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Abstract

Cancer, which is a leading cause of death worldwide, places a big burden on health-care system. In this study, an order-
prediction model was built to predict a series of cancer drug indications based on chemical-chemical interactions.
According to the confidence scores of their interactions, the order from the most likely cancer to the least one was obtained
for each query drug. The 1st order prediction accuracy of the training dataset was 55.93%, evaluated by Jackknife test, while
it was 55.56% and 59.09% on a validation test dataset and an independent test dataset, respectively. The proposed method
outperformed a popular method based on molecular descriptors. Moreover, it was verified that some drugs were effective
to the ‘wrong’ predicted indications, indicating that some ‘wrong’ drug indications were actually correct indications.
Encouraged by the promising results, the method may become a useful tool to the prediction of drugs indications.
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Introduction

Cancer is the main cause of death in both developed and

developing countries [1]. In 2008 alone, there were 12.7 million

new cancer cases and 7.6 million cancer deaths worldwide [1].

Meanwhile, the quantity of newly approved drugs diminished

continually in spite of an increase of R&D investments [2]. R&D

of a drug requires comprehensive experimental testing, which

often costs millions of dollars, involves several thousand animals,

and takes many years to complete. However, as a result, not many

chemicals have undergone the degree of testing needed to support

accurate health risk assessments or meet regulatory requirements

for drug approval. Thus, it is very attractive to develop quick,

reliable, and non-animal-involved prediction methods, e.g. using

structure-activity relationships (SARs), to predict the anticancer

activities of chemicals.

Some pioneer studies indicated that interactive proteins are

more likely to share the same functions than non-interactive ones

[3,4,5]. Likewise, interactive compounds are also more likely to

share common properties [6,7,8]. STITCH (Search Tool for

Interactions of Chemicals, http://stitch.embl.de/) is a well-known

database containing the interactions information of proteins and

chemicals [9,10]. It provides three categories of interactive

compounds: (1) those participating in the same reactions; (2) those

sharing similar structures or activities and (3) those with literature

associations, such as binding the same target [9]. In this study, we

attempted to build a prediction model of drug-indication by

quantifying chemical-chemical interaction of every pair of

interactive compounds. Briefly, drugs and their corresponding

indications (i.e., 8 kinds of cancers) were extracted from KEGG

(Kyoto Encyclopedia of Genes and Genomes, http://www.

genome.jp/kegg/) [11], a well-known database dealing with

genomes, enzymatic pathways, and biological chemicals, and

Drugbank [12], another database containing detailed information

of drugs and their target information. Then, the score of each

indication of the query compound was obtained from the

confidence scores of interactions between the query compound

and its interactive compounds using the indications of the

interactive compounds. And the order from the most likely

indication to the least was obtained for each drug. Finally, the

prediction quality of the model was evaluated by Jackknife test and

some other parameters.

In addition to build an effective prediction model, another aim

of our study is to investigate the drug repositioning ability of our

model. Drug repositioning, i.e. finding novel uses of existing drugs,

is an alternative strategy towards drug development because it has

the potential to speed up the process of drug approvals. Several

drugs, such as thalidomide, sildenafil, bupropion and fluoxetine,

have been successfully repositioned to new indications [13,14].

Experimental approaches for drug repositioning usually employ
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high throughput screening (HTS) to test the libraries of drugs

against biological targets of interest. More recently, several in silico

models were developed to address the issues of drug repositioning.

Iorio et al. predicted and validated new drug modes of action and

drug repositioning from transcriptional responses [15]. Butte’s

group reported two successful examples of drug repositioning

based on gene expression data from diseases and drugs [16,17].

Cheng et al.merged drug-based similarity inference (DBSI), target-

based similarity inference (TBSI) and network-based inference

(NBI) methods for drug-target association and drug repositioning

[18]. In our study, according to the assumption that interactive

drugs are more likely to target the same indication, we investigated

the repositioning possibility of some ‘wrong’ predicted drugs by

retrieving references, and attempted to propose alternative

indications for some drugs.

Materials and Methods

Materials
The information of 98 drugs that can treat cancers was retrieved

from KEGG DISEASE in KEGG [11]. These drugs can treat the

following 10 kinds of cancers:

(1) Cancers of the nervous system

(2) Cancers of the digestive system

(3) Cancers of haematopoietic and lymphoid tissues

(4) Cancers of the breast and female genital organs

(5) Cancers of soft tissues and bone

(6) Skin cancers

(7) Cancers of the urinary system and male genital organs

(8) Cancers of endocrine organs

(9) Head and neck cancers

(10) Cancers of the lung and pleura

Since some drugs have no information of chemical-chemical

interactions, we discarded these drugs, resulting in 68 drugs. After

that, we found that ‘Skin cancers’ and ‘Head and neck cancers’

only contained 3 and 4 drugs, respectively. It is not sufficient to

establish an effective prediction model with only a few samples,

thus these two kinds of cancers were abandoned. As a result, 68

drugs were obtained, comprising the benchmark dataset S. These
68 drugs were classified into 8 categories in a way that drugs that

can treat one kind of cancers comprised one category. The codes

of the 68 drugs and their indications can be found in Table S1.
The number of drugs in each category is listed in column 5 of

Table 1. For convenience, we used tags C1,C2, . . . ,C8 to

represent each kind of cancers. Please see the column 1 and 2 of

Table 1 for the corresponding of tags and cancers. It is observed

from Table 1 that the sum of the number of drugs in each

category is much larger than the different drugs in S, indicating
that some drugs belong to more than one category, i.e. some drugs

can treat more than one kind of cancers. In details, 50 drugs can

treat only one kind of cancers, while 18 drugs can treat at least two

kinds of cancers. Please refer to Figure 1 for a plot of the number

of drugs against the number of cancers they can treat. Thus, it is a

multi-label classification problem which needs to assign each drug

to the aforementioned 8 categories in descending order. The

classifier only providing one candidate cancer that a query drug

can treat is not an optimal choice. Similar to the situation when

dealing with proteins and compounds with multiple attributions

[7,19], the proposed method also needs to provide a series of

candidate cancers, ranging from the most likely cancer to the least

likely one.

