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Graphical Abstract

A rational computer-aided biomarker discovery model has been successfully
applied to screen microRNA biomarker for hepatocellular carcinoma based on
their unique regulatory and influential power in themicroRNA-mRNAnetwork.
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MiR-378a-3p was identified and validated as a biomarker for HCC diagnosis and
prognosis, it was shown independently regulated several important transcription
factors including PLAGL2 and β-catenin, then affected the β-catenin signaling,
which could be the potential mechanism for its function as a tumor suppressor
and its abnormal expression could affect the cell growth and invasion of HCC
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Abstract
Background:Hepatocellular carcinoma (HCC) is amalignant disease with high
morbidity and mortality, and the molecular mechanism for the genesis and pro-
gression is complex and heterogeneous. Biomarker discovery is crucial for the
personalized and precision treatment of HCC. The accumulation of reported
microRNA biomarkers makes it possible to combine computational identifica-
tion with experimental validation to accelerate the discovery of novel biomarker.
Results: In the present work, we applied a rational computer-aided biomarker
discoverymodel to screen for theHCCdiagnosis biomarker. TwoHCC-associated
networks were constructed based on the microRNA and mRNA expression pro-
files, and the potential microRNA biomarkers were identified based on their
unique regulatory and influential power in the network. These putative biomark-
ers were then experimentally validated. One prominent example among these
identified biomarkers is MiR-378a-3p: It was shown to independently regulate
several important transcription factors such as PLAGL2 and β-catenin, affecting
the β-catenin signaling. Such mechanism may indicate a potential tumor sup-
pressor role of MiR-378a-3p and the impact of its abnormal expression on the
cell growth and invasion of HCC.

Abbreviations: AUC, area under the curve; CCK-8, cell counting kit-8; cDNA, complementary DNA; DEG, differentially expressed gene; FBS, fetal
bovine serum; H&E, hematoxylin & eosin; HCC, hepatocellular carcinoma; HRP, horseradish peroxidase; IHC, immunohistochemistry; ISH, in situ
hybridization; Luc, luciferase; NC, negative control; Neo, neomycin; NOD, novel out degree; PBS, phosphate-buffered saline; POMA, Pipeline of
Outlier MicroRNA Analysis; qPCR, quantitative polymerase chain reaction; ROC, receiver operating characteristic; RT, reverse transcription; s.c.,
subcutaneous/subcutaneously; siRNA, small interfering RNA; SVM, support vector machine; TF, transcription factor; TFP, transcription factor
percentage; TMA, tissue microarray; UTR, untranslated region
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Conclusions: A bioinformatics model with network topological and functional
characterization was successfully applied to the identification of HCC biomark-
ers. The predicted microRNA biomarkers were than validated with experiments
using human HCC cell lines, model animal, and clinical specimens. The results
confirmed the prediction by our proposedmodel thatmiR-378a-3pwas a putative
biomarker for diagnosis and prognosis of HCC.

KEYWORDS
cancer genesis and progression, hepatocellular carcinoma (HCC), microRNA biomarker, net-
work structure characterization, unique regulatory and influential power

1 BACKGROUND

MicroRNAs are small noncoding RNAs with 22–24
nucleotides in length and important regulators in many
biological systems. They regulate gene expression at the
posttranscriptional level and can be detected in blood or
tissues specifically and stably. Thus, using microRNAs as
biomarkers holds potential for disease diagnosis, progno-
sis, and therapy.1
Nowadays, most microRNA biomarkers have been stud-

ied via biological and clinical experiments that focus on
the functional role of individual microRNA, or its expres-
sion profiling to identify potential novel biomarkers. How-
ever, there are few researches applying theoretical network
structures and calculation to investigate a large number
of biomarkers.2,3 The advent of “Big Data Era” provides
opportunities and challenges for microRNA biomarker
discovery from massive and diverse data. Bioinformatics
and computer-aided biomarker discovery have received
increasing attention due to its feasibility, guidance, and
effectiveness.
In the last decade, many bioinformatics algorithms or

models have been developed for identifying microRNA
biomarkers, which can be divided into three categories:
mathematical models, machine learning, and network
analysis. Amathematical model is a description of amodel
using various scoring functions and statistical methods to
identify microRNA biomarkers. Based on the hypothesis
that a microRNA is involved in a cancer if its target genes
are functionally similar to those genes associated with the
studied cancer, Li et al. defined a functional consistency
score tomeasure the correlation betweenmicroRNA target
genes and cancer-associated genes for the identification
of cancer-related microRNAs.4 Moreover, Madden et al.
developed an online tool called “CombiROC” to assist find-
ing optimal combination of biomarkers through receiver
operating characteristic (ROC) curve analysis.5 Recently,
machine learning has gradually become more basic and
widely used in various fields of research. Zhao et al. used

gene expression profiling data and prior knowledge on sig-
naling pathways to identify the dysfunctional pathways
in disease conditions; they also performed reverse infer-
ence for the identification of cancer-related microRNAs
by microRNA–mRNA regulatory network.6 Mukhopad-
hyay et al. proposed a packaged genetic algorithm for
multiobjective optimization and identified microRNAs as
potential biomarkers for cancer by support vectormachine
(SVM) classifiers.7 Moreover, combinatorial biomarkers
tend to be more efficient and accurate predictors than sin-
gle biomarkers. Yang et al. developed a method based on
the cluster analysis for identifying microRNA biomarkers
through the following steps: first differentially expressed
microRNAs were detected between studied samples and
the control group by statistical t-test. The remaining
microRNAs were clustered, and a representative com-
bination of microRNA biomarkers was selected as can-
cer biomarker using Fisher linear discrimination.8 Com-
plex network theory provides a way for researchers to
study complex diseases at the systemic level. The net-
work topology can describe the degree of action and con-
tribution of biomolecules to complex systems, such as
disease evolution. Based on this theory, Xu et al. built
a microRNA target-dysregulated network and defined
four topological features for microRNAs including Dout,
NmicroRNA, Rpc-microRNA, and Rtarpc-microRNA to
measure the regulatory ability of microRNAs in can-
cers. This model was applied in finding prostate cancer-
associated microRNAs.9 Subsequently, Chen et al. con-
structed amicroRNA–microRNA functional similarity net-
work and applied a random walk strategy to predict
disease-associated microRNAs. Instead of using the tradi-
tionalmethods, they adopted the global network similarity
measures to optimize candidate microRNAs.10
On the other hand, such network-based methods still

face many challenges. The inhibitory effect of microR-
NAs on its target mRNA translation is mainly based
on base-pairing interaction between the microRNAs and
the 3′-untranslated region (3′-UTR) of target mRNAs. A
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microRNA can have many target mRNAs, and a mRNA
can also be regulated by multiple microRNAs, leading
to a many-to-many microRNA–mRNA regulatory mode.
Extensive research efforts have focused on the syner-
gistic microRNA regulation and “multiple-to-multiple”
model between microRNAs and their targets. Meanwhile,
the independent regulatory power of individual microR-
NAs, that is, the “one-to-multiple” mode of microRNA-
mRNAs relationship, is less explored. Our study suggested
that the predictions of potential microRNA biomarkers
with independent regulatory abilities (outlier microRNAs)
deserve further investigation.11 Based on this theory, the
Pipeline of Outlier MicroRNA Analysis (POMA) frame-
work has been developed and applied to the identification
of microRNA biomarkers in prostate cancer,11 renal clear
cell carcinoma,12 and acute myeloid leukemia.13 However,
the POMA framework and other network-based meth-
ods do not conduct in-depth examination of the func-
tions of target genes, especially the regulatory power of
target genes. In this study, we applied our “single-line
mRNA (gene) regulation model” to biomarker microRNA
discovery in hepatocellular carcinoma (HCC). The result-
ing putative biomarker microRNAs were then validated
through in-depth examination of their molecular mecha-
nisms and functions.

2 METHODS

2.1 Data collection for HCC
microRNA/mRNA expressions and
interactions

To construct a more comprehensive and reliable human
microRNA–mRNA network, we collected expression pro-
files from the Gene Expression Omnibus (GEO) database,
microRNA–mRNA target relationships from multiple
microRNA databases, as well as computational prediction
of microRNA targets.
HCCmicroRNA expression data were obtained from the

following three datasets inGEO:GSE63046,GSE21279, and
GSE36915. GSE63046 contains 24HCC samples and 24 nor-
mal adjacent tissue samples, the latter of which consisted
of 15 samples with cirrhosis and nine without cirrhosis.14
GSE21279 included 15 different types of liver tissue sam-
ples, among which four HCC samples and three normal
samples were selected for further analyses.15 GSE36915
consists of 68 HCC and 21 nontumor liver tissues.16 In this
work, we selected nine HCC samples and nine adjacent
noncirrhosis tissue samples from GSE63046 dataset and
downloaded the preprocessed microRNA expression pro-
filing data for detailed analysis. The other two datasets

(GSE21279 and GSE36915) were utilized for the validation
study.
In our present study, data extracted from three GEO

datasets, namely, GSE14520, GSE25097, and GSE36376,
were used for further analyses of the expression correla-
tions betweenmicroRNAs and target genes: 225 HCC sam-
ples and 220 nontumor liver samples were chosen from
GSE14520, which used theAffymetrixHTHumanGenome
U133A Array platform17; 268 HCC tumor and 243 adja-
cent nontumor samples were selected from GSE2509718;
the entire collection of 240 HCC samples and 193 adjacent
nontumor samples in GSE36376 was included.19
FormicroRNA–mRNA target relationship data, we inte-

grated experimentally validated microRNA–gene interac-
tions from various databases, including miRTarBase,20
TarBase,21 miRecords,22 and miR2Disease.23 In addition
to curated database of microRNA–target interactions, we
downloaded computational microRNA–target prediction
data from HOCTAR,24 ExprTarget,25 and starBase.26,27
HOCTAR is a resource that integrates expression pro-
filing data and results predicted by sequence-based tar-
get prediction tools such as PicTar,28 TargetScan,29 and
miRanda.29 Moreover, it also uses Gene Ontology to
analyze each microRNA-mediated transcriptional regu-
lation network, thus predicting biological functions of
microRNAs. ExprTarget includes microRNA target pre-
diction methods contained in HOCTAR, and also inte-
grates microRNA and mRNA expression datasets of the
HapMap cell line.25 The starBase provides the information
on microRNA–ceRNA, microRNA–ncRNA and protein–
RNA interaction networks from large-scale CLIP-Seq
data.
For gene-transcription factor (TF) data, we collected

data from the article of Vacerizas et al., which included a
total of 1843 human TF genes.30

2.2 Construction of human
microRNA–mRNA reference network

For experimentally validated microRNA–mRNA interac-
tions, we mainly selected the microRNA–mRNA interac-
tions verified by low-throughput experiments (e.g., quan-
titative polymerase chain reaction [qPCR]). For computa-
tional microRNA–target prediction data, we selected the
top 50% with highest scores in HOCTAR, the predic-
tion score over 1 in ExprTarget, and the detection cred-
ibility readNUM ≥ 10 and BC (Biological complex) ≥ 2
in starBase. Finally, the results of at least two out of
the three databases (HOCTAR, ExprTarget, and starBase)
must match to positively identify the predicted interaction
between microRNA and mRNA. Additionally, we unified
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all the microRNA names according to the rule in the latest
release of the miRBase database (v21).31,32

2.3 Screening of differentially expressed
microRNAs and mRNAs

For the mRNA expression profile data, missing data were
imputed by the k-nearest neighbors imputation approach
in R, and the differential expression analysis was applied
here, using the method described by Tang et al.33 For
the microRNA expression profiling data, the Student’s t
test was utilized to calculate the differentially expressed
microRNAs between disease groups and control groups,
and the p-value threshold for statistical significance was
less than 0.05.

