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ABSTRACT

The Differential Radial Capillary Action of Ligand
Assay (DRaCALA) allows detection of protein inter-
actions with low-molecular weight ligands based on
separation of the protein–ligand complex by differ-
ential capillary action. Here, we present an applica-
tion of DRaCALA to the study of nucleic acid–protein
interactions using the Escherichia coli cyclic AMP
receptor protein (CRP). CRP bound in DRaCALA
specifically to 32P-labeled oligonucleotides contain-
ing the consensus CRP binding site, but not to oligo-
nucleotides with point mutations known to abrogate
binding. Affinity and kinetic studies using DRaCALA
yielded a dissociation constant and dissociation rate
similar to previously reported values. Because
DRaCALA is not subject to ligand size restrictions,
whole plasmids with a single CRP-binding site were
used as probes, yielding similar results. DNA can
also function as an easily labeled carrier molecule
for a conjugated ligand. Sequestration of
biotinylated nucleic acids by streptavidin allowed
nucleic acids to take the place of the protein as
the immobile binding partner. Therefore, any mo-
lecular interactions involving nucleic acids can be
tested. We demonstrate this principle utilizing a bac-
terial riboswitch that binds cyclic-di-guanosine
monophosphate. DRaCALA is a flexible and comple-
mentary approach to other biochemical methods for
rapid and accurate measurements of affinity and
kinetics at near-equilibrium conditions.

INTRODUCTION

The Differential Radial Capillary Action of Ligand Assay
(DRaCALA) was recently shown to allow rapid and

quantitative analysis of protein–ligand interactions and
permit high-throughput identification of receptors for
the bacterial second messenger cyclic-di-guanosine
monophosphate (cdiGMP) (1). In this assay, mixtures of
protein and labeled ligand at equilibrium are spotted on
dry nitrocellulose. By capillary action, free ligand moves
radially outward from the initial spot while the proteins
and bound ligands are immobilized by hydrophobic inter-
actions with the nitrocellulose membrane. This allows dif-
ferentiation of bound and unbound ligand based on its
mobility. The advantage of DRaCALA over the tradition-
al filter-binding assay is that the total amount of ligand in
every sample is measured because there is no wash step.
The speed of DRaCALA allows kinetic measurements at
near-equilibrium conditions. The visual output of the
method allows rapid assessment of molecular interactions.
Quantitative measurements of protein–ligand interaction,
such as fraction bound, can be readily calculated from
measurements of four parameters: the total area, the
total intensity, the sequestered area and the sequestered
intensity (1). Previous studies have shown that
DRaCALA can accurately measure protein–ligand inter-
actions for purified proteins and whole-cell extracts ex-
pressing recombinant proteins. The simplicity of
DRaCALA gives it potential for general applicability.
Ligand mobility in DRaCALA is a necessity, but the pos-
sibility that ligands partition out of the mobile liquid
phase during capillary action, and are therefore not
mobile, has not yet been investigated.
Because mononucleotides and dinucleotides have been

shown to be mobile, it is reasonable to expect that double
stranded DNA would be mobile as well. This led us to
apply the method to DNA–protein interactions using the
well-characterized interaction between E. coli cyclic AMP
receptor protein (CRP) and its DNA binding site ICAP.
CRP is a transcription factor that has regulatory function
at approximately 200 sites on the E. coli genome (2–4).
CRP binds cAMP and cGMP (5), but DNA binding and
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transcriptional activation by CRP is solely dependent on
cAMP binding (6). A 28-bp symmetrical synthetic consen-
sus sequence, called ICAP, binds CRP with the greatest
affinity (7). Through filter-binding assays, the affinity of
the CRP–ICAP interactions and the contributions of
specific nucleotides (such as guanines at positions 8 and
10 and the cytosines at positions 19 and 21) have been
defined (8).
In this study, DRaCALA is shown to allow quantifica-

tion of CRP–ICAP interactions using 32P-end-labeled
oligonucleotides. Specificity of binding and competition
studies were performed to establish this proof of principle.
Furthermore, the method was used to obtain measure-
ments of both affinity and kinetics. Much larger DNA
probes derived from whole plasmids were tested in the
same way. DNA could function as a carrier molecule for
studying interactions between a protein and a molecule
covalently linked to DNA. This also allows easy indirect
32P-labelling of molecules that are more difficult to
label than DNA. Finally, immobilization of nucleic acids
with the biotin-streptavidin system is shown to allow
study of small molecule interactions with RNA (ribo-
switches). We show here the different ways DRaCALA
can be used to study molecular interactions with nucleic
acids including protein–nucleic acid and riboswitch-small
ligand interactions.

