactive oxygen species level and activate apoptotic cascades, whereas PTEN
knockdown significantly rescued hippocampal cells from apoptotic damage [56]. Moreover, a recent
study has suggested that PTEN plays a critical role in mitochondrial metabolism. This study reported
differential mitochondrial oxidative phosphorylation states and bioenergetics in glioblastoma samples
with different PTEN mutational statuses [57].

PTEN localized in the cell nucleolus also exerts tumor-suppressive activity. Nucleolar PTEN
is essential for nucleolar homeostasis and morphology. PTEN knockdown has been observed to
result in both quantitative and qualitative changes in nucleoli and increased ribosome biogenesis [58].
As increase in nucleolus and ribosome biogenesis is associated with increased cancer risk [59], nucleolar
PTEN may exert its tumor-suppressive effect via the inhibition of ribosome biogenesis. Furthermore,
a recent study has identified a PTEN isoform, PTENβ, which initiates translation from an AUU codon
and has an extended 146-amino acid N-terminus. PTENβ has been found to be localized in the
nucleolus where it regulates pre-rRNA synthesis by dephosphorylating nucleolin; however, its loss
has been found to promote ribosome biogenesis [60].

PTEN has also been demonstrated to be enriched at the centrosomes and interact with the
DLG1/EG5 motor protein complex during cell mitosis, thereby regulating proper mitotic spindle
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assembly and chromosome segregation [61]. PTEN may also phosphorylate Dishevelled, DVL, and
participate in cilia disassembly and multicilia formation [62].

PTENα (also termed as PTEN-Long, PTEN-L) is a PTEN isoform whose translation initiates from
a CUG codon upstream of the canonical start codon. This isoform has additional 173 (Homo sapiens)
or 169 (Mus musculus) amino acids at the N-terminal region [63,64]. Immunofluorescence analysis of
GFP-tagged PTENα has revealed that it is colocalized with the mitochondria, where it participates
in mitochondrial energy metabolism by regulating cytochrome c oxidase activity. Subsequently,
immuno-gold electron microscopy confirmed that PTENα is localized at the outer mitochondrial
membrane. Functionally, PTENα impairs PRKN’s E3 ligase activity by preventing its mitochondrial
translocation [64].

3.4. Secreted PTEN

Recent studies have reported that PTEN can be secreted from donor cells and taken up by recipient
cells. This finding has revolutionized the concept that PTEN has only intracellular functions. PTEN
can be packaged into exosomes and delivered under the control of NEDD4 family-interacting protein 1
(Ndfip1) with Ndfip1/Nedd4-mediated ubiquitination, thereby enhancing PTEN secretion. Exosomal
PTEN is available for uptake by recipient cells, resulting in the repression of AKT activation and
proliferation [65]. It has been demonstrated that PTENα can induce a complete tumor regression with
a concomitant reduction of pAKT expression in a xenograft mouse model, implying PTENα can enter
into neighboring tumor cells leading to tumor suppression [63]. PTENα is secreted extracellularly
and exerts proinflammatory responses [66], thus suggesting its actions on immune cells. However,
the detailed mechanism still needs further investigation. Exosomal PTEN has been considered as a
therapeutic target for spinal cord injuries. Retinoic acid receptor β treatment induces the release of
PTEN-enriched exosomes from neurons. Astrocytes that take up these exosomes will have reduced
proliferation, leading to the inhibition of glial scar formation [67]. Moreover, PTENα can be secreted
in the native form and be taken up by recipient cells. Secreted PTENα has been shown to be able to
inhibit the PI3K pathway in a mouse model [63]. Several clinical studies have reported mutant forms
of PTEN that could be detected in the biofluids of glioblastoma patients [68,69]. Reportedly, mutant
PTEN proteins may act in a dominant-negative manner to suppress the function of wild-type PTEN
through dimerization [70]. Thus, it will be of interest to determine whether cancer cells can secrete
mutant PTEN to suppress wild-type PTEN function in recipient cells.