2.4 Construction of condition-specific
microRNA–mRNA network for HCC

First, the differentially expressed microRNAs and mRNAs
were mapped to the human microRNA–mRNA reference
network to obtain two HCC-specific microRNA–mRNA
networks, called HCC-Net1 and HCC-Net2, respectively.
Two indices, namely, novel out degree (NOD) and tran-
scription factor percentage (TFP) values of microRNAs in
two condition-specific microRNA–mRNA interaction net-
works, were calculated to quantify the power ofmicroRNA
regulation and identify candidate microRNA biomarkers
for HCC.11,12,34,35
NOD is a novel index of the network vulnerability,

which represents the number of genes in the network
that exclusively targeted by a certain microRNA. NOD
embodies the independent regulatory power of individ-
ual microRNAs, and these microRNAs are more likely
to become the vulnerable components of networks, and
reflect changes in disease status more sensitively and
accurately. TFP indicates the proportion of TF genes in
microRNA-regulated genes, and provides an important
complement to NOD that further extends the identifica-
tion ofmicroRNAbiomarkersmodel to the biological func-
tion level. Because TF is crucial in many biological pro-
cesses, abnormal expression of TF genes may play impor-
tant roles in promoting cancer development. When abnor-
mal regulation occurs in a microRNA with a higher TFP
value, it may affect the expression of more TF genes and
further have an effect on downstream genes leading to
changes in the network state eventually. We calculated
NOD and TFP values for each microRNA in the HCC-
Net1 and HCC-Net2, respectively. Those microRNAs with
significantly higher NOD and TFP values and p value of

Wilcoxon signed-rank test <0.05 were selected as candi-
date biomarkers for HCC.

2.5 Biological function analysis

The biological function analyses (gene ontology or signal
pathway enrichment analysis) of candidate microRNAs
were performed using DAVID (the Database for Anno-
tation, Visualization and Integrated Discovery) and IPA
(Ingenuity pathway analysis) tools. The top 10 most signif-
icantly enriched pathways were selected for further litera-
ture mining and validation.

2.6 Classification performance
evaluation

To verify the diagnostic effect of selected microRNAs,
we used fivefold cross-validation cross-referencing a SVM
model in the training dataset to evaluate their diagnostic
capabilities. The sensitivity, specificity, and accuracy are
used to determine the performance of our method and are
calculated as follows:

Sensitivity = TP∕ (TP + FN) ,

Specif icity = TN∕ (FP + TN) ,

Accuracy = (TN + TP) ∕ (TP + FP + TN + FN) ,

where TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative, respectively. In
addition, ROC curve analysis and area under the curve
(AUC) were also applied to measure the classification per-
formance of candidatemicroRNAbiomarkers identified by
our method both in the training expression profile dataset
and the validation dataset. The SVMmodel is implemented
in anRpackage “e1071,” and theROCcurve analysis is con-
ducted in an R package “ROCR.”

2.7 Cell culture and luciferase-labeled
cells

The HepG2, Huh7, SMMC-7721, Li-7, PLC/PRF5, and SK-
Hep-1 human HCC cell lines; the HL-7702 (L-02) normal
human liver cell line; and the 293T human embryonic
kidney cell line were purchased from the Cell Bank of
Type Culture Collection of the Chinese Academy of Sci-
ences (Shanghai, China). The MHCC97L and MHCC97H
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humanHCCcell lineswere kindly provided byDr. YangXu
(Liver Cancer Institute and Zhongshan Hospital, Fudan
University, Shanghai, China). The abovementioned cells
were cultured in Roswell ParkMemorial Institute (RPMI)-
1640 medium (HyClone, Logan, UT, USA) containing
10% fetal bovine serum (FBS) (Gibco, Gaithersburgh, MD,
USA) and 100 U/mL penicillin–streptomycin (Beyotime
Biotech, Beijing, China) in an incubator with 5% CO2 at
95% humidity and 37◦C. For luciferase (Luc) labeling of
cells, MHCC97H cells (0.5 × 105 cells/well) were seeded
into a 24-well plate. After 24 h of culture, the cells were
infected with lentivirus–Luc–neomycin (Neo) (abm, Rich-
mond, BC, Canada) at a multiplicity of infection of 20 in
the presence of enhanced infection solution (GeneChem,
Shanghai, China) and 10 μg/mL polybrene (GeneChem).
At 72 h after infection, the infected MHCC97H cells were
selected using 1000μg/mL Neo (Beyotime Biotech) to
obtain Luc-labeled MHCC97H cells.

2.8 Reverse transcription-qPCR and in
situ hybridization analyses of microRNAs

The total RNAs derived from 28 pairs of snap-frozen
human HCC tumor tissues and adjacent nontumor (nor-
mal) liver tissues (Shanghai EasternHepatobiliary Surgery
Hospital, Shanghai, China) as well as human HCC cells
(HepG2, HuH7, SMMC-7721, Li-7, PLC/PRF5, SK-Hep-1,
MHCC97L, and MHCC97H) and human liver cells (L-02)
were purified using a miRNeasy mini kit (Qiagen, Hilden,
Nordrhein-Westfalen, Germany), and then reversely tran-
scribed to first-strand complementaryDNAs (cDNAs)with
a miScript II RT kit (Qiagen). The qPCR was performed
using a miScript SYBR Green PCR kit (Qiagen) in a Light-
Cycler 96 Instrument (Roche, Penzberg, Upper Bavaria,
Germany). Primers used for analysis of microRNAs (miR-
25-3p, miR-101-3p, miR-221-3p, miR-378a-3p, miR-381-3p,
and miR-490-3p) were synthesized by Sangon Biotech
(Shanghai, China). Primer sequences were shown in File
S1. The reaction mix of qPCR contained the following
components: 1 μL 10× miScript Universal Primer, 1 μL 10
μM each microRNA-specific primer or internal reference
primer U6, 5 μL SYBR Green, 2 μL RNase-free water, and
1 μL cDNA template. The qPCR condition was an initial
denaturation step (95◦C for 15 min) followed by amplifica-
tion and quantification steps repeated for 40 cycles (95◦C
for 15 s, 55◦C for 30 s, and 70◦C for 30 s). The relative expres-
sion of microRNAs was normalized to U6 and calculated
by a ΔCT36 or 2−ΔΔCT37 method as reported previously.
The expression of miR-378a-3p in human HCC tumor

tissues was further analyzed by in situ hybridization (ISH)
using a human HCC tissue microarray (TMA) section (cat.

no. HLivH180Su06; 90 cases, 90 paired humanHCC tumor
and adjacent normal liver tissues, 180 dots) (OUTDO
Biotech, Shanghai, China). The ISH was performed with
5′-digoxigenin- and 3′-digoxigenin-labeled hsa-miR-378a-
3p miRCURY locked nucleic acid detection probe (Exiqon,
Vedbaek, Denmark) following the manufacturer’s instruc-
tions. After hybridization, the section was incubated with
mouse anti-digoxigenin (1:200) (cat. no. ab420; abcam,
Cambridge, MA, USA) primary antibody followed by alka-
line phosphatase-conjugated goat anti-mouse IgG (1:5000)
(cat. no. ab205719; abcam) secondary antibody. The signal
of hybridization was then detected by 5-bromo-4-chloro-
3-indolyl phosphate/nitro-blue-tetrazolium. Finally, the
slides were counterstainedwith nuclear fast red and cover-
slip mounted. The percentage of positive cells (≤5%, 0; 5%–
25%, 1; 25%–50%, 2; 50%–75%, 3; and≥75%, 4) and the inten-
sity (negative, 0; weak, 1; moderate, 2; and strong, 3) were
used for ISH scoring. The scores were then added to pro-
duce a weighted ISH scoring (0–1, –; 2–3, +; 4–5, ++; and
6–7, +++) for each specimen. It was considered as high
expression in tissue specimen when the final weighted
score was ≥4 (++ and +++).

2.9 Cell proliferation assays

Cell proliferation was evaluated through cell counting kit-
8 (CCK-8) and colony formation assays in vitro. Briefly, for
a CCK-8 assay, MHCC97H or SMMC-7721 cells (1 × 104
cells/well) were seeded into 96-well plates. Twenty-four
hours later, theMHCC97H cells were treatedwith agomiR-
378a-3p or agomiRcontrol (RiboBio, Guangzhou, Guang-
dong, China), whereas the SMMC-7721 cells were treated
with antagomiR-378a-3p or antagomiRcontrol (RiboBio),
at a final concentration of 200 nM following the com-
pany’s suggestions. Cell viability of MHCC97H-agomiR-
378a-3p versus MHCC97H-agomiRcontrol (used as a con-
trol) as well as SMMC-7721-antagomiR-378a-3p versus
SMMC-7721-antagomiRcontrol (used as a control) was
then evaluated with CCK-8 (Beyotime Biotech) on day
1, 2, 3, and 4 after treatment and read at 450 nm in
an automatic microplate reader (Thermo Fisher Scien-
tific, Waltham, MA, USA) according to the manufac-
turer’s guidelines. For a colony formation assay, the
generated MHCC97H-agomiR-378a-3p versus MHCC97H-
agomiRcontrol and SMMC-7721-antagomiR-378a-3p ver-
sus SMMC-7721-antagomiRcontrol cells (400 cells/well)
were reseeded into six-well plates. After 2–3 weeks of cul-
ture, the cells were stained with 0.5% crystal violet for 10–
30 min after fixation with 4% paraformaldehyde for 15 min
at room temperature. The clonogenic ability of these cells
was then analyzed.
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2.10 Microsphere-forming assay

After treatment of MHCC97H or SMMC-7721 cells with
agomiR-378a-3p versus agomiRcontrol or antagomiR-378a-
3p versus antagomiRcontrol (200 nM) for 48 h, the
generated MHCC97H-agomiR-378a-3p versus MHCC97H-
agomiRcontrol as well as SMMC-7721-antagomiR-378a-
3p versus SMMC-7721-antagomiRcontrol cells were redis-
pensed into six-well ultralow adherent plates (Corning,
Corning, NY, USA) at a density of 4 × 103 cells/2 mL
complete MammoCult™ medium (MammoCult™ basal
medium plus 10% MammoCult™ proliferation supple-
ment) (STEMCELLTechnologies, Vancouver, BC,Canada)
per well. One week after incubation, the number of tumor
microspheres was counted.

