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Prior research has suggested that the use of organic acids in the food industry may
unintentionally enhance pathogenicity of Listeria monocytogenes strain N1-227 and
R2-499. This study explored the connection between habituation to L-lactic acid or
acetic acid and virulence in L. monocytogenes strains N1-227 and R2-499 using
selected gene expression analysis and the in vivo Galleria mellonella wax worm model
for infection. Expression of transcription factors (sigB and prfA) and genes related to acid
resistance (gadD2, gadD3, and arcA) and bile resistance (bsh and bilE) or to virulence
(inlA, inlB, hly, plcA, plcB, uhpT, and actA) was investigated by quantitative real-time
PCR (qRT-PCR), while in vivo virulence was assessed by following the lethal time to
50% population mortality (LT50) of G. mellonella larvae after injection of untreated and
habituated L. monocytogenes. Twenty minutes of habituation to the organic acids at
pH 6.0 significantly increased expression of key acid and bile stress response genes in
both strains, while expression of virulence genes was strain-dependent. The expression
of transcription factor sigB was strain-dependent and there was no significant change
in the expression of transcription factor prfA in both strains. Habituation to acid
increased virulence of both strains as evidenced by decreased LT50 of G. mellonella
larvae injected with Listeria habituated to either acid. In summary, habituation of both
L. monocytogenes strains to organic acids up-regulated expression of several stress
and virulence genes and concurrently increased virulence as measured using the
G. mellonella model.

Keywords: organic acid, acid resistance, bile resistance, virulence, gene expression, Listeria monocytogenes,
Galleria mellonella

INTRODUCTION

The genus Listeria is comprised of Gram-positive, non-spore-forming, rod-shaped, facultative
anaerobic bacteria which can be found ubiquitously in the environment (Mélanie et al., 2006;
Gahan and Hill, 2014; Lani and Hassan, 2016). Among Listeria species, only L. monocytogenes and
L. ivanovii are pathogenic (Robinson and Batt, 1999); L. ivanovii primarily infects animals while
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L. monocytogenes shows pathogenicity toward both humans and
animals (Liu, 2006). During food production, L. monocytogenes
can experience several stresses such as low pH and high salt.
The ability of Listeria to adapt to these adverse conditions plays
a crucial role in food contamination and food-borne infection
(Lani and Hassan, 2016).

In response to stress, L. monocytogenes may induce an
acid tolerance response and other stress responses mechanisms
that allow it to overcome these hurdles (Glass et al., 1995;
Silva et al., 2012; Melo et al., 2015). L. monocytogenes is
able to utilize a variety of regulators (over 100 different
transcriptional regulators have been identified) to survive and
grow in different environments (Glaser et al., 2001; Gaballa et al.,
2019). Among those regulators, the alternative sigma factor B
(σB) and the listeriolysin positive regulatory factor A (PrfA) are
two essential transcriptional regulators for stress response and
for host infection.

σB, encoded by sigB, is a general stress responsive transcription
sigma factor in L. monocytogenes and many other Gram-positive
bacteria (Kazmierczak et al., 2005; Chaturongakul et al., 2008).
In L. monocytogenes, σB regulates numerous genes that are
associated with acid, bile and other physiological stressors (Sue
et al., 2004; Zhang et al., 2011; Smith et al., 2012; Melo et al.,
2015). The acid stress response systems in L. monocytogenes
include the glutamate decarboxylase (GAD) system and an
arginine deiminase (ADI) system. The GAD system, which
involves genes encoding three glutamate decarboxylase enzymes
(gadD1, gadD2 and gadD3) and two gamma aminobutyric acid
(GABA) antiporters (gadT1 and gadT2), plays a significant
role in pH homeostasis in L. monocytogenes (Cotter et al.,
2001; Melo et al., 2015). Expression of the GAD system
results in the decarboxylation of glutamate into γ-aminobutyrate
with consumption of intracellular protons (Cotter et al., 2001;
Karatzas et al., 2012). Additionally, the arginine deiminase
(ADI) system also contributes to the stabilization of the
bacterial cytoplasmic pH (Melo et al., 2015). The ADI
pathway involves the enzymes arginine deiminase, ornithine
carbamoyltransferase and carbamate kinase, which are encoded
by arcA, arcB, and arcD, respectively (Melo et al., 2015).
With respect to bile resistance, one of the most important
mechanisms in L. monocytogenes involves the ability to detoxify
individual conjugated bile acid through bile salt hydrolase (BSH)
(Dussurget et al., 2002; Begley et al., 2005). Another novel
bile resistance system in L. monocytogenes is the bile exclusion
system (BilE), which acts to exclude bile from bacterial cells
(Sleator et al., 2005).