To better evaluate the proposed method, the benchmark dataset

S was divided into one training dataset Str and one validation test

dataset Ste, i.e. S=Str<Ste and Str>Ste =Ø, where drugs that can

only treat exact one kind of cancer and half of drugs that can treat

at least two kinds of cancers comprised Str, while Ste contained the

rest drugs in S. The number of drugs in each category for Str and
Ste is listed in column 3 and 4 of Table 1, respectively.
In addition, to test the generalization of the proposed method,

we extracted 59 drug compounds from Drugbank [12], which are

not in the benchmark dataset S. After excluding drug compounds

without information of chemical-chemical interactions, 44 drugs

were obtained, comprising the independent test dataset Site. The
number of drugs in each category of Site is listed in column 6 of

Table 1 and the detailed information of these drug compounds

including their codes and indications can be found in Table S2.

Chemical-chemical Interactions
In recent years, the information of chemical-chemical interac-

tions is penetrating into the prediction of various attributions of

compounds [7,8,20]. The basic idea is that interactive compounds

are more likely to share common functions than non-interactive

ones. Compared with the information based on chemical

structure, it includes other essential properties of compounds,

such as compounds activities, reactions, and so on.

The information of interactive compounds was downloaded

from STITCH (chemical_chemical.links.detailed.v3.1.tsv.gz) [9].

In the obtained file, each interaction consists of two compounds

and five kinds of scores entitled ‘Similarity’, ‘Experimental’,

‘Database’, ‘Textmining’ and ‘Combined_score’. In details, the

first four kinds of scores are calculated based on the compound

structures, activities, reactions, and co-occurrence in literature,

respectively, while the last kind of score ‘Combined_score’

integrates the aforementioned four scores. Thus, it is used in this

study to indicate the interactivity of two compounds, i.e. two

compounds are interactive compounds if and only if the

‘combined_score’ of the interaction between them is greater than

zero. In fact, the value of ‘combined_score’ also indicates the

strength of the interaction, i.e. the likelihood of the interaction’s

occurrence. Thus, it is termed as confidence score in this study.

For convenience, we denote the confidence score of the interaction

between c1 and c2 by S(c1,c2). In particular, if c1 and c2 are non-

interactive compounds, S(c1,c2) is set to zero.

112 drug compounds were investigated in this study as

described in Section ‘‘Materials’’, and 1,393 chemical-chemical

interactions whose confidence scores were greater than zero were

obtained. Among the interactions which scores are greater than

zero, 50 of them belonged to the label ‘Similarity’, 4 belonged to

‘Experiment’, 114 belonged to ‘Database’, and 1,352 belonged to

‘Textmining’. It is necessary to point out that some drug

interactions had two or more than two kinds of scores. As far as

the quantity of chemical-chemical interactions is concerned, the

tag ‘Textmining’ contributed most to the construction of the

prediction method described in Section ‘‘The method based on

chemical-chemical interactions’’.

Prediction Method
The method based on chemical-chemical

interactions. Systems biology has been applied extensively into

the predictions of properties of proteins and compounds and is

deemed to be more efficient than some conventional methods

[7,20,21,22]. In this study, we attempt to classify cancer drugs into

the aforementioned 8 categories based on chemical interactions.

Suppose there are n drugs in the training set S0, say

d1,d2, . . . ,dn. Cancers that dican treat is represented as follows:

Cancer Drug Prediction
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Fi ~ (f1, i, f2, i, . . . , f8, i)
T ð1Þ

where T is the transpose operator and

fj,i~
1 if di can treat cancerCj

0 Otherwise

�
ð2Þ

For a query drug dq, which cancer it can treat can be determined

by its interactive compounds in S0. To evaluate the likelihood that

dq can treat cancer Cj , we calculated a score as follows:

P(dq[Cj)~
Xn
i~1

fj,i:S(di, dq)

j~ 1, 2, 3, 4, 5, 6, 7, 8

ð3Þ

Larger score of P(dq[Cj) indicates that it is more likely the

query drug can treat cancer Cj . And P(dq[Cj)~0 suggests that

the probability that the query drug can treat cancer Cj is zero,

because there are no interactive compounds in S0 that can treat

cancer Cj .

Figure 1. The number of drugs plotted against the number of cancers they can treat in the benchmark dataset.
doi:10.1371/journal.pone.0087791.g001

Table 1. The number of drugs in each category of Str, Ste, S and Site.

Tag Cancer Number of drugs

Training
dataset Str

Validation test
dataset Ste Total in S

Independent
test dataset Site

C1 Cancers of the nervous system 8 1 9 1

C2 Cancers of the digestive system 8 5 13 6

C3 Cancers of haematopoietic and
lymphoid tissues

24 6 30 21

C4 Cancers of the breast and female
genital organs

13 6 19 11

C5 Cancers of soft tissues and bone 4 6 10 2

C6 Cancers of the urinary system and
male genital organs

9 5 14 9

C7 Cancers of endocrine organs 5 2 7 1

C8 Cancers of the lung and pleura 6 3 9 7

– Total 77 34 111 58

doi:10.1371/journal.pone.0087791.t001

Cancer Drug Prediction
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As mentioned in Section ‘‘Materials’’, predicting which cancers

a drug can treat is a multi-label classification problem. A reliable

classifier should provide not only the most likely cancer but also a

series of candidate cancers, ranging from the most likely one to the

least likely one. According to the results of Eq. 3, it is easy to

arrange the candidate cancers using the decreasing order of the

corresponding scores. For example, if the results of Eq. 3 are:

P(dq[C3)§P(dq[C1)§P(dq[C5)w0 ð4Þ

it means that there are three candidate cancers of dq, where the

most likely cancer it can treat is C3, followed by C1 and C5.