METHODS

Proteins, nucleic acids and chemicals

The Vc2* DNA template was ordered from Integrated
DNA Technologies (IDTs). Other DNA oligonucleotides,
NucAway size exclusion columns and Turbo DNase were
from Invitrogen. RNase was from Fermentas. RNase
inhibitor and enzymes for restriction digests, PCR and
other nucleic acid manipulations were from New
England Biolabs. Streptavidin MagneSphere Paramag-
netic Particles, Wizard miniprep and PCR Purification
kits for DNA purification were from Promega. Biotin
hydrazide and streptavidin were from Sigma Aldrich.
CRP was purified as described with the addition of

dithiothreitol (DTT) to the dialysis buffer (1). Briefly,
His-CRP (CRP) was expressed from pBAD-CRP (a gift
from Dr Sankar Adhya) and purified using a Ni-NTA
column. Proteins were dialyzed in 10mM Tris, pH 8.0
and 100mM NaCl and 1mM DTT. His-CRP was subse-
quently purified and concentrated using cation exchange
to a concentration of 36 mM, frozen in liquid nitrogen
and stored at �80�C until thawing for use. The fraction
of active CRP molecules in sequence-specific DNA
binding (0.61) was determined by the titration of DNA
fragment ICAP under stoichiometric binding conditions.
Specifically, serial dilutions of CRP were incubated
with a concentration of 32P ICAP dsDNA in excess of
the Kd (200 nM) for 10min at room temperature prior to
determination of binding by DRaCALA and electro-
phoretic mobility shift assay (EMSA). All data are
reported in terms of molar concentrations of active CRP
dimers.

Preparation and activity of DNA oligonucleotides and
plasmid probes

Reverse complementary oligonucleotides gd126-133 and
vl1427-1428 (Supplementary Table S1) were used to
generate probes by labeling 5 pmol of the forward
primer with T4 Polynucleotide Kinase (PNK) and
15 pmol/5mCi of g-32P-labeled ATP. Five pmol of the
reverse complementary primer were added and the PNK
was heat inactivated during primer annealing in 80�C
water bath for 10min, which was then allowed to cool
to room temperature >1 h. The annealed product was
separated from free 32P-ATP using a NucAway column
and diluted 1 : 10 for binding and competitions studies
and 1 : 1000 for affinity and kinetics studies. Plasmids
with binding sites were generated by cloning annealed,
PNK-treated primers pairs (kr122-129 of Supplementary
Table S1) into StuI-cut pVL-Blunt and sequencing for
verification (Supplementary Table S2). Plasmids were
50-end-labeled by sequential digestion with the single
cutter BamHI, dephosphorylation of the 50 overhang
with Calf intestinal alkaline phosphatase, separation
from enzymes by a Wizard PCR Purification column,
and treatment with PNK in the presence of g-32P-labeled
ATP. The labeled product was purified by the Wizard
column and a NucAway column and diluted 1 : 10 for
affinity and kinetic study. The near 50-end of these
labeled plasmids is �40 bp from the cloned binding sites.
Competitors for plasmid binding were PCR amplified
from these plasmids using primers vl880–vl881, which
amplify the cloned binding sites and 250-bp flanking on
each side (Supplementary Table S1). The concentration of
the ICAP probes was determined by NanoDrop 1000. The
fraction of ICAP that is active for binding is determined
by measuring the maximum fraction of 32P-labeled ICAP
in excess of Kd (200 nM) that could be specifically bound
by excess CRP by both EMSA and DRaCALA. The
fraction was multiplied by concentration of ICAP to
yield the concentration of ICAP that is active.

DRaCALA

Protein, 32P-labeled DNA and 200 mM cAMP (unless
otherwise noted) were mixed in CRP buffer (10mM
Tris, pH 7.9, 200mM NaCl, 0.1mM DTT and 50 mg/ml
bovine serum albumin) (7) and incubated at room tem-
perature for 10min. Five microliters of the mix was
spotted on nitrocellulose by first pipetting the liquid out
onto the tip of the pipette and then touching the drop to
the membrane. Spots were allowed to dry completely
(�20min) before exposing a phosphorimager screen and
capturing with a Fujifilm FLA-7000. Photostimulated lu-
minescence (PSL) from the inner spot and total PSL of the
spot were quantitated with Fuji Image Gauge software.
The fraction bound (FB) (1) was calculated using measure-
ments of the total area (Aouter), the area of the inner circle
(Ainner), the total PSL intensity (Itotal) and the inner inten-
sity (Iinner) as follows:

FB ¼
Iinner � Ainner �

Itotal�Iinner
Atotal�Ainner

� �

Itotal
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EMSA for CRP binding to ICAP oligonucleotide

A fraction of the same mix described for the DRaCALA
assay is supplemented with 10% glycerol and 0.001%
bromophenol blue and 5 ml was loaded onto an 8%
70 : 1 0.5�TBE (90mM Tris, pH 8.0, 90mM H3BO3,
2.5mM Na2 ethylenediaminetetraacetic acid (EDTA))
polyacrylamide gel (9). EMSA was preformed with 0.5�
TBE buffer at 4�C. Gels were exposed to a
phosphorimager screen and the image was captured with
a Fujifilm FLA-7000. The fraction bound was calculated
as the intensity of the bound ICAP probe as a fraction of
the total intensity of the bound and free ICAP probe.

Non-radioactive ligands and detection

Fluorescent dyes were imaged with a GE Typhoon Trio.
TNP was detected with electrochemiluminescence excita-
tion at 555 nm emission. Fluorescein isothiocyanate was
detected with 488 nM excitation and 526 nM emission.
Ethidium bromide was imaged under a UV light source.
Tetramethylrhodamine isothiocyanate, propidium iodide,
crystal violet and coomassie brilliant blue were imaged in
visible light.

Bioconjugate PCR

Biotinylated probes were generated by PCR using 50-
biotinylated primer vl881 for amplification of a �600-bp
region of plasmids pGD9 and pGD13 (Supplementary
Table S2). PCR products were extracted from an agarose
gel and purified with a Wizard column. These were then
g-32P-labeled as described for the whole plasmids.