The listeriolysin positive regulatory factor A (PrfA),
encoded by prfA, is a bacterial transcription factor that
controls and coordinates the expression of key virulence
genes in L. monocytogenes associated with cell invasion and
the intracellular infection cycle (Kazmierczak et al., 2006;
Scortti et al., 2007; de las Heras et al., 2011). Cell invasion
is mediated by two surface proteins, internalin A and B
(InlA and InlB); after entering the cell, L. monocytogenes
are entrapped in a phagocytic vacuole from which they
escape by lysing the membrane of the vacuole through the
combined actions of the pore-forming toxin listeriolysin O

(LLO, encoded by hly) and two phospholipases, PlcA and
PlcB (Mélanie et al., 2006). Multiplication and invasion
within host cells can then occur with the involvement
of the permease UhpT (a hexose phosphate transporter)
and the surface protein ActA (propel bacteria through the
cytoplasm) (Chico-Calero et al., 2002; Mélanie et al., 2006;
Cossart and Toledo-Arana, 2008).

Acid stress resistance has been well studied and observed in
various microorganisms such as Escherichia coli (Goodson and
Rowbury, 1989) and Salmonella (Foster and Hall, 1990). Prior
research by our group has suggested that the use of organic acids
in the food industry may unintentionally enhance virulence of
some L. monocytogenes strains (Zhang et al., 2014). Those results
showed that habituation of two L. monocytogenes strains, N1-
227 and R2-499, to organic acid under mildly acidic conditions
(pH = 6.0) induced acid and bile resistance, which indicated
these treatments could promote virulence by enhancing survival
during passage through the gastrointestinal tract (Zhang et al.,
2014). It also suggested the increased acid and bile resistance
was specifically due to organic acid exposure rather than a
decrease in environmental pH (Carpenter and Broadbent, 2009;
Zhang et al., 2014). Similar responses were not observed in
that study with other pathogenic strains of L. monocytogenes
(Zhang et al., 2014), so R2-499 and N1-227 were selected for
further study to explore the genetic basis for inducible acid and
bile resistance, and to determine if it affected virulence in an
in vivo model.

Virulence of Listeria spp. is frequently assessed using a murine
model (Lecuit, 2007). However, this model has limitations
for studying human pathogenicity of L. monocytogenes
because the interaction between InlA and mouse E-cadherin
(identified as InlA receptor in human) is poor, which makes
L. monocytogenes entry into epithelial cells less efficient
(Mengaud et al., 1996; Lecuit et al., 1999). The larvae
of Galleria mellonella have also been used as a model for
L. monocytogenes virulence (Joyce and Gahan, 2010; Mukherjee
et al., 2010, 2013; Banville et al., 2012; Ramarao et al., 2012;
Schrama et al., 2013). Compared to the mammalian model
and other alternative models, the G. mellonella model
offers several significant advantages, including structural
and functional similarities with the mammalian immune
system (Hoffmann et al., 1999; Strand, 2008). Additionally,
the infection process can be performed over a range of
temperatures (from 15◦C to above 37◦C), which enables
use of the G. mellonella model to study the virulence of
L. monocytogenes human pathogens at 37◦C (Jones et al., 2010;
Rejasse et al., 2012).

To better understand the molecular basis and potential
consequences of induced acid and bile resistance in organic acid
habituated strains, we used quantitative real time polymerase
chain reaction (qRT-PCR) to measure the expression of key
transcription factors and some of their target genes related to acid
or bile resistance or virulence in L. monocytogenes strains N1-
227 and R2-499 after habituation to lactic acid or acetic acid at
pH 6.0. Additionally, the G. mellonella infection model was used
to analyze the in vivo virulence of control and acid habituated
L. monocytogenes strains.
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MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
Original cultures (Table 1) were stored as frozen stocks at
−80◦C in tryptic soy broth (TSB, pH 7.4; Becton, Dickinson and
Company, Sparks, MD) supplemented with 20% v/v glycerol.
Prior to use, cultures were first propagated on tryptic soy agar
(TSA; Becton, Dickinson and Company, Sparks, MD) plate and
incubated at 37◦C for 24 h. A single colony from the TSA plate
was transferred into TSB and incubated overnight at 37◦C with
shaking (220 rpm).