Furthermore, C3 is called the 1st order prediction, and C1 is the

2nd order prediction, and so forth.

The Method Based on Molecular Descriptors
To compare our method with other methods, the method based

on molecular descriptors was constructed as follows. The structure

optimization of each drug compound was performed using the

AM1 semi-empirical method implemented in AMPAC 8.16 [23].

454 descriptors including constitutional, topological, geometrical,

electrostatic, and quantum-chemical descriptors were calculated

by Codessa 2.7.2 [24]. To encode each drug compound

effectively, the descriptors with missing values were discarded,

resulting in 355 descriptors, i.e. each drug compound d can be

represented by a 355-D (dimension) vector which can be

formulated as follows:

D(d)~ s1,s2, . . . ,s355½ �T ð5Þ

where T is the transpose operator. Accordingly, the relationship of

two drugs d1 and d2 can be calculated by the following formula:

SD(d1,d2)~
D(d1):D(d2)

D(d1)k k: D(d2)k k ð6Þ

where D(d1):D(d2) is the dot product of D(d1) and D(d1), while
D(d1)k k and D(d2)k k is the modulus of D(d1) and D(d1),
respectively.

Similar to the method based on chemical-chemical interactions,

the score that a query drug dq can treat cancer Cj can be

calculated by the following formula:

PD(dq[Cj)~
Xn
i~1

fj,i:SD(di, dq)

j~ 1, 2, 3, 4, 5, 6, 7, 8

ð7Þ

The rest procedure is the same as that of the method based on

chemical-chemical interactions, which also provides a series of

candidate cancers that dq can treat, ranging from the most likely

one to the least one.

Validation and Evaluation
Jackknife test is one of the most popular methods for evaluating

the performance of classifiers. During the test, each sample is

singled out one-by-one and predicted by the classifier trained by

the rest samples in the dataset. The test procedure is open, thereby

avoiding arbitrary problem [7]. Therefore, the outcome obtained

by Jackknife test is always unique for a given dataset. In view of

this, many investigators have adopted it to evaluate the accuracies

of their classifiers in recent years [25,26,27,28,29].

As described in Section ‘‘Prediction method’’, the methods in

this study can provide a series of candidate cancers for a given

query drug. The j-th order prediction accuracy is computed by the

following formula [7,8]:

ACCj~
hj

N
ð8Þ

where N is the total number of drugs in the dataset and hj is the
number of drugs such that their j-th predictions are the true

cancers that they can treat. It is obvious that ACCj measures the

quality of the j-th order prediction. If the true cancers that a query

drug can treat are positioned in low order, it is deemed as an

optimal predicted result. Thus, high ACCj with low order number

j and low ACCj with high order number j indicate a good

performance of the classifier. ACC1 is the most important

indicator of the performance of the classifier.

To evaluate the methods more thoroughly, we calculated the

prediction accuracy on cancer Cj for the i-th order prediction as

follows:

ACC
j
i~

vi,j

Nj

ð9Þ

where Nj is the number of drugs that can treat cancer Cj in the

dataset and vi,j is the number of drugs such that its i-th order

prediction is correctly predicted to treating cancer Cj .

In addition, another measurement was taken, which was

adopted in some previous studies [6,7,8] and can be calculated

as follows:

Vm~

PN
i~1

Wi,m

PN
i~1

ni

ð10Þ

where m represents the first m predictions that are taken into

consideration, Wi,m is the number of the correct predictions of the

i-th drug compound among its first m predictions, ni is the number

of cancers that the i-th drug compound can treat. It is easy to

deduce that Vm means the proportion of all true cancers that the

samples in the dataset can treat covered by the first m predictions

of each sample in it. It can be seen from Figure 1 that different

drug compounds may have different numbers of cancers they can

treat. In view of this, the parameter m in Eq. 10 usually takes the

value of the smallest but no less than the average number of

cancers that drug compounds in the dataset can treat. It can be

computed by

M~

PN
i~1

ni

N
ð11Þ

Generally speaking, higher Vm suggests better performance of the

method.

Results and Discussion

As described in Section ‘‘Materials’’, the benchmark dataset S
was divided into a training dataset Str and a validation test dataset

Cancer Drug Prediction
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Ste, which contained 59 and 9 drugs, respectively. In addition, an

independent test dataset Site containing 44 drugs was constructed

to test the generalization of the method. The predicted method

introduced in Section ‘‘The method based on chemical-chemical

interactions’’ was used to make prediction. The detailed predicted

results are given as follows.

Performance of the Method Based on Chemical-chemical
Interactions on the Training Dataset
As for the 59 drugs in the training dataset Str, the predictor was

performed and evaluated by Jackknife test. Listed in column 2 of

Table 2 are the 8 prediction accuracies calculated by Eq. 8, from
which we can see that the 1st order prediction accuracy was

55.93%, while the 2nd order prediction accuracy was 22.73%. It is

also observed from column 2 of Table 2 that the prediction

accuracies generally followed a descending trend with the increase

of the order number, indicating that the proposed method

arranged the candidate cancers in the training dataset quite well.