Preparation and purification of Vc2* RNA

The Vc2* template sequence (10) including T7 promoter
sequence and complimentary T7 promoter sequence
50-CTA ATA CGA CTC ACT ATA G-30 were purchased
from IDTs. Transcription was performed using 1.5 mg of
template, 10 ml of 4mg/ml T7 polymerase per 200 ml of
transcription volume, 15mM total NTP (A/C/G/UTPs),
15mM MgCl2 in a transcription buffer of 40mM Tris–
HCl (pH 8.1), 1mM spermidine, 5mM DTT, 0.01%
Trixon X-100, 2U of RNase inhibitor, 2U of inorganic
pyrophosphatase. After 3 h, 0.4U of Turbo DNase were
added and incubated for another 15min. The crude RNA
was purified using a 12% denaturing PAGE with 1� TBE
buffer. The product band was detected via UV shadowing
the gel, excised and electroeluted in a Schleicher and
Schuell Elutrap eletro-separation system. The purified
RNA was precipitated with three volumes of absolute
ethanol and 10% volumes of 0.3M sodium acetate. The
RNA pellet was then resuspended in water and dialyzed in
a Nestroup Biodialyzer with a 500 MWCO membrane for
24 h against 100mM potassium phosphate buffer (pH
6.4), 0.5M KCl, 10mM EDTA and then 1 and 0.1mM
EDTA, and finally against two changes of double-distilled
H2O water before it was lyophilized.

Biotin labeling of RNA with biotin hydrazide at 30-end

Seven microliters of freshly prepared 0.5M NaIO4 was
added to Vc2* RNA (210 mg) in 100 ml of water and the

solution incubated at room temperature for 1 h. The
excess NaIO4 was removed by filtration, using an
Amicon ultra 0.5ml centrifugal filter with 10K cutoff
membrane. The RNA was washed with 3� 0.5ml of
water and then recovered by reverse spin. After that, 5ml
of 1M sodium acetate, pH 4.95 and 7ml of 35mM biotin
hydrazide in dimethyl sulfoxide were added to the RNA.
Coupling was carried out at 37�C for 1.5 h, then 3 ml of
1M NaCNBH3 in acetonitrile was added and the reduc-
tion was carried out at room temperature for 1 h. The
unused biotin hydrazide and NaCNBH3 were removed
by centrifugal filter as above.

Testing the biotinylation efficiency with magnetic
streptavidin beads

Four hundred microliters of streptavidin MagneSphere
Paramagnetic Particle solution [Promega; Binding
capacity: >0.75 nmol of biotinylated oligonucleotide
(dT) bind per ml of particles] was taken and washed
three times with 500mL saline–sodium citrate (SSC)
buffer (0.5 times). The washing step was facilitated by
applying a magnet to the side of the tube and the super-
natant discarded during each wash. SSC buffer with 100 ml
of dissolved biotinylated RNA (2mM) was added to
streptavidin-coated magnetic particles and the tube was
gently tapped to suspend the beads. The suspended
beads were incubated at room temperature for 30min,
with occasional agitation by hand. A magnet was
applied to the side of the tube and the supernatant was
collected. The beads were washed with 100 ml SSC buffer
(0.5�) two more times and the supernatant was collected
and combined and UV260nm measurement was made
(OD260=0.123; 300 ml of supernatant wash). Because
the supernatant was diluted three times, the OD of the
original supernatant must be 0.531. This OD value was
compared to the OD of the biotinylated RNA before in-
cubation with streptavidin-coated beads. The yield of the
biotinylated RNA was calculated to be 76.8%.
To confirm that the biotinylated RNA was bound to the

streptavidin magnetic beads, 0.5 ml of RNAse A/T1 Mix
was added to the washed beads in 100 ml of SSC buffer
(0.5�). The beads were incubated at 37�C for 30min
before the supernatant was collected by applying a
magnet. The OD260 for the eluted nucleotides was 0.560.
The slight increase in absorbance at 260 nm (compare OD
of 0.531 for the RNA with an OD of 0.56 for the nucleo-
tides generated from the RNA hydrolysis) is expected as
free nucleotides have higher absorption than that in a
polynucleotide (hypochromic effect).

EMSA for RNA binding to cdiGMP

Gel shift assays were performed using 8% acrylamide gels
with 100mM Tris/HEPES, pH 7.5, 10mM MgCl2 and
0.1mM EDTA in the gel and running buffer. Gels were
run at 4�C at 100V for 2 h. Gels were imaged with a
phosphorimager and fraction bound quantified with Fuji
Image Guage software. The 32P cdiGMP probe was
synthesized from a-32P-GTP by incubating overnight
with purified diguanylate cyclase WspR (PA3702 from
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Pseudomonas aeruginosa) in 10mM Tris, pH 8, 100mM
NaCl and 5mM MgCl2 at 37

�C.