RNA Isolation
Overnight cultures of each strain were harvested by
centrifugation (2,500 × g for 10 min; Sorvall RT1, Thermo
Scientific, Germany) at 4◦C, and then diluted to an optical
density at 600 nm (OD600) of 0.03 in TSB. Cells were acid
habituated as described by Zhang et al. (2014). A 1% inoculum
(v/v) of diluted overnight cultures was transferred into 50 mL
of standard TSB (pH 7.4) and incubated at 37◦C for 4 h with
shaking (220 rpm) to reach mid-log phase as determined by
Zhang et al. (2014). The cultures were collected by centrifugation
(2,500 × g for 10 min) at 4 ◦C and then suspended in 50 mL of
either standard TSB (pH 7.4, baseline control) or TSB without
dextrose (pH 6.0 adjusted with HCl, Becton, Dickinson and
Company, Sparks, MD) containing 0 (pH control) or 4.75 mM
of either L-lactic acid (Sigma Chemicals, St. Louis, MO) or acetic
acid (Johnson Matthey Company, Ward Hill, MA). The cultures
were incubated at 37◦C for 20 min with shaking (220 rpm).
After incubation, 100 mL of RNAprotect Bacteria Reagent
(Qiagen, Inc., Valencia, CA) was added to each sample. Cells
were incubated at room temperature for 10 min then collected
by centrifugation (9,500 × g for 10 min). The supernatant was
discarded and cell pellets were suspended in 900 µL of lysozyme
solution (Sigma-Aldrich, 20 mg/mL in Tris-EDTA buffer) that
contained 20 units of mutanolysin (Sigma-Aldrich). Samples
were incubated for 30 min at 37◦C on a shaker incubator at
220 rpm, then 20 µL of proteinase K (Omega Bio-Tek Inc.,
Norcross, GA) (20 mg/mL) was added and the samples were
returned to the shaker/incubator for 30 min. Total RNA was
isolated using an Aurum total RNA mini kit (Bio-Rad, Hercules,
CA) following the vendor’s recommended procedures. Residual
DNA was removed using The Ambion R© DNA-freeTM DNase
Treatment and Removal Reagents. RNA samples were then
purified using the GeneJET RNA Cleanup and concentration

TABLE 1 | Listeria monocytogenes strains used in this study.

Strain Ribotype Lineage Serotype Source

FSL R2-499 DUP-1053A II 1/2a Human isolate
associated with the US
outbreak linked to
sliced turkey, 2000

FSL N1-227 DUP-1044A I 4b Food isolate associated
with the US outbreak,
1998–1999

Micro Kit PCR purification kit (Thermo Fisher Scientific,
Lithuania). The amount and quality of the RNA were measured
using a NanoDrop Spectrophotometer (Thermo Fisher Scientific,
United States) and TapeStation System (Agilent, Santa Clara,
CA), respectively.

cDNA Synthesis and Real Time
Quantitative PCR (qPCR)
cDNA was synthesized from total RNA using random primers
(Invitrogen, Carlsbad, CA) and SuperScript II reverse
transcriptase (Invitrogen). The qPCR was carried out using
cDNA as template in an Opticon II thermal cycler (MJ Research,
Reno, NV) using HotStart-ITTM SYBR Green qPCR Master Mix
with UDG kit (Affymetrix, Inc.). Each reaction was performed
in triplicate and the relative gene expression of targeted genes
was calculated by the Pfaffl Method and normalized by the
baseline control (Pfaffl, 2001). The primers used in this study are
listed in Table 2 and rpoB was used as a housekeeping gene to
normalize the gene expression data (Bookout and Mangelsdorf,
2003; Tasara and Stephan, 2007). The amplification efficiency for
each primer was tested by plotting the cycle threshold (Ct) value
with different template concentrations and fitting the data to a
regression line (Bookout and Mangelsdorf, 2003; Ruijter et al.,
2009). The amplification efficiency for all the primers reached
90% or above (Li, 2020).