In details, for each order prediction, we calculated the accuracies

of each kind of cancer according to Eq. 9, which were listed in

row 2–9 of Table 3. It can be seen that most of the 0.00%

accuracy occurred when the prediction order was high, indicating

that for each kind of cancer, it was better predicted with lower

order number of the predictions. The average number of cancers

which drugs in Str can treat was 1.31 (77/59), calculated by Eq.
11. It means that the average success rate would be only 16.38% if

ones make prediction by random guesses, i.e. randomly assign a

cancer indication to each sample, which is much lower than the 1st

order prediction accuracy obtained by our method. Because the

average number of cancers a drug can treat is 1.31, the first 2

order predictions of each sample in Str were taken to calculate the

proportion of true cancers that samples in Str can treat covered by

these predictions according to Eq. 10, obtaining a ratio of

61.04%.

Performance of the Method Based on Chemical-chemical
Interactions on the Validation Test Dataset
As for the 9 drugs in the validation test dataset Ste, their

candidate cancers were predicted by the method described in

Section ‘‘The method based on chemical-chemical interactions’’

based on the information of the drugs in Str. 8 prediction

accuracies calculated by Eq. 8 were listed in column 3 of Table 2.
It can be seen that the 1st order prediction accuracy was 55.56%,

while the 2nd order one was 66.67%. It is also observed from

Table 2 that the prediction accuracies of this dataset were

generally higher than those of the training dataset, due to the fact

that drugs in Ste can treat two or more than two kinds of cancers,

while most drugs in Str can only treat one kind of cancers.

Similarly, we calculated the accuracies of each kind of cancer for

the 1st, 2nd, …, 8th order prediction by Eq. 9. Row 10–17 of

Table 3 listed them. The average number of cancers that drugs in

Ste can treat was 3.78 (34/9), indicating that if ones make

prediction by random guesses, the average success rate would be

47.22%, which is significantly lower than the 1st and 2nd order

accuracies listed in column 3 of Table 2. This suggests that the
performance of the method on the validation test dataset is fairly

good. Since the average number of cancers that drugs in Ste can
treat was 3.78, the first 4 order predictions of each sample in Ste
were considered. According to Eq. 10, 61.76% of true cancers

were correctly predicted by the first 4 order predictions.

Performance of the Method Based on Chemical-chemical
Interactions on the Independent Test Dataset
The candidate cancers of the 44 drugs in the independent test

dataset Site were also predicted by our predictor based on the drug

information in Str. 8 prediction accuracies were obtained and

listed in column 4 of Table 2, from which we can see that the 1st

order prediction accuracy was 59.09%, while the 2nd order

prediction accuracy was 29.55%. To better evaluate the method,

the prediction accuracies on each kind of cancer for the 8 order

predictions were calculated by Eq. 9 and listed in row 18–25 in

Table 3. The average number of cancers that drugs in Site can
treat was 1.32 (58/44), suggesting that if ones make prediction by

random guesses, the average success rate would be 16.5%, which is

much lower than the 1st order prediction accuracy obtained by our

method. Because the average number of drug indications was

1.32, the first 2 order prediction of each sample in Site was

considered. According to Eq. 10, 67.24% of true cancers were

correctly predicted by the first 2 order predictions.

Comparison with other Methods
To indicate the effectiveness of our method for the prediction of

drugs cancer indications, some other methods were built to make

comparison.

The method based on molecular descriptors described in

Section ‘‘The method based on molecular descriptors’’ was

conducted on Str with its performance evaluated by Jackknife

test. The 8 prediction accuracies calculated by Eq. 8 were listed in

column 2 of Table 4, from which we can see that the 1st order

prediction accuracy was 41.38%. It is much lower than the 1st

order prediction accuracy of 55.93% obtained by the method

based on chemical-chemical interactions. Also, for drugs in Ste and
Site, their cancer indications were predicted by molecular

descriptors on Str. The prediction accuracies were listed in column

3 and 4 in Table 4. In details, the 1st order prediction accuracy on

Ste and Site were 55.56% and 44.19%, respectively. Compared

with the prediction accuracies of 55.56% on Ste and 59.09% on

Site using chemical interactions, they performed at the same level

on Ste, and chemical interactions are much better than chemical

descriptors on Site. In addition, we considered the first 2-order, 4-

order and 2-order predictions on Str, Ste, and Site due to the

average number of cancers that drugs in these datasets can treat.

The proportion of true cancers that samples in Str, Ste, and Site can
treat covered by these predictions were 51.39%, 58.82% and

49.12%, respectively, which were all lower than the corresponding

proportions of 61.04%, 61.76% and 67.24%, respectively,

obtained by the method based on chemical-chemical interactions.

Therefore, the method based on chemical interactions was

superior to the method based on molecular descriptors.

Table 2. Prediction accuracies of the method based on
chemical-chemical interactions on Str, Ste and Site.

Prediction order Str Ste Site

1 55.93% 55.56% 59.09%

2 22.73% 66.67% 29.55%

3 20.34% 44.44% 6.82%

4 8.47% 66.67% 11.36%

5 5.08% 22.22% 6.82%

6 10.17% 55.56% 2.27%

7 6.78% 55.56% 13.64%

8 0.00% 11.11% 2.27%

doi:10.1371/journal.pone.0087791.t002

Cancer Drug Prediction
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As was described in the above three sections, the performance of

our method was much better than that of the random guesses,

which randomly assigned a cancer indication to a query drug.

Here, another random guesses method was applied to evaluate our

method from a different aspect. For any query drug dq, we

randomly selected a drug compound in the training set, say d, and

assigned true cancers that d can treat to dq, i.e. the predicted

cancers of dq were same as the true cancers that d can treat. Since

there is no order information in the predicted candidate cancers

for each sample, the measures provided by Section ‘‘Validation

and evaluation’’ cannot evaluate the performance of this method.