RESULTS

DNA oligonucleotides are mobile in DRaCALA and
sequestered by protein binding

Because radiolabeled mononucleotides and dinucleotides
are mobile on nitrocellulose by capillary action (1), we
reasoned this would be a property of double-stranded
DNA as well. If confirmed, this would allow study of
DNA using the DRaCALA technique. Double-stranded
mobility on nitrocellulose was tested using 50-end-labeled
duplex DNA formed by annealing a pair of 40-bp oligo-
nucleotides that generate the CRP consensus binding site,
ICAP (gd126 and gd127 in Supplementary Table S1).
When the 32P-labeled DNA was spotted on dry nitrocel-
lulose, the 32P radiolabel was mobilized by radial capillary
action resulting in a homogenous signal across the total
sample area (Figure 1A) similar to results previously
obtained for cAMP and ATP (1). Addition of 100 nM
CRP and 200 mM cAMP to the ICAP probe is known to
promote DNA–protein complexes (8). Spotting of the
CRP–ICAP mixture at equilibrium resulted in sequestra-
tion of the soluble probe by the immobilized protein.
Maltose binding protein (MBP), which does not bind
DNA, did not sequester the probe, resulting in a
uniform distribution of the radiolabel as in the control
without any protein. This shows that specific molecular
interaction is required for probe sequestration.
Quantification of the fraction bound revealed that probe
alone and probe mixed with non-specific protein have no

fraction bound (Figure 1B). These results demonstrate the
ability of DRaCALA to detect interactions between
proteins and double-stranded DNA.

Oligonucleotide–protein interactions are specific
in DRaCALA

CRP interaction with ICAP requires sequence-specific
inverted repeats (8). To test if DRaCALA can detect
changes in DNA–protein interaction with single base
pair changes, point mutants were generated in the ICAP
site at positions that are known to abolish binding (8).
Specifically, the guanosines at position 8 and position 10
were changed to cytosines. Because the site is symmetrical,
the corresponding cytosines at positions 19 and 21 were
changed to guanosines (Figure 2A). These various probes
were tested, at 4 nM, for binding to CRP by DRaCALA.
The wild-type ICAP was sequestered by 100 nM CRP as
before. The 8:GC mutant (G to C at position 8 and C to G
at position 21) showed a very low level of binding to CRP
while the 10:GC mutant (G to C at 10 and C to G at 19)
and the 8, 10:GC double mutant exhibited no binding
(Figure 2B). To confirm specificity, the binding between
wild-type ICAP and 100 nM CRP was subjected to com-
petition by wild-type and mutant-unlabeled DNA at 10,
100, or 1000 times the concentration of the labeled DNA.
The wild-type competitor partially competed at 10-fold
excess and competed more significantly with increased
amount of competitor (Figure 2C). The 8:GC competitor
showed no competition at 10- or 100-fold excess but did
display some minor competition at 1000-fold. The 10:GC
and 8, 10:GC failed to compete regardless of their concen-
tration. These results collectively show that DRaCALA
measures sequence-specific DNA binding.

DNA-binding affinity and kinetics can be measured
by DRaCALA

In order to accurately describe the activity of a transcrip-
tion factor or other protein on a DNA binding site, it is
desirable to determine the affinity and kinetics of the
DNA–protein interaction. Because radionuclides can be
detected with high sensitivity, DRaCALA can be used to
make such measurements for high-affinity interactions.
Serial 2-fold dilutions of CRP were mixed with limiting
32P-labeled ICAP probe (5 pM) to find the affinity of CRP
for ICAP. CRP bound ICAP with maximum affinity when
it was saturated with 200 mM cAMP. Analysis of these
results indicated a dissociation constant (Kd) of
3.6±0.4� 10�11 M (SE) (Figure 3A). This is consistent
with previously reported values for ICAP (5) (Table 1). In
the absence of cAMP, the affinity of CRP for ICAP was at
least 10 000-fold lower (Kd> 1.0� 10�6 M) (Figure 3C).
To confirm our DRaCALA results, we applied the same
sample to an EMSA to determine the fraction bound
(Figure 3B). The autoradiogram of the EMSA shows
that the mobility of the free annealed oligonucleotide is
retarded in the presence of CRP while the free the
single-stranded oligonucleotide is not (Figure 3 and
Supplementary Figure S1). The results from the EMSA
assay yielded a similar dissociation constant Kd of
8.1±0.8� 10�11 M (Figure 3C).
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Figure 1. Detection of protein–DNA interaction by DRaCALA.
(A) Phosphorimager visualization of DRaCALA spots of indicated
proteins at 100 nM mixed with 4 nM 32P-labeled ICAP fragments and
200mM cAMP show distributions of the radioligand, which are diffused
and homogenous (no protein, MBP) or sequestered (CRP). (B) The
fraction bound was quantified using the formula in the ‘Methods’
section and error bars indicate the SD for three spots.
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We also used the CRP–ICAP binding interaction to test
whether DRaCALA can be used to easily monitor the
dissociation kinetics for protein–DNA complexes. A
limiting amount of 32P-labeled ICAP (5 pM) was mixed
with a protein concentration just above the Kd (5 nM).
Then, unlabeled competitor ICAP was added in
1000-fold excess of radiolabeled ligand and spots were
made over time, and these spots were analyzed to
monitor the fraction of ICAP bound as a function of
time. Our analysis indicated a dissociation rate (koff) of
2.6±0.40� 10�3 s�1 (SD) for the CRP–cAMP complex,
corresponding to a half-life of 4.42min (Figure 3D). Using
the DRaCALA-observed off-rate and affinity, the
calculated on-rate is kon=7.2� 107M�1 s�1. These
results show that DRaCALA is a rapid method for
determining affinity and kinetics of protein–DNA
interactions.