Galleria mellonella Wax Worm Model
The in vivo virulence of L. monocytogenes strains was determined
using the Galleria mellonella wax worm model described by
Ramarao et al. (2012). A 1% inoculum (v/v) of freshly prepared
L. monocytogenes cells was transferred into 50 mL of either
standard TSB (pH 7.4, baseline control) or TSB without dextrose
(pH 6.0 with HCl) containing 0 (pH control) or 4.75 mM of
either L-lactic acid or acetic acid and incubated at 37◦C for
4 h with shaking (220 rpm). The mid-log phase cultures were
collected by centrifugation (2,500 × g for 10 min) at 4◦C. The
bacterial cells were then re-suspended with sterile PBS solution
(pH 7.4) and diluted to an optical density at 600 nm (OD600)
of 0.25. Ten microliters of 108 cfu/mL L. monocytogenes, either
control or acid habituated, was injected into the haemocoel
of the wax worms using an automated syringe pump (KDS
100, KD Scientific; 20 larvae per treatment; see Figure 1 for
schematic experimental design and injection order. Injection
was done in two biological repetition). A PBS-only control
injection was also included. The larvae were placed in petri
dish (5 per dish) and incubated at 37◦C. Larvae survival was
evaluated every 24 h for 5 days after injection. The larvae were
considered dead when they showed no movement in response to
finger touch. Lethal times until 50% population mortality (LT50)
for each treatment were then determined by Probit analysis
(Bliss, 1934, 1935).

Enumeration of Listeria monocytogenes
in Galleria mellonella Wax Worms
L. monocytogenes in G. mellonella larvae was enumerated at
5, 10, 15, and 20 h after injection. At each time point, 5
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TABLE 2 | Primers used in this study.

Protein Function Gene Sequence (5′– > 3′)

General stress-responsive sigma factor B Required for the expression of
L. monocytogenes stress response factors

sigB F TGTTGGTGGTACGGATGATGG

R ACCCGTTTCTTTTTGACTGCG

Arginine deiminase Catalyze L-arginine to L-citrulline arcA F GCGTGATTGCGGAGGTTTTG

R CCCCATCATTCCACTGCTCT

Glutamate decarboxylase β Convert glutamate to GABA gadD2 F ATCGATATGCGCGTTGTTCCA

R ATACCGAGGATGCCGACCACA

Glutamate decarboxylase γ Convert glutamate to GABA gadD3 F TTCCGCATTGTTACGCCAG

R TCTTACTTGGGGACTTCGAC

Bile salt hydrolase Detoxify conjugated bile acid Bsh F TTTGTTGTTCCACCGAGCCTA

R GGGCGGAATTGGCTTACCTG

Bile exclusion protein Exclude bile from cell bilE F CATCAACGGAGCCTGTCGAA

R TCCAGATGACGCGCTAAGAA

Positive regulatory factor A Required for the expression of
L. monocytogenes virulence factors

prfA F CGATGCCACTTGAATATCCT

R CTTGGCTCTATTTGCGGTCA

Internalin A Host cell invasion inlA F CTATACCTTTAGCCAACCTGT

R GGTTGTTTCTTTGCCGTCCAC

Internalin B Host cell invasion inlB F CTGGACTAAAGCGGAAAACCTT

R TCCAGACGCATTTCTCACTCTT

Listeriolysin O Phagosome lysis hly F ATGCAATTTCGAGCCTAACC

R ACGTTTTACAGGGAGAACATC

Phosphatidylinositol-specific phospholipase C Phagosome lysis plcA F ACCGTATTCCTGCTTCTAGTT

R ACACAACAAACCTAGCAGCG

Phosphatidylcholine phospholipase C Phagosome lysis plcB F TAGTCAACCTATGCACGCCAA

R TTTGCTACCATGTCTTCCGTT

Actin assembly-inducing ptotein Stimulates actin-based intracellular bacterial
motility

actA F TTATGCGTGCGATGATGGTG

R TTCTTCCCATTCATCTGTGT

Hexose phosphate transporter Intracellular bacterial growth uhpT F TTCAGCACCACAGAACTAGG