Thus, Recall and Precision [30,31] were employed to evaluate its

performance, which can be computed by.

Precision~

PN
i~1

TPi

PN
i~1

Pi

Recall~

PN
i~1

TPi

PN
i~1

Ri

8>>>>>>>>>>><
>>>>>>>>>>>:

ð12Þ

where TPi is the number of correct predicted cancers for the i-th

drug compound, Ri represents the numbers of cancers which the i-

th drug compound can treat, Pi represents the numbers of

predicted cancers for the i-th drug compound, and N is total

number of tested samples.

The random guess method described in the above paragraph

was conducted on Str with its performance evaluated by Jackknife

test. The Precision and Recall were 15.29% and 16.88%,

respectively. For the predicted results on Str by chemical-chemical

interactions, the 1st order prediction of each sample were picked,

obtaining Precision of 55.93% and Recall of 42.86%, which were

much higher than the random guess method.

Table 3. Prediction accuracies on 8 kinds of cancers for each order prediction obtained by our predictor.

Dataset
Prediction
order C1 C2 C3 C4 C5 C6 C7 C8

1 0.00% 25.00% 95.83% 46.15% 0.00% 0.00% 40.00% 0.00%

2 37.50% 25.00% 4.17% 53.85% 0.00% 11.11% 0.00% 0.00%

3 62.50% 37.50% 0.00% 0.00% 0.00% 22.22% 20.00% 16.67%

Str 4 0.00% 12.50% 0.00% 0.00% 0.00% 22.22% 0.00% 33.33%

5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 50.00%

6 0.00% 0.00% 0.00% 0.00% 50.00% 44.44% 0.00% 0.00%

7 0.00% 0.00% 0.00% 0.00% 50.00% 0.00% 40.00% 0.00%

8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

1 0.00% 0.00% 83.33% 0.00% 0.00% 0.00% 0.00% 0.00%

2 0.00% 0.00% 16.67% 83.33% 0.00% 0.00% 0.00% 0.00%

3 100.00% 0.00% 0.00% 16.67% 0.00% 0.00% 50.00% 33.33%

Ste 4 0.00% 80.00% 0.00% 0.00% 33.33% 0.00% 0.00% 0.00%

5 0.00% 0.00% 0.00% 0.00% 16.67% 0.00% 0.00% 33.33%

6 0.00% 0.00% 0.00% 0.00% 16.67% 80.00% 0.00% 0.00%

7 0.00% 20.00% 0.00% 0.00% 33.33% 20.00% 0.00% 33.33%

8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 50.00% 0.00%

1 0.00% 50.00% 66.67% 36.36% 0.00% 33.33% 100.00% 14.29%

2 100.00% 16.67% 14.29% 36.36% 0.00% 11.11% 0.00% 42.86%

3 0.00% 16.67% 0.00% 18.18% 0.00% 0.00% 0.00% 0.00%

Site 4 0.00% 0.00% 9.52% 9.09% 0.00% 22.22% 0.00% 0.00%

5 0.00% 16.67% 4.76% 0.00% 0.00% 0.00% 0.00% 14.29%

6 0.00% 0.00% 0.00% 0.00% 50.00% 0.00% 0.00% 0.00%

7 0.00% 0.00% 4.76% 0.00% 50.00% 33.33% 0.00% 14.29%

8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 14.29%

doi:10.1371/journal.pone.0087791.t003

Table 4. Prediction accuracies of the method based on
molecular descriptors on Str, Ste and Site.

Prediction order Str Ste Site

1 41.38% 55.56% 44.19%

2 22.41% 77.78% 20.93%

3 18.97% 55.56% 18.60%

4 6.90% 33.33% 13.95%

5 8.62% 33.33% 11.63%

6 6.90% 33.33% 9.30%

7 5.17% 55.56% 11.63%

8 13.79% 33.33% 2.33%

doi:10.1371/journal.pone.0087791.t004
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It is easy to see that our method depend deeply on the

confidence scores of chemical-chemical interactions. To test the

importance of these scores, we randomly exchanged the

confidence scores of some interactions. Based on the random

permutations, the data were evaluated by Jackknife test on the

training dataset Str. The 1st order prediction accuracy was

23.73%, while the other prediction accuracies of 2nd, 3rd,…,8th

order prediction were 18.64%, 11.86%, 18.64%, 20.34%,

15.25%, 13.56%, 8.47%, respectively. It is observed that the 1st

order prediction accuracy obtained by random permutation was

much lower than the 55.93% obtained by chemical interactions.

Furthermore, the 8 prediction accuracies were not followed a

descending trend with the increase of the order number, indicating

that the candidate cancers were not arranged well. This implicates

that confidence scores are very important to the predictions.

Discussion

26 1st order predictions were ‘wrong’ in the training dataset,

that is, the predicted cancer indications of these drugs were not

recorded in KEGG. These 26 drugs and their 1st order predictions

were available in Table S3. However, some references reported

that 23 of these 26 drugs were actually effective to their ‘wrong’

indications, and it was the same with 3 of the 4 drugs in the

validation test dataset (See Table S3 for the detailed 4 drugs and

their 1st order prediction) and 13 of the 18 drugs in the

independent test dataset (See Table S3 for detailed 18 drugs

and their 1st order prediction). Thus, we hope that our prediction

model can provide some information of drug repositioning. In the

following paragraphs, we cited some references to support our

predicted results.

Twenty-three Wrong Predicted Pairs of Drug and
Indication in the Training Dataset

Cisplatin-Cancers of haematopoietic and lymphoid

tissues. Cisplatin (KEGG ID: D00275), ‘‘penicillin of cancer

drugs’’, is widely prescribed for many cancer treatments, such as

testicular, ovarian, bladder, lung, stomach cancers, and lymphoma

[32,33,34]. Prasad et al. investigated the effect of cisplatin on the

Dalton’s lymphoma, and concluded that cisplatin can induce

complete regression of ascites Dalton’s lymphoma in mice [35].