Protein binding of whole-plasmid ligands is detected
specifically by DRaCALA

The mobility of both nucleotides and double-stranded
oligonucleotides on nitrocellulose suggests that molecular
weight is not a critical limiting factor for what types
of molecules can be used as the mobile, detectable

ligand. The size limit of DNA ligands in DRaCALA
was tested by cloning the same ICAP binding site and mu-
tant sites onto a 3.5 kb pVL-Blunt plasmid, and using the
entire linearized vector as a ligand. Each of the linearized
plasmids was labeled with 32P and shown to be mobile in
DRaCALA (plasmids listed in Supplementary Table S2).
Plasmids (50 pM) with ICAP sites bound 100 nM CRP. In
contrast, plasmids with 8:GC bound weakly and 10:GC or
8, 10:GC sites did not bind at all (Figure 4A).
Binding of a single ICAP insert on a plasmid probe

(50 pM) to 100 nM CRP was next subjected to competi-
tion. Competitors in this case were made by PCR ampli-
fication of a 600-bp region of the plasmids containing
wild-type and mutant ICAP sites. The wild-type PCR
competitor partially inhibited radiolabeled plasmid bind-
ing to CRP at 10-fold excess of the radiolabeled lig-
and and fully competed at 1000-fold excess (Figure 4B).
PCR products containing 8:GC, 10:GC, or 8, 10:GC did
not compete away binding even at 1000-fold excess con-
centration. Detected binding of CRP to whole-plasmid
probes is therefore also site-specific in DRaCALA.
These results show that the critical parameter for detection
of protein–DNA interaction by DRaCALA is the mobility
of the ligand on the solid support and not the molecular
weight of the ligand.
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Figure 2. CRP binding to specific DNA sequences detected by DRaCALA. (A) The sequence of the 28-bp ICAP site. The positions perturbed in this
study are marked in red. Names of mutant versions are listed next to the point mutations that define them. Equivalent nomenclature for mutants
from Gunasekera et al. (8) is indicated in parentheses. (B) DRaCALA spots for direct binding of 100 nM CRP to 4 nM of ICAP, 8:G-C, 10:G-C and
8, 10:G-C probes with 200mM cAMP are shown above the graphed quantification of fraction bound. (C) Binding of the ICAP probe to CRP was
subjected to competition by unlabeled probes at 10, 100 or 1000 times the concentration of the radioligand. All error bars represent SD of three
spots. DRaCALA spots shown above their respective conditions are separate images consolidated to fit the graph.
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Affinity and kinetics determined for whole plasmid ligand

Whole plasmids can also be used in affinity and kinetic
studies. With 200 mM cAMP, the observed Kd of CRP and
a plasmid with a single ICAP site was 4.1±0.3� 10�11 M

(SD) (Figure 5A). Without cAMP the Kd was >1.0� 10�6

M. These values are similar to those obtained for the
labeled oligonucleotides and those from previous studies
(Table 1). The off-rate for the plasmid was observed at
koff=4.8±0.17� 10�4 s�1, corresponding to a half-life
of 23.9min (Figure 5B). The calculated on-rate for the
plasmid was kon=1.2� 107M�1 s�1, which is 6-fold
lower than that of the annealed oligonucleotides, likely
due to the large excess of non-specific DNA in the
plasmid probe. Affinity and kinetics can thus also be
measured for sites contained on a plasmid.

Use of DNA as a carrier/label molecule

Because such large pieces of DNA can be used in
DRaCALA without altering specificity, we hypothesized
that DNA could be used as a label and carrier for mol-
ecules that are not ordinarily mobile in DRaCALA and/or
not easily labeled. Because ligand mobility and ligand de-
tection are the only requirements for the mobile binding
partner, DNA-conjugation could potentially make any
molecule adaptable for use as a DRaCALA probe. A
DNA component to the probe allows for easy labeling
with 32P. Many small, soluble molecules are not mobile
in DRaCALA suggesting that fluorescently labeled low
molecular weight ligands are not suitable for DRaCALA
technique (Supplementary Figure S2). However, add-
ition of DNA to immobile ethidium bromide
conferred mobility to the interacting dye (Supplementary
Figure S2) implying that conjugation to DNA can
overcome the immobility of some dye molecules. DNA
can also be covalently linked to molecules through
bioconjugate PCR with modified primers. This technique
was tested using the biotin–streptavidin system. PCR
products including the binding sites of the 3� ICAP
plasmid and 3� 8, 10:GC plasmid were generated with a
50-biotinylated primer and labeled with 32P on the free
50-end. These bioconjugate probes were tested with
DRaCALA for binding to CRP, streptavidin and MBP.
The wild-type probe without biotin-bound CRP but not
streptavidin or MBP (Figure 6A). The biotinylated
wild-type probe bound both CRP and streptavidin but
not MBP. The 8, 10:GC probe without biotin bound
none of the proteins, whereas the biotinylated version
bound only streptavidin.