4. PTEN and Cancer Hallmarks

The link between PTEN and cancer was first established in 1997 when PTEN mutations were
identified in multiple advanced tumors [3]. Overwhelming evidence has shown that PTEN loss of
function occurs in a broad spectrum of human cancers. The highest percentage of PTEN aberrations
has been found in uterine cancer, glioblastoma multiforme, and prostate cancer based on the data from
the cBioPortal database (Figure 5A). This revealed the highest alteration frequency of PTEN in uterine
cancer. Missense mutations account for the predominant genetic alteration in uterine cancer. However,
deep deletions of PTEN are far more frequent in prostate cancer patients. Our speculation is that
since PTEN loss in prostate cancer is associated with more advanced metastatic disease, the complete
deletion of the PTEN gene may therefore be more prevalent [71]. On the contrary, in uterine cancer
patients, PTEN is frequently mutated in Type I endometrioid carcinoma, which is associated with good
prognosis [72]. Missense mutations, in this case, may have less deleterious effects on PTEN, and with
its tumor suppressor functions being partially preserved.

PTEN loss of function is one of the most frequent events in cancers. The cBioPortal sequence
data have underestimated the actual frequency of PTEN alterations. A meta-analysis has reported
that the loss of PTEN protein was found in 78% glioblastoma patients and 48% endometrial tumor
patients. Another study has revealed that deletions, including the PTEN locus in The Cancer Genome
Atlas (TCGA database), have been identified in 143/170 (85%) of glioblastomas [73]. Even without the
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evidence of PTEN genetic changes, a considerable proportion of glioblastoma patients have reportedly
shown reduced PTEN mRNA expression. Moreover, methylation of the PTEN promoter has been
demonstrated to be a hallmark of cancers such as low-grade glioma and melanoma [74,75].
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PTEN follows the “continuum model of tumor suppression” instead of the classical two-hit
hypothesis, involving subtle expression changes that may influence tumor progression even without
the loss of an allele [76]. Accumulating evidence has suggested that partial loss of PTEN function
is sufficient for promoting tumor initiation and progression [77]. In addition, one study that used a
hypomorphic Pten mouse model with reduced PTEN levels also demonstrated that subtle reduction in
PTEN expression is enough to confer cancer susceptibility [78]. Dysregulation of PTEN expression can
be attributed to multiple mechanisms, including transcription, miRNA or ncRNA targeting, and protein
stability. For example, transcriptional silencing of PTEN by promoter hypermethylation has been
reported in endometrial cancer, glioblastoma, and lung cancer [79–81]. Moreover, post-transcriptional
changes in PTEN have also been revealed to be crucial in tumorigenesis [82].

It has been found that PTEN is concurrently mutated with specific genetic alterations such as
TMPRSS2-ERG gene fusion and TP53 mutation. TMPRSS2-ERG gene fusion and PTEN mutation
have been revealed to drive prostate carcinogenesis cooperatively [83]. Indeed, the concurrence of
TMPRSS2-ERG gene fusion and PTEN loss is associated with poor outcome [84]. The reason for this
coexistence is unknown, but it has been pointed out that TMPRSS2-ERG fusion may facilitate the
generation of PTEN deletions [85]. It has been reported that TMPRSS2-ERG alone is insufficient to

https://www.cbioportal.org
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drive tumorigenesis. Such collaboration may confer a selective advantage to promote precancerous
lesions to aggressive cancer [86].

TP53 is another gene mutated concurrently with PTEN in cancers of the prostate, cervix, and
breast (Figure 5B). A combination of Pten and Trp53 loss has been found to drive a prostate tumor
progression in a mouse model [87]. Activation of PI3K pathway promotes MDM2-dependent p53
degradation, while ectopic PTEN overexpression can stabilize p53 by increasing its half-life [88].
In addition, PTEN can regulate TP53 transcriptional activity [89], in turn, PTEN is a transcriptional
target of p53 [90,91]. Overall, PTEN-p53 may form a self-reinforced circuit, the dysfunction of which
may promote tumorigenesis.