Ifosfamide-Cancers of haematopoietic and lymphoid

tissues. Ifosfamide (D00343) can be used to treat germ cell

testicular cancer, cervical cancer, small cell lung cancer, non-

Hodgkin’s lymphoma, and so on [36]. Extranodal natural killer/

T-cell lymphoma, nasal type (ENKL) is Epstein-Barr virus-

associated lymphoid malignancies, and patients with stage IV,

relapsed or refractory ENKL have dismal prognoses. Yamaguchi

et al. explored a new regimen SMILE, including the steroid

dexamethasone, methotrexate, ifosfamide, L-asparaginase, and

etoposide, and concluded that SMILE was effective for this kind of

disease [37,38].

Lomustine-Cancers of haematopoietic and lymphoid

tissues. Lomustine (D00363) is a component of the combina-

tion chemotherapy for treating primary and metastatic brain

tumors, and also used as a secondary therapy for refractory or

relapsed Hodgkin’s disease [39]. Moreover, previous studies

reported that lomustine can be considered for the treatment of

canine lymphoma in dogs [40,41,42,43], although it induced

common but not life-threatening toxicity [44].

Mitotane-Cancers of the urinary system and male genital

organs. Mitotane (D00420) is the first-line drug for metastatic

adrenocortical carcinoma [45,46,47], and also used for the

adjuvant therapy after removing the primary tumor [48].

However, mitotane treatment can induce some side effects, such

as adrenal insufficiency and male hypogonadism [49].

Procarbazine-Cancers of haematopoietic and lymphoid

tissues. Procarbazine (D00478) is used to treat human leuke-

mias [50]. MOPP (mechlorethamine, oncovin, procarbazine, and

prednisone) is the first combination chemotherapy regimen for

treating Hodgkin lymphoma (HL) [51]. And BACOPP regimen

(bleomycin, adriamycin, cyclophosphamide, vincristine, procarba-

zine, and prednisone) improved both tolerability and efficacy of

older HLs, although it induced a high rate of toxic deaths [52].

Temozolomide-Cancers of haematopoietic and lymphoid

tissues. Temozolomide (D06067) is an oral alkylating agent

used for the treatment of anaplastic astrocytoma and glioblastoma

multiforme [53]. Reni et al. reported that temozolomide was

effective for immunocompetent patients with recurrent primary

brain lymphoma, and its toxicity was negligible [54].

Thiotepa-Cancers of haematopoietic and lymphoid

tissues. Thiotepa (D00583) is an alkylating agent to treat

breast, ovarian, and bladder cancer [55]. A regimen of reduced-

intensity conditioning with thioteopa, fludarabine, and melphalan

produced remissions and a limited transplant mortality rate in

most multiple myeloma patients [56]. Moreover, Kolb et al.

studied a phase II nonrandomized single-arm trial using TVTG

regimen (topotecan, vinorelbine, thiotepa, dexamethasone, and

gemcitabine) for relapsed or refractory leukemia, and reported

47% response rate of patients and acceptable toxicities [57].

Floxuridine-Cancers of the digestive system. Floxuridine

(D04197) is used to treat hepatic metastases of gastrointestinal

adenocarcinomas, and also used for palliation of cancers in the

liver and gastrointestinal tract [58]. Moreover, hepatic arterial

infusion (HAI) can significantly enhance the antitumor activity of

floxuridine against colorectal liver metastases, as compared with

systemic infusion [59].

Carboplatin-Cancers of haematopoietic and lymphoid

tissues. Carboplatin (D01363) is approved with less side effects

compared with its parent compound cisplatin in the clinical

treatment, and mainly used to treat ovarian, lung, head cancers,

and so on [34]. Through a phase II trial, Gopal et al. reported that

GCD (gemcitabine, carboplatin, dexamethasone, and rituximab)

was a safe and effective outpatient salvage regimen for relapsed

lymphoma [60]. And Moskowitz et al. also reported that ICE

regimen (ifosfamide, carboplatin, and etoposide) was effective for

patients with non-Hodgkin’s lymphoma [61].

Epirubicin-Cancers of haematopoietic and lymphoid

tissues. Epirubicin (D02214) is a component of adjuvant

therapy in patients after resection of the primary breast cancer

[62]. When used to treat chronic lymphocytic leukaemia, the

combination of fludarabine and epirubicin achieved a higher

response rate and a more rapid response, as compared with

fludarabine alone [63].

Gemcitabine- Cancers of haematopoietic and lymphoid

tissues. Gemcitabine (D01155) is a nucleoside analog that can

treat breast, non-small cell lung, and pancreatic cancer [64].

Moreover, a regimen including gemcitabine, carboplatin, dexa-

methasone, and rituximab was reported to be effective for relapsed

lymphoma [60].

Vinorelbine-Cancers of the breast and female genital

organs. Vinorelbine (D01935) is used to treat non-small cell

lung cancer [65]. Aapro et al. explored the effects of vinorelbine on

metastatic breast cancer (MBC), and concluded that oral

vinorelbine was highly effective and well tolerated for patients

with MBC, no matter a single-agent or in combination with other

agents [66]. Moreover, vinorelbine was also considered as a
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promising alternative for older patients with advanced breast

cancers because of its clinical activity and low side effects [67].

Irinotecan-Cancers of the breast and female genital

organs. Irinotecan (D01061) is used to treat metastatic colorec-

tal cancer and extensive small cell lung cancer [68]. Previous

studies reported that irinotecan was effective for the refractory

metastatic breast cancer after anthracyclines or taxanes treatment

[69,70]. Moreover, the combination of irinotecan and docetaxel

also achieved a high response rate in pre-treated advanced breast

cancer patients [71].