R GCATTTCTTCCATCCACGAC

RNA polymerase beta subunit Housekeeping gene rpoB F CTCTAGTAACGCAACAACCTC

FIGURE 1 | Galleria mellonella schematic experimental design of one biological repetition.

larvae were collected and homogenized in 9 mL of sterile
peptone physiological solution (PPS) in a stomacher. Serial
dilutions were made by pipetting 1 mL of diluted sample into

9 mL PPS, then 100 µL of diluted samples was spread on
Palcam agar (L. monocytogenes selective media; Oxoid Limited,
Hampshire, United Kingdom). Plates were incubated at 37◦C
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FIGURE 2 | Relative gene expression of acid and bile stress response related genes in 20 min habituated Listeria monocytogenes strains (A) N1-227 and
(B) R2-499 cells in comparison with non-habituated cells (baseline control, TSB pH 7.4, ). Habituated treatments include as follows: TSB pH 6.0 (pH control, ),
TSB at pH 6.0 with 4.75 mM of acetic acid ( ) and TSB at pH 6.0 with 4.75 mM of L-lactic acid ( ). Error bars represent standard error of mean for two biological
trials with three replicates for each trial. Different letters indicate that treatments are significantly different (p < 0.05) as determined by one-way ANOVA with Tukey’s
post-hoc tests; *ns, Non-significant.

for 48 h then L. monocytogenes colonies were enumerated.
Microbiological count data were expressed as log10 of colony-
forming units per larvae.

Statistical Analysis
The data collected in this study (relative expression ratio of
target genes compared with reference genes in three biological
repetitions, the survival rate of G. mellonella larvae and the
enumeration of L. monocytogenes in Galleria mellonella wax
worm in two biological repetitions) were continuous outcome
variables for every categorical treatment variable (acidification
treatments of L. monocytogenes). Significant differences in
each outcome between treatments were assessed using one-
way analysis of variance (ANOVA) followed by Tukey’s test
to compare means of the gene expression outcome variables

between treatments. Differences were considered significant at
P < 0.05.

RESULTS

Influence of Acid Habituation on
Expression of Acid and Bile Stress
Response Genes
Increased expression of gadD3 was observed for strain N1-227
in the pH control relative to the baseline control (P < 0.05,
Figure 2). Additionally, acetic acid or lactic acid habituation
resulted in significant upregulation of gadD3 as compared to the
pH control in both N1-227 and R2-499 (P < 0.05). No significant
change of gadD2 expression was observed for both strains in the
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FIGURE 3 | Relative gene expression of virulence related genes in 20 min habituated Listeria monocytogenes (A) N1-227 and (B) R2-499 cells in comparison with
non-habituated cells (baseline control, TSB pH 7.4, ). Habituated treatments include as follows: TSB at pH 6.0 (pH control, ), TSB at pH 6.0 with 4.75 mM of
acetic acid ( ) and TSB pH 6.0 with 4.75 mM of L-lactic acid ( ). Error bars represent standard error of mean for two biological trails with three replicates for each
trail. Different letters indicate that treatments are significantly different (p < 0.05) as determined by one-way ANOVA with Tukey’s post-hoc tests. *ns, Non-significant.

pH control compared to the baseline control. However, similar to
gadD3, acetic acid or lactic acid habituation induced significant
and dramatic expression of gadD2 in comparison with pH control
in both strains (P < 0.05). The qPCR results for both strains
also showed no significant changes in the expression of gene
encoding arginine deiminase (arcA) in the pH control relative to
the baseline control, and that acetic acid or lactic acid habituation
significantly increased arcA expression in both strains (P < 0.05,
Figure 2).

In contrast, transcription of genes related to bile tolerance was
variable between the strains. Habituation to lactic acid or acetic
acid significantly increased bsh gene expression in comparison
with the pH control for both strains (P < 0.05). However, the
pH control had no significant effect on bsh expression relative
to the baseline control in strain N1-227 (Figure 2). Changes
in the expression of bilE were also strain-dependent. For strain

N1-227, bilE was significantly overexpressed (P < 0.05) when
cells were habituated to acetic or L-lactic acid, whereas no
significant changes were observed in strain R2-499. Finally,
qPCR data showed habituation to L-lactic acid or acetic acid
significantly (P < 0.05) induced sigB expression in strain N1-
227 cells compared to the baseline control (Figure 2A). However,
no significant change on sigB expression was observed between
treatments in strain R2-499 (Figure 2B).