4.1. PTEN and Oncogenic Signaling

The role of PTEN loss in tumorigenesis is highly complex, and hyperactivation of the PI3K
pathway is clearly the major oncogenic signaling output. Indeed, PIK3CA, which encodes the α

subunit of PI3K, is also frequently altered in various cancers [92–94]. The classical tumor suppressor
function of PTEN is mainly dependent on its lipid phosphatase activity, which dephosphorylates PIP3
and thereby inhibits the phosphoinositide 3-kinase PI3K signaling pathway [15]. The activation state
of the PI3K pathway is normally measured based on the levels of AKT phosphorylation, and aberrant
AKT upregulation is frequently observed in both early and advanced cancers [95]. Activated AKT
regulates downstream genes such as those of epidermal growth factor receptor, vascular endothelial
growth factor (VEGF) receptors, mitogen-activated protein kinase (MAPK), caspase-9, and mammalian
target of rapamycin (mTOR) [96,97]. Pathways related to all of these genes have been found to be
essential for multiple biological processes, including cell survival, cell migration/invasion, and cell
cycle progression. However, the consequences of AKT1, AKT2, and AKT3 ablation have been reported
to be quite different. AKT1 knockdown has an anti-tumor effect, whereas AKT2 ablation can promote
tumor growth and AKT3 ablation has little effect [98].

4.2. PTEN and Cell Cycle

The role of PTEN in cell cycle regulation has been widely studied. PTEN loss has been found to
exert pro-tumorigenic effects through cell cycle dysregulation. In one study, Pten deletion in mouse
astrocytes led to accelerated proliferation both in vitro and in vivo [99]. PTEN reintroduction to
PTEN-null glioblastoma cell lines was found to suppress cell proliferation by inducing G1 arrest
through p27Kip1 upregulation, which inhibited downstream cyclin-dependent kinase 2 activity [100].
In leukemia, PTEN expression reduced the proliferation of leukemic T cells through all phases of the
cell cycle [101]. Furthermore, simultaneous inactivation of one Pten allele and one or more Cdkn1b
(encoding p27Kip1) alleles accelerated neoplastic transformation and increased tumor incidence in
a mouse prostate cancer model [102], implying that p27Kip1 plays a crucial role in mediating the
tumor-suppressive effect of PTEN.

4.3. PTEN and Cancer Genome Stability

Nuclear PTEN is a guardian of genome integrity. Reportedly, PTEN loss is associated with
aneuploidy in human primary breast cancer cells [46]. Nuclear PTEN localizes to the centromeres
to maintain chromosome stability by physically interacting with CENP-C, an integral part of the
kinetochore that is essential for proper chromosome segregation during mitosis [47,103]. Disruption of
PTEN and centromeres can lead to chromosomal instability, which is a hallmark of cancer [47].
More recently, PTEN has been shown to regulate spindle pole architecture and movement by
directly interacting with DLG1/EG5 through its PDZ-BM. PDZ-BM-lacking cells are prone to
chromosome missegregation, and PDZ-BM-lacking mice are susceptible to lymphomas and breast
cancer development [61,104].
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4.4. PTEN and Cellular Energetics

Overwhelming evidence revealed that cancer cells undergo reprogramming of their metabolic
pathways to sustain rapid proliferation and growth. Most cancer cells derive their energy from
glycolysis instead of oxidative phosphorylation, an adaptive mechanism referred to as the Warburg
effect [105]. A Pten transgenic mouse model has demonstrated PTEN to be a negative regulator of
glycolysis [106]. Indeed, PTEN loss can lead to a plethora of metabolic changes, mostly through the
activation of downstream PI3K-AKT pathway [107]. Haploinsufficiency of Pten has been demonstrated
to hypersensitize insulin-stimulated glucose uptake both in vitro and in vivo [108]. The PI3K/PKB
pathway is essential to maintain the normal glucose homeostasis, while the PTEN deficiency-induced
PI3K-AKT activation is responsible for the translocation of Glucose transporter type 4 (GLUT4) [109,110].
PTEN loss induced PI3K-AKT activation also inhibits forkhead box protein O1 (FOXO1) and
proliferator-activated receptor-γ (PPARγ), thus affecting hepatic gluconeogenesis [111,112]. Moreover,
AKT activation promotes ATP hydrolysis, resulting in a compensatory increase in aerobic glycolysis
through the upregulation of ENTPD5 [113]. PTEN loss also affects lipid and protein synthesis.
Inactivation of PTEN promotes aberrant sterol regulatory element-binding proteins (SREBP)-dependent
lipogenesis, thus driving metastatic progression in a mouse prostate tumor model [114]. mTORC1
activation due to PTEN loss upregulates 4E-binding protein 1 (4EBP1) and p70S6 kinase, which
enhances pro-tumorigenic protein synthesis, contributing to tumor growth [115]. It has been reported
that mTORC1 mediates S-adenosylmethionine decarboxylase 1 (AMD1) stability and affects polyamine
synthesis, which is essential for the transformation of oncogenic metabolic program [116]. In addition,
PTEN elevation in a super Pten mouse model can negatively regulate glutaminolysis and the Warburg
effect, resulting in an anti-tumor metabolism in vivo [117].