Capecitabine-Cancers of the breast and female genital

organs. Capecitabine (D01223) is an oral agent used for the

treatment of metastatic breast cancers, and toxicities are generally

manageable [72,73,74].

Gefitinib-Cancers of the breast and female genital

organs. Gefitinib (D01977) is used for the continued treatment

of patients with locally advanced or metastatic non-small cell lung

cancer after failure of either platinum-based or docetaxel

chemotherapies [75]. Moreover, gefitinib is the first selective

inhibitor of the epidermal growth factor receptor (EGFR) tyrosine

kinase, which controls cell proliferation by activating the Ras

signal transduction cascade [75]. Thus, gefitinib may be a

promising agent used for the treatment of metaplastic breast

carcinoma with frequent expresses of EGFR [76].

Sorafenib-Cancers of the lung and pleura. Sorafenib

(D06272) is a multi-kinase inhibitor by targeting Raf/MEK/ER

pathway, and approved for the treatment of advanced renal cell

carcinoma and advanced hepatocellular carcinoma [77]. Blu-

menschein et al. reported that continuous treatment with sorafenib

400 mg twice daily helped disease stabilization of patients with

advanced non-small-cell-lung cancer, which is associated with

Raf/MEK/ER [78].

Paclitaxel-Cancers of the lung and pleura. Paclitaxel

(D05333) is used for the treatment of Kaposi’s sarcoma, lung

cancer, ovarian cancer, and breast cancer [79]. Hensing et al.

explored the effects of carboplatin and paclitaxel (C/P) on elderly

patients with advanced non-small-cell-lung cancer, as compared

with younger patients. The study indicated that the survival rates

and quality-of-life of elderly and young groups are not different, so

C/P should be a reasonable regimen for elderly patients with this

kind of cancer [80].

Dacarbazine-Cancers of the breast and female genital

organs. Dacarbazine (D00288) is used to treat metastatic

malignant melanoma and Hodgkin’s disease [81]. Moreover, the

regimen including cisplatin, adriamycin, and dacarbazine was

reported to be effective for patients with metastatic uterine and

ovarian mixed mesodermal sarcomas [82].

Sunitinib-Cancers of the breast and female genital

organs. Sunitinib (D06402) is an approved drug for the

treatment of renal cell carcinoma and imatinib-resistant gastroin-

testinal stromal tumor [83]. Moreover, previous study reported

that single-agent sunitinib achieved objective response rate of 11%

in MBC [84], and the combination of sunitinib and paclitaxel was

also well tolerated in patients with locally advanced or MBC [85].

Flutamide-Cancers of the breast and female genital

organs. Flutamide (D00586) is an antiandrogen for the man-

agement of prostate carcinoma [86]. Dimonaco et al. reported that

flutamide had an inhibitory effect on the growth of rat breast

cancer [87].

Leucovorin-Cancers of the breast and female genital

organs. Leucovorin (D01211) is used to treat osteosarcoma

after high-dose methotrexate therapy [88]. Moreover, a phase II

study showed that the regimen of weekly mitoxantrone, 5-

fluorouracil, and leucovorin (MFL) was well tolerated and

moderately effective to treat MBC [89]. And a phase 3 trial of

eniluracil +5-fluorouracil+leucovorin in MBC is also ongoing [90].

Goserelin-Cancers of the breast and female genital

organs. Goserelin (D00573) is a luteinizing hormone blocker,

and reduces the oestrogen level. Thus, goserelin can improve the

long-term survival of premenopausal women with early breast

cancer [91].

Fluorouracil-Cancers of haematopoietic and lymphoid

tissues. Fluorouracil (5-FU, D00584) is used to treat multiple

actinic and solar keratoses [92]. Takeno et al. reported that a case

with advanced esophageal cancer accompanying multiple lymph

node metastases was successfully treated by the combination of

docetaxel, cisplatin, and fluorouracil [93].

Three Wrong Predicted Pairs of Drug and Indication in
the Validation Test Dataset

Dactinomycin-Cancers of haematopoietic and lymphoid

tissues. Dactinomycin (D00214) is an antineoplastic agent,

which can treat Wilms’ tumor and rhabdomyosarcoma [94].

However, it is reasonable to assume this compound for the

treatment of cancers of lymphoid tissues because it induced the

tumor regression of childhood lymphoma [95].

Mitomycin-Cancers of haematopoietic and lymphoid

tissues. Mitomycin (D00208) is an chemotherapy drug for

treating cancers of lip, oral cavity, digestive organ, and so on [96].

Mitomycin treated a case with localized conjunctival mucosa-

associated lymphoid tissue lymphoma, and had minimal local

controllable side effects [97]. Moreover, mitomycin was about 5

times more potent than porfiromycin (methyl mitomycin) when

inhibiting the tumor growth in the lymphoma L1210 [98], but M-

83 (7-N-(p-hydroxyphenyl)mitomycin) showed significantly higher

therapeutic activity than mitomycin in lymphoma EL4 [99].

Etoposide-Cancers of the breast and female genital

organs. Etoposide (D04107) is used to treat refractory testicular

tumors, small cell lung cancer, lymphoma, non-lymphocytic

leukemia, glioblastoma multiforme, and so on [100]. Poplin et al.

reported that oral etoposide had a modest activity for chemonaive

patients with metastatic endometrial cancer, but the minimal

toxicity of this drug made it possible for the combination

chemotherapy [101]. Moreover, etoposide was reported to be

one of the most effective agents for trophoblastic disease [102],

and the combination of etoposide, ifosfamide/mesna, and cisplatin

(VIP) appeared to be active in advanced cervical cancer [103].