2.11 Scratch assay

The MHCC97H or SMMC-7721 cells (5 × 105 cells/well)
were seeded into six-well plates, incubated overnight,
and then treated with agomiR-378a-3p versus agomiR-
control or antagomiR-378a-3p versus antagomiRcontrol
(200 nM). After 48 h of treatment, scratches were gen-
erated across the entire diameter of wells. Progression of
tumor cell migration was observed and photographed at
a low-power field (×100) under microscopy at 0 and 24 h
after scratches. The ImageJ software (National Institutes
of Health, Bethesda, MA, USA) was then used to calculate
the migration distance to analyze the migration ability of
these cells.

2.12 Transwell invasion assay

The MHCC97H-agomiR-378a-3p versus MHCC97H-
agomiRcontrol and SMMC-7721-antagomiR-378a-3p
versus SMMC-7721-antagomiRcontrol cells were resus-
pended in serum-free medium supplemented with 0.5%
bovine serum albumin at a density of 1 × 106 cells/mL.
The cell suspensions (1 × 105 cells/100 μL) were seeded
onto the upper chamber of Matrigel (Corning)-coated
24-well Transwell filters (8 μm pore size) (Merck Mil-
lipore, Billerica, MA, USA). The lower chamber was
filled with 500 μL of medium containing 10% FBS.
After 24 h of incubation, tumor cells invading into the
bottom side of insert were fixed with 4% paraformalde-
hyde, stained with 0.5% crystal violet, and counted in
five randomly selected high-power fields (×200) under
microscopy. The invasive ability of these cells was then
analyzed.

2.13 Tumor xenograft experiments

Four-week-old female athymic BALB/c nude mice were
purchased from Shanghai SLAC Laboratory Animal Co.,
Ltd. (Shanghai, China). The mice were maintained in the
animal facility at Soochow University (Suzhou, China).
All animal experiments in the study were approved by
the Animal Research Ethics Committee of Soochow Uni-
versity. For a subcutaneous (s.c.) tumor-forming exper-
iment, the Luc-labeled MHCC97H-agomiR-378a-3p ver-
sus MHCC97H-agomiRcontrol cells (2 × 106 cells/100 μL
phosphate-buffered saline [PBS] per mouse; six mice per
group) were subcutaneously (s.c.) injected into nude mice.
When the tumor grew to 0.5 cm in diameter, it was con-
sidered to be tumor formation and the time was recorded.
The tumor growth was further monitored by measuring
tumor volume and detecting luciferin signal in a Caliper
IVIS Lumina II system (Caliper Life Sciences, Hopkinton,
MA, USA) every week until 4 weeks after inoculation. The
tumor volume was calculated by a formula: V = A × B2/2,
where A is the long diameter and B is the short diam-
eter. Four weeks after tumor cell inoculation, the mice
were killed and the tumors were removed from the body
and weighted. For a s.c. tumor treatment experiment, the
Luc-labeled MHCC97H cells (2 × 106 cells/100 μL PBS
per mouse; 12 mice) were s.c. injected into nude mice,
and then subjected to treatment with agomiR-378a-3p or
agomiRcontrol (six mice per group) via intratumoral injec-
tion (2 nmol per time) when the tumors grew to around
0.5 cm in diameter. The treatment was performed once
every 3 days for four times according to the company’s
protocols. For an orthotopic tumor treatment assay, the
Luc-labeled MHCC97H cells (2 × 106 cells/100 μL PBS)
were s.c. injected into the nude mice. When the tumor
grew to a diameter of l cm, the s.c. tumor was resected,
soaked in PBS, cut into 1–2mm3 tumor size, and implanted
orthotopically in the right lobes of the livers of the nude
mice. One week after the orthotopic transplantation, the
growth of orthotopic tumors was examined by a Caliper
IVIS Lumina II system to detect luciferin signal. Those
mice that carried orthotopic tumors were then assigned to
two groups (six mice per group). Each group was treated
with 5 nmol of agomiR-378a-3p or agomiRcontrol each
time by tail vein injection. The treatment was also per-
formed once every 3 days for four times. The growth of
s.c. and orthotopic tumors was tracked as described above
before (week 0) and every week (week 1–4) after treat-
ment. In addition, the lung tissues and the s.c./orthotopic
tumor tissues from these tumors-bearing mice were fixed
in 10% neutral formalin and embedded in paraffin. The
lung and tumor tissue sections (3-μm thick) were then
prepared and used for hematoxylin and eosin (H&E)
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analysis of lung metastatic nodules and immunohisto-
chemistry (IHC) analysis of β-catenin, respectively. For a
tumor lung metastasis assay, the Luc-labeled MHCC97H-
agomiR-378a-3p versus MHCC97H-agomiRcontrol cells (2
× 106 cells/200 μLPBS permouse; sixmice per group)were
injected into nudemice through tail vein. Fourweeks later,
the mice were killed to harvest their lung tissues for H&E
analysis of lung metastatic nodules.

2.14 Identification and validation of
miR-378a-3p target gene

Seven genes including PLAG1, SULF1, SLC7A6, NPAT,
HDAC4, PLAGL2, and GLI3 were identified as poten-
tial targets of miR-378a-3p from the microRNAorg, PITA,
and TargetScan databases. The 3′UTR dual Luc reporter
plasmids for PLAG1, SULF1, SLC7A6, NPAT, HDAC4,
PLAGL2, and GLI3 (termed PLAG1-3′UTR, SULF1-3′UTR,
SLC7A6-3′UTR, NPAT-3′UTR, HDAC4-3′UTR, PLAGL2-
3′UTR, and GLI3-3′UTR) were constructed by GeneChem.
The 293T cell line was used as a target cell for detec-
tion of Luc activity. In 24-well plates, the 293T cell was
cotransfected with miR-378a-3p mimics or miRNA mim-
ics negative control (NC) (used as a control) (200 nM)
and PLAG1-3′UTR, SULF1-3′UTR, SLC7A6-3′UTR, NPAT-
3′UTR, HDAC4-3′UTR, PLAGL2-3′UTR, or GLI3-3′UTR
(1 μg per well) by Lipofectamine 2000 (Thermo Fisher Sci-
entific). After 48 h of transfection, the effect of miR-378a-
3p on candidate target genes was preliminarily analyzed
by measuring the Luc activity with a Luc Assay System
(Promega, Madison, WI, USA) based on company’s proto-
cols. The PLAGL2-3′UTR mutant dual Luc reporter plas-
mid was further constructed (GeneChem) because miR-
378a-3p had the most potent inhibitory effect on PLAGL2
gene. To validate the targeting effect of miR-378a-3p on
PLAGL2 as well as the targeting site, different concen-
trations (200, 100, 50, and 25 nM) of miR-378a-3p mim-
ics or miRNA mimics NC and 1 μg of PLAGL2-3′UTR or
PLAGL2-3′UTR mutant were used for cotransfection into
293T cells to analyze the Luc activity.
To further confirm the targeting effect of miR-378a-3p

on PLAGL2 in HCC cells, the MHCC97H-agomiR-378a-
3p versus MHCC97H-agomiRcontrol and SMMC-7721-
antagomiR-378a-3p versus SMMC-7721-antagomiRcontrol
cells were generated for reverse transcription (RT)-qPCR
and western blot analyses of PLAGL2. Briefly, the total
RNAs and lysates of these cells were purified with a
MiniBEST universal RNA extraction kit (TaKaRa, Dalian,
Liaoning, China) and mammalian cell lysis buffer with
phenylmethylsulfonyl fluoride (1mM) (BeyotimeBiotech),
respectively. The RNAs were reversely transcribed to
cDNAs with a 5× All-In-One RT MasterMix kit (abm),

and then subjected to qPCR analysis of PLAGL2 with the
EvaGreen 2× qPCR MasterMix kit (abm) using human
PLAGL2-specific primer pair (β-actin used as an internal
reference) (Sangon Biotech) (File S1). The qPCR was con-
ducted at 95◦C for 10 min followed by 40 cycles at 95◦C for
15 s and 60◦C for 30 s. The relative level of PLAGL2mRNA
was standardized to β-actin and calculated by a 2−ΔΔCT.37
After determination of protein concentration using a bicin-
choninic acid protein assay kit (Beyotime Biotech), the
lysates were loaded (50 μg per lane) and separated by
a 12% sodium dodecyl sulfate–polyacrylamide gel elec-
trophoresis (Beyotime Biotech), and then transferred onto
polyvinylidene difluoride membranes (Merck Millipore).
The membranes were blocked with 5% fat-free milk, and
then subjected to immunoblotting analysis for PLAGL2
or β-actin (used as a loading control) by incubation with
rabbit anti-PLAGL2 (1:1000) (cat. no. GTX32095; GeneTex,
Irvine, CA, USA) or anti-β-actin (1:3000) (cat. no. YM3214;
ImmunoWay, Plano, TX, USA) primary antibody at 4◦C
overnight. Following incubation with horseradish peroxi-
dase (HRP)-conjugated goat anti-rabbit IgG (1:12000) (cat.
no. RS0002; ImmunoWay) secondary antibody at room
temperature for 1 h, the signal was developed with a Bey-
oECL Star kit (Beyotime Biotech), scanned by Gel Imag-
ing System (P&Q Science & Technology, Shanghai, China),
and quantified by ImageJ software.