4.5. PTEN and Metastasis

PTEN loss plays a vital role in tumor metastasis and invasion. Some clinical studies have
revealed a high risk of tumor metastasis in patients with PTEN inactivation [118,119]. In addition,
PTEN mutation has been identified as one of the most prevalent events in metastatic cancers [120].
The mechanism involved is highly complex, and PTEN alteration alone is insufficient to confer all
metastatic traits [87,121]. In a mouse prostate cancer model, PTEN loss has been shown to function
as a second hit for the activation of the oncogenic RAS/MAPK pathway [122]. Cooperation between
PTEN inactivation and RAS activation has also been reported to drive melanoma metastasis [123].
In a Pten-null murine prostate cancer model, activated AKT could directly phosphorylate WHSC1 to
prevent its degradation, and increased WHSC1 further enhanced AKT activity in a feedforward manner
to promote prostate cancer metastasis [124]. In addition, several pathways involving NOTCH [125],
BRAF [126], and SMAD4 [127] have been reported to cooperate with PTEN to trigger tumor metastasis.
PTEN loss may also confer invasive capability. Some in vitro studies have revealed that PTEN impairs
cell migration in both phosphatase-dependent and -independent manners [128–130]. Moreover, PTEN
inhibition has been demonstrated to enhance tumor invasiveness in vivo [131].

4.6. PTEN and Angiogenesis

Angiogenesis is a biological process involving the generation of new blood vessels from preexisting
vasculature, which is vital for normal tissue development and wound healing. Pathological angiogenesis
is an important hallmark of cancer, which is a fundamental step in the transition from the benign state
to the malignant state [132]. A previous study has reported that PTEN reconstitution can significantly
suppress angiogenic activity via PI3K-dependent regulation in a nude mouse orthotopic brain tumor
model [133], suggesting that PTEN also plays a role in controlling tumor-induced angiogenesis. In a
zebrafish model, haploinsufficient PTEN has shown to result in enhanced VEGF expression and vessel
hyperplasia [134]. Reintroduction of PTEN C2 domain also inhibited HepG2 induced-angiogenesis
and VEGF expression both in vitro and in vivo, suggesting that PTEN can inhibit VEGF-mediated
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angiogenesis in a PI3K-independent manner [135]. PTEN loss in endothelial cell activates the Notch
pathway, excessive activation of which can result in vascular hyperplasia [136].

5. Regulation of PTEN in Physiological and Pathological States

The multifaceted nature of PTEN tumor suppressor is regulated by the complex modulation of
its transcription, translation, catalytic activity, subcellular distribution, and interactions with other
signaling molecules. Because these topics have been reviewed in the past, we will only focus on more
recent significant findings related to the mechanisms of PTEN regulation.