The affinity of the biotinylated ICAP probe was
determined using DRaCALA by diluting streptavidin
(Figure 6B). The affinity was limited by the concentration
of the probe that could not be diluted below tens of pM
without loss of signal. The limit of DRaCALA detecting
binding seems to be therefore the limit of detection of the
probe. The IC50 of free biotin was determined by
competing against the probe with different concentrations
of free biotin (Figure 6C). Here the IC50 of 33 nM is ap-
proximately enough to occupy the four sites of the 10 nM
streptavidin. The observed affinity is lower than the
previous published values for free biotin probably
because the biotin molecule was conjugated to DNA
(10). We were also able to measure the off-rate of the
conjugated biotin by observing the exchange with excess
free biotin (Supplementary Figure S3). The exchange
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Figure 3. DRaCALA allows determination of affinity and kinetics of
protein–DNA interaction. The affinity of CRP to the ICAP binding site
reconstituted from annealed oligonucleotides (vl1427 and vl1428) was
determined by the ability of serially diluted CRP to sequester 4 pM
32P-labeled ICAP probe in the presence of 200 mM cAMP by (A)
DRaCALA and (B) EMSA. (C) The fraction bound is plotted
against each concentration of CRP as detected by EMSA in the
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Plot represents a single replicate for EMSA and three replicates for
DRaCALA. All Kd values are reported in Table 1. (D) The observed
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e48 Nucleic Acids Research, 2012, Vol. 40, No. 7 PAGE 6 OF 11

http://nar.oxfordjournals.org/cgi/content/full/gkr1299/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr1299/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr1299/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr1299/DC1


occurred in two steps, with an initial rapid off-rate and
then a second slower rate corresponding to a half-life of
112 h and exchange-rate of koff=1.7� 10�6 s�1. The
two-step rate has been previously reported in a study of

avidin and unconjugated biotin and is likely due to the
tetramer protein having different affinites for biotin de-
pending on the number of occupied sites (10). These
results demonstrate that PCR conjugation can be used
to link a molecule/ligand of interest to DNA, which
allows facile 32P-labeling and can confer mobility (in
DRaCALA), allowing rapid determination of affinity
and kinetics of the protein–ligand interaction.

Riboswitch-binding cdiGMP

We have shown that protein interaction with DNA can be
detected by DRaCALA. We wondered if the principle of
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Figure 5. Affinity and kinetics of DNA-binding determined using 5 pM
whole-plasmid probe with a single ICAP site. (A) Graphs of fraction of
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Table 1. Observed affinity of CRP to various ICAP probes from this and previous studies with indicated amounts of cAMP

Source Method Probe [cAMP] (M) Kd (M) (± SEM)

(8) Filter binding ICAP oligo 32P 2� 10�4 1.4±0.3� 10�11a

(8) Filter binding ICAP oligo 32P 0 >1.0� 10�7a

This study DRaCALA ICAP oligo 32P 2� 10�4 3.6±0.4� 10�11

This study DRaCALA ICAP oligo 32P 0 > 1.0� 10�6

This study DRaCALA ICAP* plasmid 32P 2� 10�4 4.1±1.0� 10�11

This study DRaCALA ICAP* plasmid 32P 0 >1.0� 10�6

This study EMSA ICAP oligo 32P 2� 10�4 8.1±0.8� 10�11

All reported Kd values from this study were determined by DRaCALA and the standard error of three trials is reported.
aThe affinity reported in the Gunasekera et al. paper is the binding constant or association constant Ka. We have taken the inverse of those values to
give the Kd reported in Table 1 to match our Kd measurements.
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DRaCALA would also apply to ribonucleic acids. In par-
ticular, can the DRaCALA technology be used to detect
the interaction of riboswitches with their small molecule
ligands? One example of such an interaction that has been
of recent interest is the cdiGMP responsive Vc2 riboswitch
identified in bacteria (11). To study such an interaction
with DRaCALA, one of the binding partners must be
immobilized. We achieved this through biotinylation of
Vc2* riboswitch RNA (with a modified tetraloop and
shortened 50- and 30-ends compared to the original Vc2)
at the 30-end by periodate cleavage of the terminal ribose
and reductive amination to conjugate the biotin moiety.
The biotinylated riboswitch was sequestered by
streptavidin, allowing the nucleic acid to take the place
of protein as the immobile partner in the binding
assay. Vc2* was tested directly for sequestration of
cdiGMP and also biotinylated and tested for binding to
cdiGMP in the presence or absence of streptavidin.
The 4 nM radiolabeled cdiGMP was mobile alone and in
the presence of the Vc2* or biotinylated Vc2* RNA
(Figure 7A, lanes 1–3). This suggests that RNA, like
DNA, is mobile in this system, and therefore could be
used as a labeled probe as well. Streptavidin did not se-
quester radiolabeled cdiGMP alone or with Vc2* RNA, so
there is no detectable interaction between streptavidin and
Vc2* RNA (lanes 4–5). Biotinylated Vc2* RNA and
bound cdiGMP were immobilized by streptavidin as
expected (lane 6). The affinity of Vc2* for cdiGMP was
tested using both DRaCALA and an EMSA (or gel shift).
These measurements were made in a Vc2 binding buffer
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(10mM sodium cacodylate, 10mM MgCl2, 10mM KCl)
by heating the binding reaction to 70�C for 3min, slowly
cooling to room temperature, and then incubating at room
temperature for 48 h (12). Remarkably similar results were
obtained using DRaCALA and gel shift (Figure 7B). The
affinity of the Vc2* RNA for cdiGMP was observed to be
Kd=7.8±1.9� 10�9 M with DRaCALA and Kd=
9.8±1.6� 10�9 M with EMSA. These results show that
DRaCALA works as well as EMSA for studying the mo-
lecular interactions of riboswitches. This strategy can be
adapted to study interactions between the biotinylated
nucleic acids and a mobile ligand (another nucleic acid
or nucleotide).