2.15 Analyses of β-catenin in vitro

The nuclear lysates derived from MHCC97H-agomiR-
378a-3p versus MHCC97H-agomiRcontrol and
SMMC-7721-antagomiR-378a-3p versus SMMC-7721-
antagomiRcontrol cells were prepared using a nuclear and
cytoplasmic protein extraction kit (Beyotime Biotech), and
then subjected to western blot analysis for β-catenin or
Histone H3 (loading control) using rabbit anti-β-catenin
(1:2000) (cat. no. 8480; Cell Signaling Technology, Dan-
vers, MA, USA) or anti-Histone H3 (1:2000) (cat. no. 9717;
Cell Signaling Technology) primary antibody, as described
above. The total lysates of these cells were also prepared
and subjected to western blot analysis for β-catenin or
β-actin (loading control).
The MHCC97H or SMMC-7721 cells (2 × 105 cells/well)

were seeded on coverslips in six-well plates overnight,
and then treated with agomiR-378a-3p versus agomiR-
control or antagomiR-378a-3p versus antagomiRcontrol
(200 nM). After treatment for 48 h, the cells were
subjected to immunofluorescence analysis of β-catenin.
Briefly, the coverslips were fixed in 4% paraformalde-
hyde, permeabilized with PBS containing 0.2% Triton X-
100 and blocked by 5% normal goat serum in PBS. The
coverslips were then incubated with rabbit anti-β-catenin
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(1:200) primary antibody followed by incubation with
Alexa Fluor 647-conjugated goat anti-rabbit IgG (1:500)
(cat. no. ab150079; abcam) secondary antibody. Finally, the
coverslips were prevented from fade using antifademount-
ing medium with 4′,6-diamidino-2-phenylindole (DAPI)
(Beyotime Biotech) and put onto slides. The immunoflu-
orescence was then observed under confocal microscopy
(Leica, Wetzlar, Hesse-Darmstadt, Germany).
TheMHCC97Hor SMMC-7721 cells (0.5× 105 cells/well)

were seeded into a 24-well plate and cultured overnight.
The cells were transfected with 1 μg of TCF/LEF1-Luc
report plasmid (Genomeditech, Shanghai, China) per
well by Lipofectamine 2000, and then selected with Neo
(1000μg/mL) to generate MHCC97H-TCF/LEF1-Luc and
SMMC-7721-TCF/LEF1-Luc transgenic cells for detection
of β-catenin’s transcriptional activity by Luc reporter assay.
Subsequently, the MHCC97H-TCF/LEF1-Luc or SMMC-
7721-TCF/LEF1-Luc cells (0.5 × 105 cells/well) were seeded
into 24-well plates. After 24 h of culture, the MHCC97H-
TCF/LEF1-Luc cellswere treatedwith agomiR-378a-3p ver-
sus agomiRcontrol (200 nM), whereas the SMMC-7721-
TCF/LEF1-Luc cells were treated with antagomiR-378a-3p
versus antagomiRcontrol (200 nM). After 48 h of treat-
ment, the Luc activity of these cells was analyzed by a Luc
Assay System.

2.16 Small interfering RNA knockdown
assays

The SMMC-7721 cells were treated with either 200 nM of
antagomiR-378a-3p or antagomiRcontrol. The antagomiR-
378a-3p-treated SMMC-7721 cells were also simultaneously
transfected with human siTCF4 (TCF4 small interfering
RNA [siRNA]), human LEF1 siRNA (siLEF1), human
PLAGL2 siRNA (siPLAGL2), or control siRNA (sicon-
trol) (RiboBio) at a final concentration of 100 nM by
HiPerFect transfection reagent (Qiagen). The siTCF4- and
sicontrol-transfected SMMC-7721-antagomiR-378a-3p cells
were subjected to western blot analysis for TCF4 (1:2000)
(cat. no. 2566; Cell Signaling Technology) and β-actin
(loading control), whereas the siLEF1- and sicontrol-
transfected SMMC-7721-antagomiR-378a-3p cells were
subjected to western blot analysis for LEF1 (1:2000)
(cat. no. GTX129186; GeneTex) and β-actin (loading
control). The siTCF4-, siLEF1- and sicontrol-transfected
SMMC-7721-antagomiR-378a-3p cells as well as the
siRNA-untransfected SMMC-7721-antagomiR-378a-3p
and SMMC-7721-antagomiRcontrol cells were then sub-
jected to CCK-8, scratch, and Transwell invasion assays.
In addition, the siPLAGL2- and sicontrol-transfected
SMMC-7721-antagomiR-378a-3p cells as well as the
siRNA-untransfected SMMC-7721-antagomiR-378a-3p

and SMMC-7721-antagomiRcontrol cells were subjected
to western blot analysis for PLAGL2, β-catenin and
β-actin/Histone H3 (total/nuclear loading control), and
Luc reporter assay of β-catenin-mediated transcriptional
activity as described above.

2.17 IHC analysis

The expression of PLAGL2 and β-catenin in human
HCC tumor tissues was determined by IHC analysis
using human HCC TMA sections. The sections were
deparaffinized and rehydrated. Antigen retrieval was
performed by microwaving the slides in 0.01 M citrate
buffer (pH 6.0) for 10 min. Endogenous peroxidase activity
was quenched by treatment with 3% H2O2 for 30 min
followed by incubation with normal goat serum for
15 min. Subsequently, the sections were incubated with
rabbit anti-PLAGL2 (1:500) and anti-β-catenin (1:100)
primary antibody in a humidity chamber overnight
at 4◦C. The sections were then incubated with HRP-
conjugated goat anti-rabbit IgG (1:200) (cat. no. G1213;
Servicebio, Wuhan, Hubei, China) secondary antibody for
1 h at room temperature and immunostaining signal was
detected by 3′,3-diaminobenzidine. Finally, the slides were
counterstained with H&E and coverslip mounted. The
expression level of PLAGL2 and β-catenin was evaluated
by a weighted IHC score similarly as described above in
the ISH analysis. In addition, the HCC transplanted tumor
tissue sections were subjected to IHC analysis of β-catenin.

2.18 Statistical analyses for
experimental results

The statistical analyses such as Student’s t test, analysis of
variance,Mann–WhitneyU test, Pearson’s χ2 test, and Log-
rank testwere performedwith SPSS13.0 (SPSS, Chicago, IL,
USA). A p-value of less than 0.05 (*p< 0.05 and **p< 0.01)
was considered to be statistically significant.

3 RESULTS

3.1 Construction of human
microRNA–mRNA reference network

The flowchart for the computational screening of HCC
microRNA biomarker is shown in Figure 1. In this study,
we integrated experimentally validated microRNA–gene
interactions from four databases (miRTarBase, TarBase,
miRecords, and miR2Disease), and only selected those
microRNAswith consistent results in at least two out of the
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F IGURE 1 The flowchart of the computational screening of the putative microRNA biomarkers for the HCC diagnosis

three computational microRNA–target prediction meth-
ods (HOCTAR, ExprTarget, and starBase). In total, we
obtained a human microRNA–mRNA reference network
containing 618 microRNAs, 9526 target genes, and 48,868
microRNA–mRNA target relationships. In this directional
binary network, the average degree of microRNAs was
79, and the average degree of target genes was 5 in the
microRNA–mRNA network. Top 10 most significantly
enriched pathwayswere selected for further literaturemin-
ing and validation.
Moreover, the degree of microRNAs also matches the

power law distribution, which means that compared to
the remaining vast majorities, only a small number of
microRNAs regulate more target genes in the networks.
The NOD and TFP value distribution features of microR-
NAs show about 66.3% (410/618) of microRNAs with
a NOD value of greater than 0, meaning these microR-
NAs are more likely to have greater independent regula-
tory power. Furthermore, previously reported microRNA
biomarkers generally have significantly higher NOD and
TFP values than the remaining microRNAs.1,11,35

3.2 Screening of differentially expressed
microRNAs and mRNAs

To more accurately identify differentially expressed
mRNAs, six methods (t-test, COPA, OS, ORT, MOST, and
LSOSS) were used to screen differentially expressed genes
(DEGs) in three HCC datasets (GSE14520, GSE25097,
and GSE36376). The percentage of overlapped DEGs
obtained by each method in each dataset was calculated
to select the best method. Considering the robustness
of results in different datasets, the top 40% of the DEGs
identified by each method were selected for comparison
in this study. Therefore, 3341 DEGs screened by LSOSS
were selected for detailed analyses. t-test was performed
to select differentially expressed microRNAs in HCC

between nine HCC samples and nine normal adjacent
tissue samples with cirrhosis (GSE63046), resulting in 149
differentially expressed microRNAs in total (p < 0.05).
Among them, 89 exhibit higher expression and 60 show
lower expression in HCC.

3.3 Construction of condition-specific
microRNA–mRNA network in HCC

To construct condition-specific microRNA–mRNA net-
work in HCC, differentially expressed microRNAs and
mRNAs were mapped to the human microRNA–mRNA
reference network, producing two HCC networks (HCC-
Net1 and HCC-Net2). HCC-Net1 contains 85 microRNAs,
4852 target genes, and 9428 microRNA–mRNA target
relationships. The average degree of microRNAs is 111,
and the average degree of mRNAs is equal to 2. Simi-
larly, HCC-Net2 includes 520 microRNAs, 2697 genes, and
17,889microRNA–mRNA target relationships. The average
degrees of microRNAs and genes are 34 and 7. HCC-Net2
has less number and lower average degree of microRNAs
than HCC-Net1, possibly because the expression of target
genes in HCC is not considered in the screening process of
HCC-Net1, leading tomore target genes in themicroRNA–
mRNA reference network being included. Moreover, an
overlapping analysis showed that 76 out of 85 microR-
NAs in HCC-Net1 were overlapped in HCC-Net2. This
demonstrated consistency between microRNAs identified
in HCC-Net1 and HCC-Net2, thus guaranteeing the ratio-
nality of subsequent analyses.

3.4 Screened HCCmicroRNA
biomarkers

In HCC-Net1, compared to the controls, 33 microRNAs
show significantly higher NOD values (p < 0.05), and
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TABLE 1 HCC microRNA biomarkers predicted by our computational screening

microRNA NOD1 TFP1 NOD2 TFP2 Expression Npm Function
miR-25-3p 149 0.1703 1 0.1366 Up 2 Cell proliferation

Cell wall adhesion
miR-221-3p 33 0.1481 1 0.1556 Up 3 Cell apoptosis and proliferation

Tumor multifocality and infiltration
miR-101-3p 57 0.1642 2 0.2162 Down 7 Tumor suppression

Apoptosis, proliferation, and migration
miR-378a-3p 57 0.1477 1 0.119 Down 0 Cell proliferation and migration
miR-490-3p 48 0.1449 1 0.1607 Down 0 Cell proliferation, migration and infiltration,

epithelial–mesenchymal transition
miR-381-3p 37 0.1765 1 0.1143 Down 0 N/A

Abbreviations: N/A, not available; NOD1/NOD2 and TFP1/TFP2, NOD and TFP measured in HCC-Net1 and HCC-Net2, respectively; Npm, number of PubMed
citations as potential biomarkers of HCC.

F IGURE 2 Functional analysis of screened microRNA biomarkers. (A) Ontology enrichment analysis of target genes of the screened
microRNA. Here GO_BP, GO_CC, and GO_MF represent biological process, cell composition, and molecular function, respectively. (B) IPA
enrichment analysis of target genes of the microRNA biomarkers

11 exhibit significantly higher TFP values (p < 0.05), as
listed in File S2. By the same criteria, 211 microRNAs with
significantly higher NOD values (p < 0.05) and 95 with
significantly higher TFP values (p < 0.05) were found
in HCC-Net2 (File S3). Finally, six overlapping microR-
NAs between HCC-Net1 and HCC-Net2 were identified
as potential HCC microRNA biomarkers. Among them,
miR-25-3p and miR-221-3p were overexpressed in HCC,
andmiR-101-3p,miR-378a-3p,miR-490-3p, andmiR-381-3p
were underexpressed in comparison with genes of normal
liver tissue, as shown in Table 1.