Influence of Acid Habituation on
Expression of Virulence Genes
As was observed with stress genes, qPCR results showed
similarities and differences between strains with respect to
virulence gene expression in response to organic acid habituation
(Figure 3). The transcription level of prfA or uhpT was not
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TABLE 3 | Lethal times until 50% population mortality (LT50) for Galleria mellonella
larva injected with Listeria monocytogenes strains habituated to various acid
treatments.

Strain Treatments LT50 (Hours) (95% CI)

N1-227 Baseline 40.72 (32.58–50.90)a

pH control 34.23 (26.28–44.59)a

Acetic acid 19.76 (15.50–25.19)b

L-lactic acid 17.14 (13.58–21.65)b

R2-499 Baseline 37.23 (31.22–44.39)a

pH control 29.83 (22.79–39.04)a

Acetic acid 17.14 (13.10–22.42)b

L-lactic acid 14.01 (10.97–17.88)b

Different letters within a strain indicate that treatments are significantly different
(p < 0.05) as determined by Probit analysis.

significantly impacted by pH or acid exposure in either strain.
However, expression of inlA, inlB and hly increased in both
strains when the pH was decreased. Both strains showed
significantly (P < 0.05) increased expression of inlA and inlB in
organic acid habituated cells compared to the baseline control
or pH control (Figure 3). Furthermore, hly expression was
significantly (P < 0.05) increased in R2-499 cells habituated to
acetic acid or L-lactic acid relative to baseline control and pH
control. However, significant (P < 0.05) overexpression of hly in
strain N1-227 compared to baseline control was only observed
with the pH control and acetic acid habituation treatment.

The qPCR results showed the expression profile for the other
virulence genes (plcA, plcB, actA) was also strain-dependent
(Figure 3). No significant changes were observed in plcA
expression for strain N1-227 (Figure 3A), while organic acid
habituation significantly (P < 0.05) increased expression of this
gene in strain R2-499 compared to baseline control and pH
control (Figure 3B). All three acid treatments (pH control and
organic acid habituated cells) significantly (P < 0.05) induced
plcB expression compared to the baseline control in strain
N1-227, whereas significant induction in strain R2-499 was
only observed with the acetic acid treatment. Conversely, no
significant differences were recorded in actA expression for strain
R2-499, and only acetic acid habituated N1-227 cells showed a
significant (P < 0.05) increase in the expression level of this
gene (Figure 3).

Effect of Habituation to Organic Acid on
Galleria mellonella Survivability
The lethal time to 50% population mortality (LT50) of each
treatment for both strains (Table 3) was determined based on
the survival of G. mellonella over 5 days post-injection (see
Supplementary Figure 1). For both N1-227 and R2-499, the
LT50 of larvae injected with L. monocytogenes habituated with
HCl (pH control) was lower than that of larvae injected with
non-habituated L. monocytogenes (baseline control) and LT50
values decreased considerably more when larvae were injected
with organic acid habituated L. monocytogenes (Table 3). The
shortest LT50 results were noted with organic acid habituated

L. monocytogenes R2-499, which suggests this strain may be more
virulent than N1-227.

To test whether the previous organic acid habituation affected
the survival or growth of L. monocytogenes in G. mellonella
larvae, post-injection bacterial cell numbers were determined
over time. The number of L. monocytogenes cells showed a
slight decrease for the first 5 h and then remained constant
through the 20 h sampling period (see Supplementary Figure 2).
Other researchers have also reported that L. monocytogenes
cells decreased in number for the first 2 h post-injection
(Joyce and Gahan, 2010; Schrama et al., 2013). No statistically
significant differences were observed between treatments for
either L. monocytogenes strain, indicating that the enhanced
virulence observed in organic acid habituated cells is not due to
enhanced survival or growth in the larvae.