Thirteen Wrong Predicted Pairs of Drug and Indication in
the Independent Test Dataset

Diethylstilbestrol-Cancers of the breast and female

genital organs. Diethylstilbestrol (DrugBank ID: DB00255) is

used for the treatment of prostate cancer [104]. Moreover,

Peethambaram et al. reported that diethylstilbestrol was more

effective than tamoxifen in postmenopausal women with MBC,

but this treatment was usually associated with toxicity such as

nausea, edema, vaginal bleeding, and cardiac problems [105].

Bleomycin-Cancers of the nervous system. Bleomycin

(DB00290) is a drug for the palliative treatment of malignant

neoplasm, such as lung cancers and lymphomas [106]. Moreover,

Takeuchi et al. reported that bleomycin was effective for the

patients with gliomas, and the response rate was more than 50%

[107]. And electrochemotherapy enhanced bleomycin uptake and

achieved 69% complete elimination of glial cell derived tumor cells

[108].

Bexarotene-Cancers of the lung and pleura. Bexarotene

(DB00307) is used orally to treat skin manifestations of cutaneous

T-cell lymphoma in patients after at least one prior systemic
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therapy [109]. Moreover, bexarotene was effective for preventing

the growth and progression of lung tumor in mice [110], and the

combination of bexarotene+paclitaxel or bexarotene+vinorelbine
had significantly greater antitumor effects than the single agent

[111].
Dexrazoxane-Cancers of haematopoietic and lymphoid

tissues. Dexrazoxane (DB00380) can reduce the incidence and

severity of cardiomyopathy associated with doxorubicin adminis-

tration in women with MBC [112]. Moreover, dexrazoxane was

used as a cardioprotective agent that can attenuate the QT and

QTc dispersion associated with epirubicin-based chemotherapy in

patients with aggressive non-Hodgkin lymphoma [113], and

prevent or reduce cardiac injury associated with doxorubicin

administration for childhood acute lymphoblastic leukemia

[114,115].
Valrubicin-Cancers of haematopoietic and lymphoid

tissues. Valrubicin (DB00385) is used to treat bladder cancer

[116]. Moreover, valrubicin was reported to inhibit the growth of

leukemia cells [117,118].
Zoledronate-Cancers of the breast and female genital

organs. Zoledronate (DB00399) is used for the treatment of

patients with multiple myeloma and bone metastases from solid

tumors when combining standard antitumor therapy [119].

Moreover, Steinman et al. reported that zoledronate increased

disease-free survival in postmenopausal and in premenopausal,

hormone-suppressed breast cancer patients, but had no antitumor

effect for premenopausal patients without ovarian suppression

[120].
Pemetrexed-Cancers of the digestive system. Pemetrexed

(DB00642) is used as a single agent to treat locally advanced or

metastatic NSCLC after a prior chemotherapy, and also used for

the treatment of adults’ malignant pleural mesothelioma in

combination with cisplatin [121]. A phase II study reported that

pemetrexed disodium was effective for patients with advanced

gastric cancer, and the supplementation of folic acid decreased the

toxicity with no compromise in efficacy [122].
Fluoxymesterone-Cancers of haematopoietic and

lymphoid tissues. Fluoxymesterone (DB01185) is used for

the palliative treatment of androgenresponsive recurrent mam-

mary cancer in postmenopausal women with more than one year

but less than five years [123]. Moreover, Bai et al. reported that

fluoxymesterone stimulated the proliferation and differentiation of

normal erythropoietic burst-forming units that are affected by

inhibitory factors produced by leukemic cells [124].
Genistein-Cancers of the lung and pleura. Genistein

(DB01645) is an experimental agent for the treatment of prostate

cancer [125]. Moreover, Lian et al. reported that genistein may be

a promising agent to treat NSCLC because genistein induced

apoptosis of NSCLC cells by a p53-independent pathway [126].
Vorinostat-Cancers of the urinary system and male

genital organs. Vorinostat (DB02546) is used to treat skin

manifestations of cutaneous T-cell lymphoma patients with

progressive, persistent or recurrent disease on or after two systemic

therapies [127]. Pratap et al. reported that vorinostat inhibited

tumor growth and associated osteolysis in the prostate cancer cells,

but increased normal bone loss [128].

Ixabepilone-Cancers of the digestive system. Ixabepilone

(DB04845) is investigated for the treatment of breast cancer, head

and neck cancer, lung cancer, and so on [129]. Moreover,

ixabepilone was reported to be active against advanced or

metastatic gastric cancers [130,131].

Trabectedin-Cancers of the lung and pleura. Trabectedin

(DB05109) is used to treat soft tissue sarcoma and ovarian cancer,

and also investigated for the treatment of gastric cancer, and so on

[132]. Moreover, Massuti et al. reported that trabectedin had

modest activity in NSCLC patients pretreated with platinum

[133].

Cabazitaxel-Cancers of the breast and female genital

organs. Cabazitaxel (DB06772) is used for the treatment of

hormone-refractory metastatic prostate cancer patients pretreated

with docetaxel [134]. Moreover, Villanueva et al. reported that the

combination of cabazitaxel+capecitabine was active in patients

with MBC [135].

Conclusions

In this study, an order-prediction model for drugs and their

indications was built using the chemical-chemical interaction

information extracted from STITCH. The outstanding perfor-

mance of our model implicated that the model was feasible for

drug-indication prediction, i.e. it was more likely that interactive

chemicals would treat the same cancers than non-interactive ones.

Moreover, it was demonstrated that most of the ‘wrong’

predictions might actually right, which may help reposition drugs

to their new indications according to the prediction results.
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