3.5 Biological function analysis of
predicted HCCmicroRNA biomarker

To investigate the biological properties of six candidate
microRNA biomarkers, we carried out an enrichment
analysis for a total of 433 target genes using DAVID and
IPA. As shown in Figure 2A, there are two GO terms
at biological process level, 10 GO terms at cellular com-
ponent level, and seven GO terms at molecular func-
tion level that are statistically enriched for target genes
(p< 0.05). Among them, glucocorticoid receptor (GR) is an
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important signal integrator in liver metabolism and physi-
ological stress. Inmice, impairment of GR signaling causes
steatosis and HCC.38 The significantly enriched GO cat-
egories include cellular components from various types
of lumens and organelles in both cytoplasm and nucleus.
Molecular binding is the most significantly enriched
molecular function, which includes chromatin bind-
ing, adenyl ribonucleotide binding, ribonucleotide bind-
ing, purine ribonucleotide binding, ATP binding, adenyl
nucleotide binding, and purine nucleotide binding.
Moreover, Figure 2B listed the top 10 significantly

enriched terms in signal transduction pathways, disease
and biological functions, and toxic functions using IPA
(p < 0.05). Notably, the GR signaling pathway ranked
first among all 115 significant enriched signal transduction
pathways. Other top 10 enriched signal transduction path-
ways include Ephrin receptor signaling, Paxillin signaling,
Hepatocyte growth factor signaling, Integrin signaling,
and two types of pinocytosis signals (clathrin-mediated
pinocytosis and macrophage), NGF signaling, estrogen
receptor signaling, and LPS-stimulated MAPK signaling
pathway. Importantly, most signal pathways we identified
were closely related to HCC. For instance, the impairment
of clathrin-mediated endocytosis via cytoskeletal change
by epithelial to fibroblastoid conversion is associated
with the des-gamma-carboxy prothrombin production in
HCC39; Hepatocyte growth factor stimulates the formation
and migration of HCC cells40,41; Estrogen receptor signal-
ing plays an important role in the induction ofHCC42; LPS-
TLR4 signaling promotes cancer cell survival and prolif-
eration by regulating the activity of the MAPK signaling
pathway.43 Moreover, most of the significantly enriched
entries in disease and biofunction are associated with hall-
marks of cancer, including cellular growth and prolifera-
tion, cell death and survival, cell cycle, and DNA replica-
tion rearrangement, and repair (i.e., DNA replication and
recombination).44 And as shown in Figure 2B, liver hyper-
plasia/hyperproliferation, liver failure, and HCC are the
top five significantly enriched entries in toxic function.
In summary, the functional enrichment analysis

revealed crucial roles of our predicted microRNA targets
in the development of HCC, suggesting these microRNAs
might serve as good HCC biomarkers.

3.6 Classification evaluation of
candidate microRNA biomarkers in HCC

To evaluate the diagnostic values of these six microRNAs,
we performed ROC curve analysis and calculated the AUC
value in GSE63046, GSE21279, and GSE36915. For the data
in GSE63046, Figure 3 showed that miR-221-3p, miR-490-
3p, miR-378a-3p, and miR-25-3p all had a discriminating

power of AUC values larger than 0.7 between HCC patient
samples and nontumor samples. For the data in GSE21279
and GSE36915, as shown in Figure 4A, the AUC values of
miR-221-3p and miR-378a-3p in both datasets were greater
than 0.6, whereas the AUC value of miR-490-3p was only
greater than 0.6 inGSE21279. Interestingly, theAUCvalues
of miR-101-3p and miR-381-3p in GSE63046 were both less
than 0.6 and were greater than 0.6 in GSE21279. In addi-
tion, the AUC value of miR-25-3p was only greater than
0.6 in GSE36915. Therefore, we concluded that miR-221-3p
and miR-378a-3p have a better robustness and classifica-
tion consistency for universal diagnosis forHCC. The other
four microRNAs showed the discriminating power on dif-
ferent datasets, implying their strong classification ability
as a personalized medicine model for some specific sam-
ples due to the heterogeneity of cancer.
To eliminate the interfering effect, we further assessed

various combinations of multiple diagnostic microRNA
biomarkers for their diagnostic values. The result of
two microRNA combinations showed that about 86.7%
(13/15) of microRNA combinations have an AUC greater
than 0.8, among which the AUC values of top nine
microRNA combinations were greater than those of
single microRNA biomarkers (Table 2). Notably, the
AUC values of eight microRNA combinations, including
miR-25-3p/miR-221-3p, miR-490-3p/miR-101-3p, miR-490-
3p/miR-381-3p, miR-25-3p/miR-378a-3p, miR-25-3p/miR-
490-3p, miR-101-3p/miR-378a-3p, miR-381-3p/miR-378a-
3p, andmiR-25-3p/miR-381-3p, increased by 10% compared
to the average AUC values of single microRNAs them-
selves. In the samemanner,we conductedROCanalysis for
above 15 combinationmicroRNAs biomarkers inGSE21279
and GSE36915 datasets. We found that the AUC values of
fourmicroRNA combinations, includingmiR-101-3p/miR-
378a-3p, miR-381-3p/miR-378a-3p, miR-221-3p/miR-378a-
3p, and miR-221-3p/miR-101-3p, in both two datasets were
greater than 0.6 (Figure 4B). Particularly, the AUC value
of miR-101-3p/miR-378a-3p and miR-381-3p/miR-378a-3p
combination not only had an increase of 20% relative to the
average AUC values of single microRNAs themselves in
GSE63046, but also showed the increase in two validation
datasets. In summary, miR-101-3p/miR-378a-3p and miR-
381-3p/miR-378a-3p exhibit better diagnostic performance
for HCC prediction.

3.7 Verification of bioinformatics
prediction of microRNAs in HCC

To verify the above-described bioinformatical prediction
of microRNAs’ expression pattern in HCC, the expres-
sion of miR-25-3p, miR-101-3p, miR-221-3p, miR-378a-3p,
miR-381-3p, and miR-490-3p in 28 pairs of snap-frozen
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F IGURE 3 ROC curves of the screened microRNA biomarkers tested with the GSE63046 dataset

F IGURE 4 Prediction performance characterized with area under the curve (AUC) values of the screened microRNA biomarkers tested
with the three data sets. (A) The performance of singlemicroRNAbiomarkers. (B) The performance of the combinatorialmicroRNAbiomarkers

human HCC tumor tissues and adjacent nontumor liver
tissues (normal tissue control), as well as in eight
human HCC cell lines (HepG2, HuH7, SMMC-7721, Li-7,
PLC/PRF5, SK-Hep-1, MHCC97L, and MHCC97H) and a
L-02 human liver cell line (normal cell control), was deter-
mined by RT-qPCR analysis. As shown in Figure 5A, com-

pared to normal tissue control, the expressions of miR-
378a-3p, miR-490-3p, miR-381-3p, and miR-101-3p were
downregulated in HCC tumor tissues, whereas the expres-
sion of miR-221-3p was upregulated in HCC tumor tis-
sues (p < 0.05 or < 0.01). Although no statistically sig-
nificant difference was found in miR-25-3p, HCC tumor
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TABLE 2 Prediction performance of combined microRNA biomarkers

microRNA Sensitivity Specificity Accuracy AUC Mean AUC
miR-490-3p/miR-378a-3p 0.9540 1.0000 0.9770 0.9993 0.9189
miR-25-3p/miR-221-3p 0.8406 1.0000 0.9203 0.9985 0.8866
miR-490-3p/miR-101-3p 0.9742 0.8967 0.9355 0.9917 0.6139
miR-490-3p/miR-381-3p 0.9596 0.9001 0.9299 0.9909 0.7539
miR-25-3p/miR-378a-3p 0.9091 0.9641 0.9366 0.9888 0.8314
miR-25-3p/miR-490-3p 0.9832 0.8653 0.9242 0.9885 0.8697
miR-101-3p/miR-378a-3p 0.8777 0.9843 0.9310 0.9784 0.5756
miR-381-3p/miR-378a-3p 0.8406 0.9158 0.8782 0.9264 0.7156
miR-25-3p/miR-381-3p 0.7733 0.8418 0.8075 0.8495 0.6662
miR-490-3p/miR-221-3p 0.9574 0.8844 0.9209 0.9889 0.9743
miR-221-3p/miR-378a-3p 0.9080 0.9787 0.9433 0.9822 0.9360
miR-221-3p/miR-101-3p 0.8171 0.8833 0.8502 0.9289 0.6307
miR-221-3p/miR-381-3p 0.8608 0.8732 0.8670 0.8960 0.7707
miR-25-3p/miR-101-3p 0.4568 0.4579 0.4574 0.4671 0.5262
miR-101-3p/miR-381-3p 0.3558 0.3715 0.3636 0.3157 0.4103

Note: The combination of microRNAs with underscores indicates that their AUC is larger than that of a single microRNA. The mean AUC value represents the
average of AUC values of the two microRNAs.

tissues still exhibited a slightly higher expression of miR-
25-3p than normal tissues. Moreover, all eight tested
HCC cell lines exhibited lower miR-378a-3p, miR-490-3p,
and miR-101-3p expression and higher miR-221-3p expres-
sion, when compared with L-02 normal liver cell control
(p < 0.05 or < 0.01) (Figure 5B). The expression of miR-
381-3p was found to be reduced in HuH7, SMMC-7721,
PLC/PRF5, MHCC97L, and MHCC97H HCC cell lines but
elevated in HepG2, Li-7, and SK-Hep-1 HCC cell lines
(p< 0.05 or< 0.01) (Figure 5B). We also found higher level
of miR-25-3p in HepG2, HuH7, Li-7, SK-Hep-1, MHCC97L,
and MHCC97H HCC cell lines, but lower level of miR-25-
3p in SMMC-7721 and PLC/PRF5 HCC cell lines (p < 0.05
or < 0.01) (Figure 5B). Thus, the expression trend of miR-
25-3p, miR-101-3p, miR-221-3p, miR-378a-3p, miR-381-3p,
and miR-490-3p in human HCC clinical tissue specimens
and cell lines was largely consistent with our bioinformat-
ical prediction.