DISCUSSION

Nucleic acid interactions with proteins and low molecular
weight ligands are fundamental for biological function.
This has inspired the development of a number of assays
to measure these interactions. We will compare and
contrast the merits of DRaCALA with these various
assay systems using CRP–cAMP as the classic example
of a signal-responsive transcription factor and a model
system for protein interaction with both a large nucleic
acid and a mononucleotide. Study of the CRP system
led to the establishment of some fundamental concepts
related to transcription, such as regulation by second mes-
sengers (13), multiple promoter control of a single operon
(14–16) and promoter control of RNA polymerase
binding (17). Because of this foundational work, CRP
and the lac repressor have been traditionally used to dem-
onstrate proof of principal for various methods to detect
DNA–protein interactions.

Nucleic acid–protein DRaCALA utilizes the differential
mobility of nucleic acids through nitrocellulose to separate
DNA that is bound to a protein from that which is
unbound. The interactions measured in this way were
specific to the nucleic acid sequences because point muta-
tions at previously identified critical nucleic acids abol-
ished specific binding of CRP to ICAP in both annealed
oligonucleotides and plasmids (18). The affinity of
the interaction was measured by diluting protein
with limiting amounts of probe. Remarkably, the Kd

measured for the annealed oligonucleotide and plasmid
closely matched what was reported in a previous study
that used a filter-binding assay (8) as well as a study
that used gel shift (19) (Table 1). The off-rate determined
with DRaCALA was slower for the plasmid than for the
oligonucleotide probe, which is consistent with the finding
that non-specific DNA concentration can affect the
kinetics of specific DNA binding with protein (20). The
off-rate for the plasmid (koff=4.84±0.17� 10�4 s�1) was
similar to that reported in a gel shift study (koff=
1.2� 10�4 s�1) (20). This corresponds to an observed
half lives of 23.9min for DRaCALA and about an hour
for gel shift. This difference may be explained by the
amount of unlabeled competitor used to chase off the
probe, which was at 25 times molar excess for the gel
shift and 1000 times for DRaCALA. For DRaCALA
with plasmid probes, another advantage is that high

concentrations of competitor can easily be obtained by
PCR amplification. The on-rate cannot be measured
using DRaCALA, but it can be approximated with a cal-
culation based on the affinity and off-rate. Using
DRaCALA with plasmid probes allows for easy testing
of direct binding and specific competition of any potential
DNA-binding site simply by cloning into a plasmid that
can be labeled for detection. Studying kinetics in this
system is more analogous to DNA-binding activity in a
cell because there is a great excess of DNA to which the
protein can bind non-specifically.
Comparing DRaCALA to the traditional separation-

based methods reveals the advantages of the new tech-
nique. The filter-binding assay was the first popular
method that depended on separation of bound and
unbound ligands based on differential mobility through
a support (21). This technique was used for the first
study of the interaction of CRP with DNA (18). One
key difference between DRaCALA and filter-binding
assays is that for DRaCALA, both the bound ligand
and the total amount of ligand are always measured.
In contrast, the traditional filter-binding assay typically
only measures the bound ligand. Thus, results of
filter-binding assays are typically normalized to 1.0
fraction bound for the highest concentration of protein
or ligand. In contrast, results for DRaCALA for the
highest concentration of protein is often <1.0. There are
three potential reasons for the fraction bound detected by
DRaCALA to be less than the theoretical 1.0. First, the
off-rate of the protein–ligand interaction dictate that,
during the assay time, a population of the bound ligand
is dissociated, mobilized and can not rebind the protein.
Second, for all 50-end-labeled nucleotide, a small fraction
of labeled free phosphate can be hydrolyzed and appear as
free ligand. Third, oligonucleotide probes can fold into
non-native conformations. For example, the inverted
repeat of the ICAP oligo can lead to the folding into
hairpins that cannot be bound by CRP. Because
DRaCALA measures both free and bound ligand, the
determined fraction bound is far more accurate despite
the detection of fraction bound of <1.0. We do not
think this is a concern as the Kd and koff that we
measured for CRP–ICAP interactions are similar to pre-
viously reported results. A similarity of DRaCALA and
filter-binding assays is the interaction of proteins with
nitrocellulose may alter the behavior of proteins. For
DRaCALA, this effect is likely protein specific since
soluble and insoluble forms of Alg44 and PelD behave
similarly when assayed for binding to cdiGMP by
DRaCALA (1).
The EMSA (or gel shift), which detects interactions

because they cause retardation in DNA mobility
through a gel, was first introduced as an alternative to
the filter-binding assay using the lac repressor as an
example (22,23). Later it was used to study CRP in
greater detail (19,20). The major strengths of the gel
shift are that both bound and unbound ligands are
measured and supershifts provide information about
binding structure. A potential issue is the length of time
required to run the gel, during which time the protein and
DNA can dissociate, which is a particular concern for
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lower affinity interactions (9). DRaCALA does not have a
wash step and it measures total signal in every sample with
a visual readout, making it preferable to the filter-binding
assay. EMSA also measures total signal with a visual
readout, but requires a much greater assay time than
DRaCALA. Although DRaCALA is more rapid, EMSA
still retains an advantage in the detection of supershifts
that result from an antibody binding to a DNA-bound
protein or multiple proteins binding to DNA. The
ability of DRaCALA to detect interactions on plasmid
DNA is a significant improvement over EMSA, which is
most sensitive with probes <300-bp long (24).
More modern techniques include chromatin immuno-