5.1. miRNAs and LncRNAs

MicroRNAs (miRNAs) and long-noncoding RNAs (LncRNAs) contribute to the regulation of
PTEN protein level in many cancers at the post-transcriptional level. There are several miRNAs
found to bind the 3′-UTR of PTEN, among them the most prominent one is miR-21. miR-21 is one
of the most frequently overexpressed microRNAs in human cancer, which directly targets PTEN
mRNA and negatively regulates PTEN protein level, thus promoting cell growth and metastasis [137].
Other oncomiR such as miR-23a [131], miR-26a [138], miR-92a [139], miR-130a [140], miR-205-5p [141],
and miR-425 [142] are also reported to negatively regulate PTEN expression and activated PI3K-AKT
signaling pathway, which positively contributed to tumor initiation, progression, and metastasis.
Furthermore, the pseudogene of PTEN, PTEN pseudogene 1 (PTENP1), shares extensive sequence
similarity with PTEN mRNA in regions that harbor miRNA target sites. Thus, it functions like a
miRNA sponge, restoring the PTEN mRNA level and enhancing its tumor suppressor activity [143].
Overexpression or exosome transmitted PTENP1 suppressed cancer cell proliferation and tumor
progression [144–146].

5.2. Catalytic Activity

5.2.1. PIP2

PTEN catalytic activity is regulated through an allosteric mechanism involving the binding of
anionic phospholipids to the N-terminal PBM of PTEN [10,147]. This regulation is highly specific as
the addition of only PI(4,5)P2 and PI(5)P can stimulate the catalytic activity of PTEN. Furthermore,
only di-C8 fatty acid but not di-C4 fatty acid is active. Spectroscopic evidence suggests that PIP2
binding induces a conformational change associated with an increased α-helicity [148]. The residues
within the PTEN PBM that mediate this allosteric stimulation are K13, R14, and R15 [10]. Notably,
PTEN N-terminal PBM has been implicated in nuclear localization through the ubiquitination of K13
residue [22]. Whether ubiquitination at K13 affects PIP2 binding and/or enzymatic activation is not yet
clear. It is possible that PIP2 binding and PBM ubiquitination are mutually exclusive. It is speculated
that their relative contributions determine the extent of PTEN subcellular distribution on the cell
membrane and nucleus.

5.2.2. Phosphorylation

Phosphorylation of PTEN C-terminal tail region between residues 360 and 385 inhibits the
phosphatase activity of PTEN. More than 10 intracellular kinases are known to mediate the direct
phosphorylation of PTEN. For example, BCR-ABL interacts with CKII, and this complex suppresses
the catalytic activity of PTEN through phosphorylation of its C-terminal tail region [149]. NMR has
revealed that phosphorylation events in two clusters—namely S380–S385 (cluster I) and S361–S370
(cluster II)—are mediated by CKII and GSK-3β, respectively [150]. Phosphorylation in cluster I is
an ordered event occurring in the following sequence: S385 > S380 > T383 > T382. For cluster II,
the order is S370 > T366 > S362 > S361 > T363. Phosphorylated PTEN tail is believed to mask the
N-terminal catalytic domain or C-terminal C2 domain through intramolecular interactions [16,151–153].
Screening for PTEN mutants displaying greater membrane-binding capacity has revealed that Q17,
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R41, E73, N262, and N329 residues mediate the intramolecular interactions with the C-tail [154,155].
Indeed, these residues are distributed in the catalytic pocket and membrane-facing surfaces of PTEN.
Mutation of these residues significantly enhanced the intrinsic phosphatase activity of PTEN [154,155].
Overall, phosphorylation in the C-terminal tail region induced a closed, inactive conformation that
prevented membrane binding, whereas reduction of the extent of phosphorylation resulted in an open,
active confirmation. We profiled the mutational status of the 10 known phosphorylation sites between
residues 336 and 401 in human cancers but detected only some sparing mutations (Figure 3). This was
expected because mutations in these residues are predicted to enhance PTEN membrane binding and
catalytic activities. Notably, we identified the putative phosphorylation sites at Y27, Y46, Y68, Y155,
and Y174, which displayed greater mutational frequency. Their roles in PTEN function are not yet clear.