3.8 MiR-378a-3p reduction correlates
with clinicopathological features and poor
prognosis of HCC

To further examine whether downregulation of miR-378a-
3p is clinically relevant in HCC, we extended HCC cases
and determined the expression of miR-378a-3p in HCC
TMA (90 cases, 90 paired human HCC, and adjacent nor-
mal tissues) by ISH analysis (Figure 5C). As shown in Fig-
ures 5D and 5E, low expression of miR-378a-3p in tumor
tissues occurred in 61 cases (15 cases scored “–” and 46
cases scored “+”) (67.8%), whereas high expression ofmiR-
378a-3p only occurred in 29 cases (20 cases scored “++”
and nine cases scored “+++”) (32.2%). Among matched
adjacent normal tissues, 54 cases (60.0%) displayed high
expression of miR-378a-3p (43 cases scored “++” and 11
cases scored “+++”), whereas 36 cases (40.0%) exhibited
low expression of miR-378a-3p (10 case scored “–” and 26

F IGURE 5 Verification of bioinformatics prediction of miRNAs in HCC and correlation of reduction of miR-378a-3p with poor prognosis
in HCC patients. (A) RT-qPCR analysis of miRNAs in HCC clinical tissue specimens. The expression levels of miR-25-3p, miR-101-3p, miR-221-
3p, miR-378a-3p, miR-381-3p, and miR-490-3p in 28 pairs of human HCC tumor tissues (Tumor) and adjacent nontumor liver tissues (Normal)
were normalized to U6 internal control and expressed as ∆CT= (mean CTU6 – mean CTmiRNA). *p < 0.05 or **p < 0.01 compared with Normal,
Student’s t test, n = 6 replicates per sample. (B) RT-qPCR analysis of miRNAs in HCC cell lines. The expression levels of miR-25-3p, miR-
101-3p, miR-221-3p, miR-378a-3p, miR-381-3p, and miR-490-3p in a panel of human HCC cell lines including HepG2, HuH7, SMMC-7721, Li-7,
PLC/PRF5, SK-Hep-1, MHCC97L, and MHCC97H were normalized to U6 internal control and calculated by a 2−∆∆CT method, with 1 being the
value for L-02 normal live cell control. *p< 0.05 or **p< 0.01 compared with L-02, Student’s t test, n= 6 replicates per sample. (C) ISH analysis
of miR-378a-3p in HCC TMA. The representative pictures of ISH (Case 55 T, –; and Case 82 T, ++) were shown. (D) Summary of miR-378a-3p
ISH scoring. **p< 0.01 comparedwith Normal,Mann–WhitneyU test, n= 90 cases. (E) The percentage of high and lowmiR-378a-3p expression
in Tumor or Normal in HCC TMA. **p < 0.01 compared with Normal, Pearson’s χ2 test, n = 90 cases. (F) The relationship between expression
level of miR-378a-3p and prognosis of HCC patients. *p < 0.05 compared with high miR-378a-3p expression, Log-rank test
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TABLE 3 The relationship of miR-378a-3p expression with HCC clinicopathological features

Variables

High miR-378a-3p
expression
(n = 29)

LowmiR-378a-3p
expression
(n = 61) p-Value

Gender 0.8436
Female 13 26
Male 16 35

Age (years) 0.7965
≤60 12 27
>60 17 34

HbsAg 0.7497
Negative 9 21
Positive 20 40

Cirrhosis 0.8977
Absent 11 24
Present 18 37

Serum AFP (ng/mL) 0.8834
≤20 10 22
>20 19 39

Tumor size (cm) 0.0289*
≤5 16 19
>5 13 42

Tumor number 0.8509
Single 21 43
Multiple 8 19

Vascular invasion 0.0410*
Absent 15 18
Present 14 43

TNM stage 0.0199*
Early (I/II) 17 20
Late (III/IV) 12 41

*p < 0.05, Pearson’s χ2 test.
Abbreviations: AFP, alpha-fetoprotein; TNM, A system for cancer staging. T indicates the size of the tumor and any spread of cancer into nearby tissue; N indicates
spread of cancer to nearby lymph nodes; and M indicates metastasis.

cases scored “+”). Our results demonstrated a decreased
expression ofmiR-378a-3p inHCC tumor tissues compared
to adjacent normal tissues (p < 0.01). Based on miR-378a-
3p expression in HCC tumor tissues, 90 patients with HCC
were divided into two groups: low–expression group (“–
” or “+”, n = 61) and high–expression group (“++” or
“+++”, n = 29). To evaluate the clinical significance of
miR-378a-3p inHCC, the correlation betweenmiR-378a-3p
expression in human HCC tissues and HCC clinicopatho-
logical features was analyzed. As shown in Table 3, miR-
378a-3p expression was inversely correlated with tumor
size, vascular invasion, and TNM stage (p < 0.05). A
Kaplan–Meier survival analysis further confirmed that low
level of miR-378a-3p led to a significant reduction in the
overall survival rate of HCC patients (p< 0.05) (Figure 5F).
Moreover, similar survival patterns were noticed during

the analysis of patient data fromTheCancer GenomeAtlas
(TCGA) (File S4). Our data indicated that miR-378a-3p
reduction may facilitate human HCC progression, and it
can therefore be used as a prognostic indicator for HCC.

3.9 MiR-378a-3p inhibits HCC cell
growth in vitro and in vivo

To examine the effect of miR-378a-3p on human HCC cell
growth, the in vitro proliferation abilities of MHCC97H
HCC cells treated with agomiR-378a-3p or agomiRcon-
trol, as well as those of SMMC-7721 HCC cells treated
with antagomiR-378a-3p or antagomiRcontrol, were deter-
mined by a CCK-8 assay. As shown in Figure 6A,
the growth in the MHCC97H-agomiR-378a-3p was much
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F IGURE 6 MiR-378a-3p suppresses HCC cell proliferation and growth in vitro and in vivo in athymic nude mice. (A) CCK-8 assay.
MHCC97H: *p < 0.05 at day 1 or **p < 0.01 at day 2, 3, and 4 after treatment with agomiR-378a-3p, compared with MHCC97H-agomiRcontrol;
SMMC-7721: *p < 0.05 at day 1, 2, and 3 or **p < 0.01 at day 4 after treatment with antagomiR-378a-3p, compared with SMMC-7721-
antagomiRcontrol, two-way repeated measures analysis of variance (ANOVA), n = 6 replicates per condition. (B) Colony formation assay.
The representative pictures of colonies were shown. (C and D) Microsphere-forming assay. The representative pictures of tumor microspheres
(C) were shown and the number of tumor microspheres (D) was counted. MHCC97H: **p < 0.01 compared with MHCC97H-agomiRcontrol;
SMMC-7721: **p< 0.01 compared with SMMC-7721-antagomiRcontrol, Student’s t test, n= 6 replicates per condition. (E) Tumor-forming time.
**p< 0.01 compared withMHCC97H-agomiRcontrol, Student’s t test, n= 6 replicates per condition. (F) Tumor volume. Tumor (s.c.) formation
assay (left): *p < 0.05 at week 2 or **p < 0.01 at weeks 3 and 4 after inoculation of MHCC97H-agomiR-378a-3p tumor cells, compared with
MHCC97H-agomiRcontrol; tumor (s.c.) treatment assay (right): *p< 0.05 at week 2 or **p< 0.01 at weeks 3 and 4 after treatment of MHCC97H
s.c. xenografted tumors with agomiR-378a-3p, compared with agomiRcontrol treatment, two-way repeated measures ANOVA, n = 6 replicates
per condition. (G) In vivo luciferase tumor imaging. The representative pictures of in vivo tumor imaging were shown. Tumor (s.c.) formation
assay (left); tumor (s.c.) treatment assay (middle); tumor (orthotopic) treatment assay (right). (H) The photos of s.c. xenografted tumors. Tumor
(s.c.) formation assay (Upper); tumor (s.c.) treatment assay (lower). (I) The representative photos of orthotopically xenografted tumors (marked
with arrows). (J) Tumorweight. Tumor (s.c.) formation assay (left): **p< 0.01 comparedwithMHCC97H-agomiRcontrol; tumor (s.c.) treatment
assay (middle): **p < 0.01 compared with agomiRcontrol treatment of MHCC97H s.c. xenografted tumors; tumor (orthotopic) treatment assay
(right): *p < 0.05 compared with agomiRcontrol treatment of MHCC97H orthotopically xenografted tumors, Student’s t test, n = 6 replicates
per condition
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slower than that in the MHCC97H-agomiRcontrol con-
trol (p < 0.05 or < 0.01), demonstrating that miR-378a-3p
inhibits MHCC97H tumor cell growth in vitro. In contrast,
inhibition of miR-378a-3p using antagomiR-378a-3p signif-
icantly promoted SMMC-7721 tumor cell growth compared
with SMMC-7721-antagomiRcontrol control (p < 0.05
or < 0.01) (Figure 6A). Consistently, MHCC97H-agomiR-
378a-3p tumor cells formed smaller and less colonies (Fig-
ure 6B) or tumor microspheres (Figures 6C and 6D) than
MHCC97H-agomiRcontrol control cells (p < 0.01). The
colonies (Figure 5B) or tumor microspheres (Figures 6C
and 6D) that grew from SMMC-7721-antagomiR-378a-3p
tumor cells were larger in size and greater in quan-
tity than those from SMMC-7721-antagomiRcontrol con-
trol cells (p < 0.01). Our data indicated that miR-378a-
3p also suppresses clonogenicity and self-renewal activ-
ity of HCC cells. To further determine whether the cor-
relation between miR-378a-3p and HCC growth traits in
vitro could be reproduced in vivo, we monitored human
HCC s.c. xenografted tumor growth of MHCC97H tumor
cells pretreated with agomiR-378a-3p or agomiRcontrol in
athymic BALB/c nude mice. As shown in Figures 6E–H
and 6J, miR-378a-3p suppressed MHCC97H tumor cell
growth in vivo (p < 0.05 or < 0.01). In the other ani-
mal studies, the athymic BALB/c nude mice were s.c. or
orthotopically implanted with MHCC97H tumor cells to
establish HCC s.c. or orthotopically xenografted tumors,
and then subjected to treatment with agomiR-378a-3p or
agomiRcontrol. We found that miR-378a-3p treatment sig-
nificantly inhibited pre-established MHCC97H s.c. (Fig-
ures 6F–H and 6J) and orthotopic (Figures 6G, 6I, and 6J)
tumor growth in athymic nude mice (p < 0.05 or < 0.01).
Taken together, our data demonstrated the HCC cell
growth repression ability of miR-378a-3p both in vitro and
in vivo.