DISCUSSION

The qPCR experiments showed organic acid habituation
impacted the expression of genes encoding important acid
and bile stress response mechanisms in both strains of
L. monocytogenes. The GAD system serves as a key mechanism
of L. monocytogenes survival in acid environments (Cotter et al.,
2001; Melo et al., 2015). Karatzas et al. (2012) proposed a
model wherein GAD-mediated acid resistance consists of two
semi-independent systems: An intracellular system that involves
GadD3 acting on intracellular glutamate and an extracellular
system that involves GadD2 decarboxylation of glutamate
imported by the antiporter GadT2. Interestingly, the differential
induction of gadD3 vs. gadD2 in strains N1-227 and R2-499
suggests that gadD3 may play a more prominent role in acid
protecting in N1-227, while gadD2 serves as primary defense
mechanism in R2-499. Additionally, the fold-change in bilE
expression was lower than that of bsh in both strains, which might
be a consequence of cell growth phase. Sue et al. (2003) showed
that bilE expression is growth phase-dependent, with highest
expression level observed in stationary phase cells, and this study
used cells collected at mid-log phase.

Infection of host cells by L. monocytogenes can be divided
into three stages that require specific virulence factors: Initial cell
invasion (InlA and InlB), escape from vacuole (Hly, PlcA, and
PlcB) and cell-to-cell spread (ActA and UhpT) (Cossart et al.,
1989; Mélanie et al., 2006; Schnupf and Portnoy, 2007; Joyce
and Gahan, 2010; Hamon et al., 2012). It has been reported that
L. monocytogenes is able to sense different environments and
host cell compartments and regulate virulence gene expression
accordingly (Freitag and Jacobs, 1999; Gaballa et al., 2019). Other
researchers have found that inlA and inlB are induced prior to
the cell invasion, while hly, plcB, and plcA are overexpressed
within the phagosome and uhpT and actA are expressed in the
cytosol (Bubert et al., 1999). In this study, inlA and inlB showed
a similar expression pattern in both strains in response to acid
exposure (Figure 3). Significant induction of other virulence
genes in response to pH or acid was also observed but the patterns
were strain-dependent. Additionally, although the transcription
level of prfA was not significantly altered by acid exposure, hly
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transcription is PrfA-dependent (Kazmierczak et al., 2006; Scortti
et al., 2007; de las Heras et al., 2011). The observed induction
of hly may therefore reflect post-transcriptional control of PrfA
activity in these cells.

In summary, RT-qPCR demonstrated that habituation to
L-lactic or acetic acids induces statistically significant increases
in the expression of several genes associated with acid and bile
stress resistance in two L. monocytogenes strains that are known
human pathogens. While many of these changes were strain-
specific, induction patterns for several stress and virulence genes,
including gadD2, arcA, bsh, two internalin genes ilnA and ilnB,
in response to acid habituation were similar between N1-227
and R2-499. Future studies might explore the role of nucleotide
polymorphism in promoter sequences or in DNA binding motifs
in gene expression patterns.

Organic acid habituation also enhanced in situ virulence
of both L. monocytogenes strains as evidenced by a reduced
the LT50 value in the in vivo G. mellonella infection model.
Our finding that HCl or organic acid habituation enhanced
virulence of both strains in the G. mellonella model stands in
contrast with the report of Schrama et al. (2013), who observed
acid or salt adaptation reduced the infectious ability of some
L. monocytogenes. However, factors such as different strains
and stressors may have contributed to this discrepancy. Our
prior research suggests this difference is likely due to strain-
specific variation among L. monocytogenes (Zhang et al., 2014),
and illustrates the need for further study to determine how
widespread this phenomenon is among pathogenic and non-
pathogenic strains of L. monocytogenes.

Taken together, these results suggest that exposure to organic
acids can increase the pathogenicity of some L. monocytogenes
strains by enhancing their ability to survive passage through
the gastrointestinal tract while simultaneously priming them
for intracellular virulence. While our prior results indicate
that this phenomenon may not be universally shared among
strains of L. monocytogenes (Zhang et al., 2014), the fact that
it does occur in pathogenic strains associated with foodborne
outbreaks (Table 1) underscores the potential for organic acids
to have unanticipated consequences on food safety and public
health. To fully understand the broader impact, future studies
are needed to determine how widespread this phenomenon is
among additional strains of L. monocytogenes, including both

known human pathogens and strains not currently recognized
as pathogenic, and to examine the impact of food systems and
conditions encountered during processing and storage such as
refrigeration temperatures.
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