5.2.3. Redox

Hydrogen peroxide-mediated oxidation inactivates PTEN catalytic activity by the formation of
disulfide bridge between C124 and C71 in the catalytic pocket [156,157]. The reactivation of oxidized
PTEN has been shown to be mediated by thioredoxin [156,158,159] and glutathione [160]. However,
some derivatives of organic peroxides, such as the tumor-promoting tert-butyl hydroperoxide, have
been shown to irreversibly oxidize and inactivate PTEN [161]. This irreversible redox regulation of
PTEN may be a mechanism underlying the tumor-promoting actions of these agents. As per the
COSMIC database, C124 and C71 have 29 and 13 missense mutations, respectively, in endometrial,
breast, brain, prostate, and larger intestine cancers.

5.2.4. Ubiquitination

A rather unusual observation is that the Ret finger protein (RFP), a E3 ligase of PTEN, mediates
atypical ubiquitination of PTEN on multiple lysine residues in the C2 domain. Interestingly, these
modifications do not alter PTEN protein turnover or localization but instead reduce its lipid phosphatase
activity by more than 10-fold [162].

5.3. Membrane Targeting

The ability of PTEN to interact with the lipid bilayer is crucial for its tumor-suppressive activity.
Using total reflection internal microscopy imaging techniques, it was estimated that PTEN interacts
with the cell membrane for less than 200 ms [35]. This finding is consistent with the results of most
immunofluorescence analysis studies showing that PTEN is preferentially localized to the cytoplasm
instead of the cell membrane. However, this notion is disputed by the findings of super-resolution
light microscopy, which showed that PTEN is in fact localized to endosomal vesicles tethered to
microtubules through PI(3)P [163]. Again, the CBRIII motif in the C2 domain of PTEN mediates this
interaction. Notably, PTEN displays sequence homology to auxilin, a protein essential for endocytosis,
and is recruited to clathrin-coated vesicles [164].

The C-terminal tail region of PTEN plays an important regulatory role in controlling PTEN binding
to the lipid bilayer. In general, the phosphorylated tail blocks PTEN from the membrane by physically
interacting with the C2 domain via intramolecular interactions [153,165]. This assertion is supported
by molecular dynamic simulation and has been validated by neutron reflectometry, which revealed the
unstructured tail region tugging closely to the C2 domain, thereby blocking the membrane access region.
In contrast, the tail region is repelled from the negative anionic phospholipid bilayer, thus allowing
the C2 domain to bind to the membrane surface [165]. Random mutagenesis analysis in Dictyostelium
discoideum revealed that mutant residues in the catalytic pocket (C124R), CBR3 (N262Y, K69E), Cα2
(N329H, N329I), and C-tail (Y379C/H/N, S380P/Y, D381V, T382I, T383I) enhanced the membrane-binding
capacity, suggesting their involvement in an auto-inhibitory function [154]. Protein semi-synthesis
and photo-crosslinking methods have demonstrated that each of the individual phosphorylation sites
at S380, T382, T383, and S385 in the C-tail region contributed incrementally to the auto-inhibitory
activity [166]. In the D. discoideum system, single-molecule imaging analysis revealed a ‘hopping’ mode
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of interaction between PTEN and the plasma membrane. This is mediated by the Cα2 helix of the
C2 domain of PTEN [167]. As indicated above, PTEN-L is a long isoform of PTEN and is secreted
into the extracellular space. Interestingly, hydrogen/deuterium exchange mass spectroscopy showed
that PTEN-L has a membrane-binding element helix between residues 151 and 174 that alters the
membrane-binding mechanism from the “hopping” to “scooting” mode [168]. These PTEN isoforms
together with the complex combination of phosphorylation events generate diversity in the catalytic
and membrane-binding capacities of PTEN proteins. Based on the COSMIC database, none of the
above-mentioned residues except C124 are subjected to significant mutational alterations (Figure 3).
This is expected because mutation would likely lead to greater membrane recruitment.