3.10 MiR-378a-3p suppresses HCC cell
migration, invasion, and distant lung
metastasis

To analyze the association of miR-378a-3p with metastatic
potential of HCC cells, scratch assay and Transwell
invasion assay were conducted to examine the in vitro
migratory and invasive abilities of MHCC97H-agomiR-
378a-3p versus MHCC97H-agomiRcontrol HCC cells, as
well as SMMC-7721-antagomiR-378a-3p versus SMMC-
7721-antagomiRcontrol HCC cells, respectively. As shown
inFigures 7A and 7B, themigratory capacity ofMHCC97H-
agomiR-378a-3p tumor cells was dramatically impaired
compared with MHCC97H-agomiRcontrol control cells
(p < 0.01). Inhibition of miR-378a-3p enhanced the migra-
tory ability in SMMC-7721 tumor cells (p < 0.05) (Fig-

ures 7A and 7B). Furthermore, miR-378a-3p suppressed
MHCC97H tumor cell invasion, whereas antagonism of
miR-378a-3p promoted the process in SMMC-7721 tumor
cells (p < 0.01) (Figures 7C and 7D). To further inves-
tigate whether the correlation between miR-378a-3p and
HCC metastatic traits in vitro could be reproduced in
vivo, the MHCC97H-agomiR-378a-3p and MHCC97H-
agomiRcontrol tumor cells were injected into the tail vein
of athymic BALB/c nude mice, respectively. Four weeks
after the intravenous injection, the lung tissues of the mice
were removed. As shown in Figure 7E, those mice injected
with MHCC97H-agomiR-378a-3p tumor cells exhibited
a significant decrease in tumor lung metastasis nodule
than those injected with MHCC97H-agomiRcontrol con-
trol cells. Moreover, the pulmonary metastasis frequency
(2/6) in the MHCC97H-agomiR-378a-3p-injected mice was
lower than that (6/6) in the MHCC97H-agomiRcontrol
control-injected mice. The tumor lung micrometastasis
nodules were further examined and counted by HE histo-
logical analysis, which showed a significant reduction in in
MHCC97H-agomiR-378a-3p-injected mice (p < 0.01) (Fig-
ures 7F and 7G). In addition, miR-378a-3p treatment using
agomiR-378a-3p also suppressed the distant lung metasta-
sis of MHCC97H orthotopic xenograft tumors (p < 0.01)
(Figure 7E–G). These data indicated that miR-378a-3p
efficiently weakens the metastasis potential of HCC
cells.

3.11 MiR-378a-3p represses PLAGL2
expression in HCC cells

To explore the mechanism by which miR-378a-3p sup-
presses growth and metastasis of HCC cells, the biological
targets of miR-378a-3p were predicted by microRNAorg,
PITA, and TargetScan databases (Figure 8A). Among the
predicted targets, seven potential target genes of miR-
378a-3p including PLAG1, SULF1, SLC7A6, NPAT,HDAC4,
PLAGL2, and GLI3 were selected. We further confirmed
that PLAG1, SULF1, SLC7A6, NPAT, HDAC4, PLAGL2,
and GLI3 were putative targets of miR-378a-3p using
bioinformatics tools (Figure 8B). 3′UTR-dual luciferase
reporter assay showed that the expression of the wild-
type PLAG1, SLC7A6, or PLAGL2, especially PLAGL2,
was inhibited in miR-378a-3p mimics-transfected 293T
cells compared to miRNA mimics NC-transfected control
cells (p < 0.05 or < 0.01) (Figure 8C). Moreover, miR-
378a-3p mimics repressed expression of wild-type PLAGL2
in a dose-dependent manner (p < 0.05 or < 0.01) (Fig-
ure 8D). Importantly, miR-378a-3p mimics failed to sup-
press the expression of the mutant 3′UTR of PLAGL2 (Fig-
ure 8E). RT-qPCR (Figure 8F) andwestern blot (Figures 8G
and 8H) analyses further showed that overexpression of
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F IGURE 7 MiR-378a-3p inhibits HCC cell migration and invasion in vitro and lung metastasis in vivo. Scratch assay. The representa-
tive photos of scratch assay of the indicated cells were shown in panel A. (B) The relative migratory ability was calculated and expressed as a
ratio or fold of MHCC97H-agomiRcontrol or SMMC-7721-antagomiRcontrol control, with 1 being the value for controls. MHCC97H: **p < 0.01
compared with MHCC97H-agomiRcontrol; SMMC-7721: *p < 0.05 compared with SMMC-7721-antagomiRcontrol, Student’s t test, n = 6 repli-
cates per condition. (C) Transwell invasion assay. The representative photos of Transwell invasion assay of the indicated cells were shown.
(D) The relative invasive ability was calculated. MHCC97H: **p < 0.01 compared with MHCC97H-agomiRcontrol; SMMC-7721: **p < 0.01
compared with SMMC-7721-antagomiRcontrol, Student’s t test, n = 3 replicates per condition, n = 5 observations per replicate. (E–G) In vivo
lung metastasis assay. The representative photos of lung tissue specimen (E) and lung tissue HE staining (F) were shown. The tumor metas-
tasis nodules in the lungs were marked with arrows (E and F). Tumor (i.v.) injection assay (left); tumor (orthotopic) treatment assay (right).
The tumor micrometastasis nodules in the lungs were counted according to H&E staining (G). Tumor (i.v.) injection assay (left): **p < 0.01
compared with MHCC97H-agomiRcontrol; tumor (orthotopic) treatment assay (right): **p < 0.01 compared with agomiRcontrol treatment of
MHCC97H orthotopically xenografted tumors, Student’s t test, n = 6 replicates per condition, n = 5 sections per sample, n = 5 observations per
section

miR-378a-3pwith agomiR-378a-3p downregulated both the
mRNA and protein levels of PLAGL2 in MHCC97H tumor
cells, whereas inhibition of miR-378a-3p with antagomiR-
378a-3p upregulated the levels of PLAGL2 in SMMC-7721

tumor cells (p < 0.01). Collectively, our data indicated that
PLAGL2 is a functional target of miR-378a-3p, and miR-
378a-3p directly suppresses PLAGL2 expression in HCC
cell lines.
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3.12 MiR-378a-3p inhibits
PLAGL2/β-catenin signaling

Previous studies showed that PLAGL2 can elevate Wnt/β-
catenin signaling in some type of human cancers.45,46 To
address whether miR-378a-3p-mediated PLAGL2 down-
regulation would lead to inactivation of β-catenin sig-
naling in human HCC cells, we analyzed the expres-
sion, subcellular location, and transcriptional activity
of β-catenin by western blot, confocal microscopy, and
luciferase reporter analysis, respectively. As shown in Fig-
ure 9A, both the total and nuclear levels of β-catenin were
markedly reduced in MHCC97H-agomiR-378a-3p tumor
cells compared to MHCC97H-agomiRcontrol control cells.
Conversely, inhibition of miR-378a-3p increased the total
and nuclear levels of β-catenin in SMMC-7721 tumor cells.
Confocal microscopic analysis also showed that miR-378a-
3p overexpression impeded accumulation and transloca-
tion of β-catenin to nucleus in MHCC97H tumor cells,
whereas inhibition of miR-378a-3p exhibited an oppos-
ing effect in SMMC-7721 tumor cells (Figure 9B). Of
note, miR-378a-3p suppressed the transcriptional activity
of β-catenin in MHCC97H tumor cells, whereas antago-
nism of miR-378a-3p enhanced it in SMMC-7721 tumor
cells (p < 0.01) (Figure 9C). The in vivo downregula-
tory effect of miR-378a-3p on β-catenin was further con-
firmed by IHC analysis of β-catenin in agomiR-378a-
3p-pretreated or agomiR-378a-3p-treated MHCC97H s.c.
xenografted tumors (data not shown) and agomiR-378a-
3p-treated MHCC97H orthotopically xenografted tumors
(Figure 9D). To check whether β-catenin is involved in
miR-378a-3p-elicited functional effects in HCC, we fur-
ther analyzed the effect of blocking β-catenin signaling via
siRNA-mediated knockdown of TCF4 or LEF1 (Figure 9E)
on the proliferative, migratory, and invasive capacity of
SMMC-7721-antagomiR-378a-3p tumor cells. As shown in

Figure 9F–H, inhibition of β-catenin signaling remarkably
attenuated the miR-378a-3p antagonism-induced prolifer-
ation, migration, and invasion in SMMC-7721 tumor cells
(p < 0.01 or < 0.05). Our results indicated that Wnt/β-
catenin signaling is a functional mediator for miR-378a-3p
reduction-induced growth andmetastasis in HCC cells. To
further explore the functional significance of PLAGL2 in
β-catenin activation induced by miR-378a-3p downregula-
tion in human HCC cells, we studied the effect of siRNA-
mediated PLAGL2 knockdown on β-catenin signaling in
SMMC-7721-antagomiR-378a-3p tumor cells. We found
that knockdown of PLAGL2 significantly abrogated miR-
378a-3p antagonism-induced enhancement of β-catenin
signaling in SMMC-7721 tumor cells (p < 0.01) (Figures 9I
and 9J), suggesting that miR-378a-3p reduction-triggered
upregulation of PLAGL2 is functionally important for acti-
vation of β-catenin in HCC cells. Taken together, these
results indicated thatmiR-378a-3p suppresses HCC growth
and metastasis via inhibition of PLAGL2/β-catenin signal-
ing. The reduction or loss of miR-378a-3p in HCC may
upregulate PLAGL2 expression and β-catenin signaling,
leading to the progression of HCC (Figure 9K).

3.13 Clinical association between
miR-378a-3p and PLAGL2/β-catenin in HCC

To confirm the regulatory relationship between miR-378a-
3p and its target, PLAGL2, or β-catenin in human HCC
clinical tissue specimens, the expression of miR-378a-3p
and PLAGL2/β-catenin in HCC TMA (90 cases) was ana-
lyzed by ISH and IHC, respectively. As shown in Fig-
ure 9L, the immunostaining intensity of PLAGL2 and
total/nuclear β-catenin was much stronger in HCC tumor
tissueswith lowmiR-378a-3p expression than in thosewith
high miR-378a-3p expression. Furthermore, 73.8% of cases