precipitation on a microarray chip (ChIP-chip) and
sequencing of chromatin immunoprecipitated DNA
(ChIP-Seq). These assays allow for a high-throughput
approach to identify binding sites on the chromosome
but provide no measure of affinity and cannot rule out
indirect interactions (25,26). Because the readout of
ChIP-chip is precipitation or a lack thereof, studies of
transcription factors such as CRP often have false nega-
tives and include a lot of background noise attributable to
low-affinity binding sites (27). The most accurate analyt-
ical assays include isothermal titration calorimetry (ITC)
and surface plasmon resonance (SPR). ITC uses a con-
trolled chamber to assess heat changes as DNA binds
protein, allowing for thermodynamic and kinetic measure-
ments (28). SPR detects molecular weight changes on a
metal surface in real time and can determine affinity and
kinetics with remarkable sensitivity (29). The proof of
principle for SPR studies of DNA–protein interaction
was first demonstrated using the lac repressor (30). ITC
and SPR have the advantage over DRaCALA in that
neither technique requires labeling of the ligand of
interest. However, the common drawbacks of ChIP-chip,
ITC and SPR are the relatively high associated costs and
need for specialized equipment. DRaCALA uses small
amounts of inexpensive materials and requires no special
equipment, making biochemistry accessible to molecular
biologists. DRaCALA is precise, with standard deviations
(SDs) of measurements that are typically <5% of the
mean. The value of DRaCALA lies in the simplicity of
the technique. The only special tool required is a detector
of the label on the probe. Only a small amount of sample
and nitrocellulose are needed, making it inexpensive
and easy to scale up. Capillary action of small volumes
is fast, so separation of bound and unbound ligand takes
only seconds. Together, these traits make DRaCALA
especially cost- and time efficient in comparison to estab-
lished methods.
The simplicity of DRaCALA allows adaptation of the

technique to study other molecular interactions. PCR con-
jugation of DNA to a variety of molecules can be achieved
using commercially available modified primers that can
have 50 reactive groups such as aldehydes, amines and
thiols. This can serve the dual function of keeping the
molecule mobile through nitrocellulose and providing a
mechanism to label the probe in different ways.
Radiolabelling small molecules directly is often impracti-
cal due to costs associated with chemical synthesis with
radiolabeled chemicals, so DNA conjugation could be

a good alternative. The free 50-end of the DNA can be
32P-labeled as in this study or occupied with a fluorescent
dye from a second modified primer in the original PCR
reaction. While fluorescence may be desirable for its ease
of use, it cannot match the sensitivity of 32P. Bioconjugate
PCR was used in this study with the simple streptavidin–
biotin system. Biotinylated PCR products were mobile,
detectable and showed specific interactions with CRP
and streptavidin. This also allows selective immobilization
of biotinylated nucleic acids so that they can take the role
of the immobile binding partner in DRaCALA.

As shown in this study, immobilization of RNA allowed
detection of RNA interaction with a small ligand. This
area has been of great interest since the discovery of
riboswitches, cis-acting RNA sequences on mRNAs that
directly interact with small molecules and consequently
self-regulate their transcriptional termination and/or
translation (31,32). Such RNAs have been found to bind
a variety of small molecules, including amino acid deriva-
tives, coenzyme B12 and the bacterial second messenger
cdiGMP (10,33,34). Studies of riboswitches have primar-
ily used in-line probing and equilibrium dialysis to analyze
direct RNA binding to its target molecule. These methods
require long incubations that limit their accuracy in
determining biochemical parameters. Others have used
gel shift assays to measure the affinity and kinetics for
riboswitches (12). By comparing DRaCALA to gel shift
assays using a Vc2* RNA to establish a proof of principle,
we have demonstrated that DRaCALA is a powerful al-
ternative to these methods, which is much faster with at
least equal accuracy and precision (Figure 7). In this
study, RNA was immobilized using biotinylation, but
RNA could also be immobilized by other means such as
with a known binding protein or an additional sequence
on the RNA that specifically binds a protein. Another
alternative strategy is to use a biotinylated DNA oligo-
nucleotide that can hybridize with the RNA molecule
(30-end of riboswitch) to provide a method for immobil-
ization. The same technique could also be used to study
RNA–RNA interactions in the context of regulatory
RNAs, which are ubiquitous in prokaryotes and eukary-
otes and have therapeutic potential (35,36). As more
research is done involving RNA interactions with a
variety of other molecules, it is critical to have a rapid,
quantitative and cost-effective method for directly testing
these interactions.

DRaCALA requires one immobile binding partner and
a ligand that is detectable and mobile by capillary action.
This study provides a foundation for universal applicabil-
ity of DRaCALA for studying any molecular interaction.
There is evidence that DNA could serve as a label and
carrier for any molecule that can be conjugated to it.
Because bioconjugate PCR allows specific immobilization
of biotinylated nucleic acids, the assay can be used with
nucleic acids as the immobile and/or the mobile piece in
binding studies. These manipulations of the mobility of
molecules provide a window to the many potential
uses of this assay. Additionally, the ease of running
DRaCALA (little volume needed, no wash step, inexpen-
sive materials and visual readout) makes it possibly
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amenable to usage as a portable rapid diagnostic tool in a
‘lab-on-paper’ design (37).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1 and 2, Supplementary Figures
1–3.
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