5.4. Stability

PTEN is a stable protein with reported half-live of >12 h [35,169]. The stability of PTEN is
controlled by two key biochemical events: phosphorylation and ubiquitination. Numerous studies
have demonstrated that the phosphorylation of PTEN C-tail confers stability presumably by rendering
it in a closed conformation that can protect proteolysis-sensitive sites from protein degradation. Indeed,
the substitutions of four frequently phosphorylated sites at residues S380, T382, T383, and S385 with
alanine or the PTEN-4A mutant drastically reduced PTEN half-live by six fold [30]. Similarly, deleting
the entire C-tail also reduced the stability of PTEN [35]. Indeed, mice carrying a Pten gene lacking the
C-terminal tail region, Pten∆C, harbored multiple tumors [170]. For ubiquitination, polyubiquitination
at K13 and K289 has been intimately linked to its proteasome-mediated degradation [171]. Numerous
E3 ligases and deubiquitinases have been identified and are being reviewed extensively by other
groups [12,153,172]. A few E3 ligases for PTEN are of relevance to cancer. NEDD4 is the first known
E3 ligase that mediates PTEN degradation [171,173]. NEDD4 overexpression has been observed in
multiple human tumors [174]. Furthermore, antagonistic actions between NEDD4-1 and CK1α regulate
PTEN stability in lung tumor growth [175]. CHIP, the chaperone-associated E3 ligase, binds to and
mediates direct ubiquitination and degradation of PTEN. Indeed, the levels of PTEN and CHIP display
an inverse relation in human prostate cancer [176]. Another NEDD4 family member, WWP2, also
referred to as atropine-1-interacting protein 2, is another E3 ligase for PTEN [177]. The ability of WWP2
to degrade PTEN has been implicated in melanoma [178] and endometrial cancer development [179].
WWP2 is downregulated by Cdh1, another E3 ligase that drives M to G1 cell cycle progression [180].
In fact, WWP2-knockout mice have shown reduced body size and increased PTEN protein levels [181].
Finally, OTUD3, an ovarian tumor protease family member of E3 deubiquitinase, has been shown
to increase PTEN stability [182]. Indeed, OTUD3 transgenic mice have shown reduced tumorigenic
potential and high protein levels. In fact, human cancers harbor missense mutations in OTUD3
that abolish its ability to enhance PTEN protein levels. More recently, PTEN has been shown to
drive a feedforward mechanism of upregulating the transcription of its own deubiquitinase USP11.
USP11-deficient mice are susceptible to PTEN-dependent tumors [183]. Indeed, E3 ligase-targeting
drugs are being developed to increase PTEN levels in human cancers [184–186]. Notably, numerous
mutations in the PTEN gene associated with PTEN hamartoma tumor syndrome are known to affect
protein stability without affecting the polyubiquitination sites [187].

5.5. Nuclear Targeting

Sequences responsible for the nuclear-cytoplasmic partitioning of PTEN are mainly confined
to the N-terminal region (see Section 2.1. above) [188]. PPTMs by ubiquitination and sumoylation
play critical roles in controlling the translocation, exclusion, and retention of PTEN in the nucleus.
Monoubiquitination at K13 and K289 and sumoylation at K254 promote PTEN nuclear translocation and
retention, respectively [22,49]. The E3 ligases responsible for PTEN ubiquitination are NEDD4-1 and
XIAP [22,189], and PIASxα has been implicated as the E3 ligase responsible for PTEN sumoylation [190].
PTEN in the cell nucleus is deubiquitinated by the HAUSP enzyme and then excluded [191]. PTEN
has also been shown to enter the nucleus through passive diffusion, which is mediated by the major
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vault protein [38,192,193]. Based on the COSMIC database, very few mutations have been noted at
K254, K266, and K289 (Figure 3).