F IGURE 8 MiR-378a-3p suppresses PLAGL2 expression inHCC cells. (A)Heatmap of the predicted targets formiR-378a-3p. (B) Schematic
miR-378a-3p putative target sites in 3′UTRs of PLAG1, SULF1, SLC7A6, NPAT, HDAC4, PLAGL2, and GLI3. (C–E) 3′UTR-dual luciferase
reporter assays. The wild-type PLAG1-3′UTR, SULF1-3′UTR, SLC7A6-3′UTR, NPAT-3′UTR, HDAC4-3′UTR, PLAGL2-3′UTR, or GLI3-3′UTR
reporter plasmid was cotransfected with 200 nM of miR-378a-3p mimics or miRNAmimics NC into 293T cells (C). The wild-type (D) or mutant
(E) PLAGL2-3′UTR reporter plasmid was cotransfected with various amounts (25, 50, 100, and 200 nM) of miR-378a-3p mimics or miRNA
mimics NC into 293T cells. The relative luciferase activity was expressed as a ratio or fold of miRNA mimics NC cotransfection control, with
1 being the value for control. *p < 0.05 or **p < 0.01 compared with miRNA mimics NC, Student’s t test, n = 3 replicates per condition,
n = 3 replicates per sample. (F) RT-qPCR analysis of PLAGL2. The mRNA level in MHCC97H-agomiR-378a-3p or SMMC-7721-antagomiR-
378a-3p was normalized to β-actin internal control and calculated by a 2−∆∆CT method, with 1 being the value for MHCC97H-agomiRcontrol or
SMMC-7721-antagomiRcontrol control. MHCC97H: **p < 0.01 compared with MHCC97H-agomiRcontrol; SMMC-7721: **p < 0.01 compared
with SMMC-7721-antagomiRcontrol, Student’s t test, n = 3 replicates per condition, n = 3 replicates per sample. (G and H) Western blot anal-
ysis of PLAGL2. The representative pictures of Western blot were shown (G). The protein level of PLAGL2 in MHCC97H-agomiR-378a-3p or
SMMC-7721-antagomiR-378a-3p was normalized to β-actin internal control (PLAGL2/β-actin) and expressed as a ratio or fold of respective
control, with 1 being the value for MHCC97H-agomiRcontrol or SMMC-7721-antagomiRcontrol control (H). MHCC97H: **p < 0.01 compared
with MHCC97H-agomiRcontrol; SMMC-7721: **p < 0.01 compared with SMMC-7721-antagomiRcontrol, Student’s t test, n = 3 replicates per
condition, n = 3 replicates per sample
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F IGURE 9 MiR-378a-3p inhibits HCC cell growth and metastasis via suppressing PLAGL2/β-catenin signaling. (A) Western blot anal-
ysis of β-catenin. The representative pictures of Western blot were shown. (B) Immunofluorescence confocal microscopic analysis of β-
catenin. The representative pictures of merge (red, β-catenin-Alexa Fluor 647; blue, 4′,6-diamidino-2-phenylindole [DAPI]) were shown. (C)
Luciferase reporter analysis of transcriptional activity of β-catenin. The relative luciferase activity was expressed as a ratio or fold ofMHCC97H-
agomiRcontrol or SMMC-7721-antagomiRcontrol control, with 1 being the value for controls. MHCC97H: **p< 0.01 comparedwithMHCC97H-
agomiRcontrol; SMMC-7721: **p < 0.01 compared with SMMC-7721-antagomiRcontrol, Student’s t test, n = 3 replicates per condition, n = 3
replicates per sample. (D) Immunohistochemistry analysis of β-catenin in HCC orthotopically xenografted tumors. The representative pic-
tures of immunohistochemistry were shown. (E) Western blot analysis of TCF4 or LEF1 siRNA-mediated knockdown of TCF4 or LEF1. The
representative pictures of Western blot were shown. (F) CCK-8 assay after TCF4 or LEF1 knockdown. *p < 0.05 compared with SMMC-7721-
antagomiR-378a-3p or control siRNA-transfected SMMC-7721-antagomiR-378a-3p at day 1, 2, 3, and 4, two-way repeated measures analysis of
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with low miR-378a-3p expression (45/61 cases) in HCC
tumor tissues showed a high level of PLAGL2, whereas
only 24.1% of cases with highmiR-378a-3p expression (7/29
cases) exhibited a high level of PLAGL2 (p < 0.01) (Fig-
ure 9M). Also, HCC caseswith lowmiR-378a-3p expression
displayed a higher level of β-catenin (39 of 61 cases; 64.0%)
than oneswith highmiR-378a-3p expression (10 of 29 cases;
34.5%) (p < 0.05) (Figure 9M). Consistent with the cell
model results, clinical data also demonstrated that miR-
378a-3p expression is inversely correlated with the expres-
sion pattern of PLAGL2 and β-catenin and the activation
of β-catenin signaling.

4 DISCUSSION

In this study, we integrated cancer gene expression data
and network model of microRNA–mRNA interactions by
calculatingNODandTFP values to find the keymicroRNA
biomarkers in HCC. Bioinformatics methods were used to
predict targets of microRNAs, and enrichment analyses
were performed on these target genes. Subsequently, these
results were verified by experimental methods both in vivo
and in vitro experiments.We found thatmiR-378a-3p acted
as a tumor-suppressor gene in HCC. Abnormal expression
of miR-378a-3p impacted on tumor cell growth and inva-
sion, which could help researchers develop an early diag-
nostic biomarker for HCC. However, it is still necessary to
conduct both biological and clinical investigations to fur-
ther explore this topic.
Among six candidate microRNA biomarkers predicted

by ourmodel,miR-25-3p,miR-221-3p, andmiR-101-3p have
been reported to have prognostic value for HCC. MiR-25
(miR-25-3p) is highly expressed and is associatedwith poor
prognosis in HCC tissues.47 MiR-25-3p is also significantly
elevated in HCC plasma and can be used in combina-
tion with other seven microRNAs to distinguish between
HCC patients and noncancer controls.48 MiR-221-3p plays
an important role in the tumor formation. It stimulates

cellular growth and proliferation by targeting cell cycle
inhibitors, cyclin-dependent kinase inhibitor 1C (p57) and
1B (p27).49,50 It also inhibits cell death by regulating Bcl-2-
modifying factor.51 Moreover, miR-221-3p is overexpressed
in HCC tissues and serum,50,52,53 and the high expression
level of MiR-221-3p in serum is associated with tumor size,
tumor stage, and poor prognosis.54,55 MiR-101-3p is sig-
nificantly downregulated in HCC samples and suppresses
tumor, thus a potential biomarker in tumorigenesis.56–59
High miR-101-3p expression can inhibit the expression of
myeloid cell leukemia-1 (Mcl-1) and promote apoptosis.60
The ectopic miR-101 expression can imitate the inhibitory
effect of nemo-like kinase on HCC, repress cancer cell
growth and proliferation,61 and inhibit the development of
HCC by reducing the expression of EZH2.62 Downregula-
tion ofmiR-101-3p is associatedwith invasiveness and poor
prognosis of HCC,63 and low expression of plasma miR-
101-3p can predict a worse disease-free survival.64
In addition, although there is no direct evidence that

miR-378a-3p, miR-490-3p, and miR-381-3p could act as
potential biomarkers for HCC, they also play key roles in
the occurrence and development of HCC. A genetic vari-
ant, rs1076064, in miR-378a-3p precursor RNA is positively
correlated to hepatitis B virus HCC risk and prognosis.65
The expression level of miR-378 in HCC blood and tis-
sues of patients is significantly lower than that in the
control group,66,67 and reduced expression of miR-378
is associated with promoter hypermethylation. MiR-490-
3p also shows significant downregulation in HCC tis-
sue samples,14 and it modulates HCC cell growth and
epithelial–mesenchymal transition by targeting endoplas-
mic reticulum–Golgi intermediate compartment protein
3.68 Similarly, miR-381-3p is also significantly underex-
pressed in HCC tissues and cell lines, whereas overexpres-
sion of miR-381-3p significantly suppresses HCC cell pro-
liferation and invasion, and induces G0/G1 cell cycle arrest
by directly targeting liver receptor homolog-1.69 In sum-
mary, additional studies are required to explore the poten-
tials of these microRNAs as biomarkers of HCC.

variance (ANOVA), n = 6 replicates per condition. (G) Scratch assay after TCF4 or LEF1 knockdown. *p < 0.05 compared with SMMC-7721-
antagomiR-378a-3p or control siRNA-transfected SMMC-7721-antagomiR-378a-3p, one-way repeated measures ANOVA, n = 6 replicates per
condition. (H) Transwell invasion assay after TCF4 or LEF1 knockdown. TCF4 siRNA: **p< 0.01; LEF1 siRNA: *p< 0.05 comparedwith SMMC-
7721-antagomiR-378a-3p or control siRNA-transfected SMMC-7721-antagomiR-378a-3p, one-way repeated measures ANOVA, n = 6 replicates
per condition. (I) Western blot analysis of PLAGL2 siRNA-mediated PLAGL2 knockdown as well as β-catenin after PLAGL2 knockdown.
The representative pictures of Western blot were shown. (J) Luciferase reporter analysis of transcriptional activity of β-catenin after PLAGL2
knockdown. **p< 0.01 compared with SMMC-7721-antagomiR-378a-3p or control siRNA-transfected SMMC-7721-antagomiR-378a-3p, one-way
repeatedmeasures ANOVA, n= 3 replicates per condition, n= 3 replicates per sample. (K) A schematicmodel of miR-378a-3p’s function during
HCC growth and metastasis. (L and M) Clinical relevance of miR-378a-3p with PLAGL2 and β-catenin in HCC. (L) The representative pictures
of ISH analysis of miR-378a-3p as well as immunohistochemistry analysis of PLAGL2 and β-catenin in HCC tissue specimens derived from
two representative cases (Case 15, +, low miR-378a-3p; and Case 17, +++, high miR-378a-3p) were shown. (M) The percentage of specimens
exhibiting high or low miR-378a-3p expression in relation to the expression levels of PLAGL2 and β-catenin was shown. PLAGL2: **p < 0.01;
β-catenin: *p < 0.05, Pearson’s χ2 test
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Our work integrated a rational microRNA biomarker
discovery model and experimental functional analysis
to yield valuable research results. For translation to
clinical application, further researches are warranted.
First, the occurrence and development of diseases is
extremely heterogeneous due to the differences of genet-
ics, living habits, occupations, and living environments
in the population. As a result, finding universal biomark-
ers requires large sample size to validate their good
application prospects and effectiveness. Second, to iden-
tify population-personalized biomarkers, a personalized
medicine model depends on more accurate information-
ization support. Finally, due to the complexity of diseases,
it is only possible to conduct rational drug design or treat-
ment from the perspective of system control and dynam-
ics to interfere with disease development based on the in-
depth analysis of the molecular mechanism.
Besides, there also remain limitations in this study.

First, we noticed that the heterogeneity among patients
has significant influence on the evaluation of candidate
biomarkers. Thus, a large-scale analysis of patientmicroar-
ray is demanded in the future to enhance the robustness
and lower the inaccuracy of candidate biomarkers. What’s
more, other data, such as real-world patient health records
and multiple-level omics data, are also need to be inte-
grated to further describe the biomedical function of miR-
378 and explain the necessity as a biomarker for HCC.
In conclusion, we introduced a bioinformatics model

that integrated network topological and functional evi-
dence to identify microRNA biomarkers in HCC diagno-
sis. The predictions from our prosed model were further
validated by experimental methods using humanHCC cell
lines, model animal, and clinical specimens. Notably, we
found that miR-378a-3p was a tumor suppressor and its
abnormal expression could affect the cell growth and inva-
sion of HCC, which had both theoretical and clinical sig-
nificance.
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