The nuclear-cytoplasmic partitioning of PTEN is modulated by a host of positive and negative
regulators. The following factors promote PTEN nuclear translocation: Importin-11 [194], Ndfip1 [195],
Grb2 [196], ATM [197], PERK [193], SDHD [198], Rab5/Ndfip1 [199], PNUTS [200], LKB-1 [201],
oxidative stress [202], and Ran [188]. [149], acid ceramidase [203], free fatty acid-induced oxidative
stress [204], genotoxic stress [49], ∆Np63α [205,206], NPM1 [207], and ATP [208]. In contrast, the
following factors cause PTEN depletion in the nucleus: BCR-ABL Based on the reported roles
of these factors in tumorigenesis, nuclear PTEN has been implicated to play an anti-tumorigenic
role, but this role is very likely to be tumor type and stage specific. For example, in glioblastoma
multiforme, PTEN mutations—such as K13E, L320S, and T277A—reduce nuclear accumulation of
PTEN [209]. More suggestive in human chronic myeloid leukemia is BCR-ABL, which promotes PTEN
exclusion [210]. As the functions of PTEN in the cell nucleus are phosphatase independent, its role in
conferring genome stability may be important in its tumor-suppressive functions.

6. Conclusions

This review highlights the latest findings of multifaceted mechanisms in regulating PTEN functions.
However, there are still considerable number of unresolved questions. For example, how the diverse
subcellular functions of PTEN are being coordinated? Similarly, what is the relative contribution to
individual cancer hallmarks from the loss of PTEN functions in the cytoplasm, nucleus, and other
subcellular organelles during tumor progression? Also, is there crosstalk between different PTMs
of PTEN and how they are regulated? From a translational standpoint, a significant fraction of
human tumors still harbors a wild-type copy of PTEN. The possibility of enhancing its expression
or catalytic activity will be an area of future research. In summary, a full understanding of the
regulatory mechanisms of this key tumor suppressor may guide the future development of more
effective therapeutics to restore PTEN anti-tumor activities.
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4EBP1 4E-binding protein 1
AMD1 S-adenosylmethionine decarboxylase 1
ATM Ataxia telangiectasia mutated
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BCR-ABL Breakpoint cluster region-Abelson
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FOXO3a Forkhead box protein O3a
FOXO1 Forkhead box protein O1
GLUT4 Glucose transporter type 4
Grb2 Growth factor receptor-bound protein 2
GSK-3β Glycogen synthase kinase 3 beta
HAUSP Herpesvirus-associated ubiquitin-specific protease
LKB-1 Liver kinase B-1
LncRNAs Long-noncoding RNAs
LRR Leucine rich repeat
MAPK Mitogen-activated protein kinase
miRNAs MicroRNAs
ms Millisecond
N Amino
ncRNAs Noncoding RNAs
Ndfip1 NEDD4 family-interacting protein 1
Ndfip1 NEDD4 family-interacting protein 1
NEDD4-1 Developmentally down-regulated protein 4-1
NPM-1 Nucleophosmin-1
OTUD3 Ovarian tumor domain-containing protein 3
PBM PIP2-binding motif

PDZ
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protein

PDZ-BM PDZ-binding motif
PERK Protein kinase R-like endoplasmic reticulum kinase
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PI(5)P Phosphatidylinositol 5-monophosphate
PI3K Phosphoinositide 3-kinase
PIASX Protein Inhibitor of Activated STAT2
PIP2/PI(4,5)P2 Phosphatidylinositol 4,5-bisphosphate
PIP3 3′ phosphate of phosphatidylinositol 3,4,5-triphosphate
PKCδ Protein kinase Cδ

PLCδ1 Phospholipase C δ1
PNUTS Protein phosphatase nuclear targeting subunit
POPC 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine
POPCS 1-palmitoyl-2-oleoyl-glycero-3-phosphoserine
PPARγ Proliferator-activated receptor-γ
PRKN Parkin RBR E3 ubiquitin protein ligase
PTEN Phosphatase and tensin homolog deleted on chromosome 10
PTEN-L PTEN-long
PTENP1 PTEN pseudogene 1
PTP Protein tyrosine phosphatase
SDHD Succinate dehydrogenase complex subunit D
SREBP Sterol regulatory element-binding proteins
TCGA The Cancer Genome Atlas
TOP2A DNA topoisomerase-2 alpha
USP11 Ubiquitin specific peptidase 11
VEGF Vascular endothelial growth factor
WHSC1 Wolf–Hirschhorn syndrome candidate 1
WWP2 WW domain-containing protein 2
XIAP X-linked inhibitor of apoptosis
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