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Abstract

Diploid organisms undergo meiosis to produce haploid germ
cells. Crossover events during meiosis promote genetic diver-
sity and facilitate accurate chromosome segregation. The
baker’s yeast Saccharomyces cerevisiae is extensively used as
a model for analysis of meiotic recombination. Conventional
methods for measuring recombination events in S. cerevisiae
have been limited by the number and density of genetic
markers. Next generation sequencing (NGS)-based analysis of
hybrid yeast genomes bearing thousands of heterozygous sin-
gle nucleotide polymorphism (SNP) markers has revolution-
ized analysis of meiotic recombination. By facilitating analysis
of marker segregation in the whole genome with unprece-
dented resolution, this method has resulted in the generation
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of high-resolution recombination maps in wild-type and mei-
otic mutants. These studies have provided novel insights into
the mechanism of meiotic recombination. In this review, we
discuss the methodology, challenges, insights and future pros-
pects of using NGS-based methods for whole genome analy-
sis of meiotic recombination. The objective is to facilitate the
use of these high through-put sequencing methods for the
analysis of meiotic recombination given their power to provide
significant new insights into the process. © 2018 The Authors.
IUBMB Life published by Wiley Periodicals, Inc. on behalf of
International Union of Biochemistry and Molecular Biology, 70(8):
743-752,2018

INTRODUCTION

All sexually reproducing organisms undergo two rounds of
division (Meiosis I and Meiosis II) to produce haploid gametes
from diploid progenitor cells. Homologous recombination
events during Meiosis I, such as crossovers, non-crossovers
and gene conversions generate genetic diversity. In addition,
crossovers facilitate disjunction of homologous chromosomes
during Meiosis I by promoting physical linkages between the
homolog pairs that oppose the spindle generated forces pulling
the homologs apart. The opposing forces provide the tension
necessary for the correct alignment and disjunction of the
homologous chromosomes (1). The number and spatial distri-
bution of crossovers are tightly regulated to ensure at least
one crossover per homolog pair. Segregation errors in meiosis
results in aneuploidy, which is a major cause of genetic birth
defects in humans (2).

The baker’s yeast Saccharomyces cerevisiae, has been
used extensively as a model organism to study meiosis. S.
cerevisiae can undergo meiotic divisions rapidly (~12 h for
SK1 strain). Further, the small genome size of S. cerevisiae
(12 Mb) and the ease of genetic modification facilitate a wide
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array of experimental analysis. In S. cerevisiae, crossovers
are initiated by the formation of 140-170 double strand
breaks (DSBs) by a conserved type II topoisomerase Spoll
along with accessory factors (3,4). Meiotic DSB repair, pref-
erentially using the homolog as a template results in either a
crossover or non-crossover outcome (Fig. 1). During DSB
repair, the invading strand may get displaced from the
homolog and ligate with the opposite end of the break lead-
ing to the formation of non-crossovers by synthesis depen-
dent strand annealing (SDSA) pathway (5). If the strand inva-
sion is stabilized by the ZMM proteins (Zipl, Zip2, Zip3,
Zip4, Mer3, Msh4, Msh5 and Spo16), it may be extended fur-
ther by repair synthesis using the homolog and capture the
second end of the DSB and form double Holliday junction (6).
Biased resolution of these double Holliday junctions facili-
tated by the ZMM, STR (Sgs1, Top3, Rmil), Exol and the
Mlh1-MIh3 endonuclease leads to crossovers (7-14). These
class I crossovers show interference—a phenomena where
the occurrence of a crossover event in a genetic interval
makes it less likely for crossovers to occur in adjacent inter-
vals. Another set of crossovers (Class II) are generated from
the Holliday junction intermediates by Mms4-Mus81, Yenl,
and Slx1-Slx4, the structure selective nucleases (SSNs). Res-
olution by the SSNs lack crossover bias, and both crossovers
and non-crossovers are produced. These class II crossovers
do not show interference (15,16).

Classical genetics, cytological methods, and physical analy-
sis, have been conventionally used to characterize meiotic
recombination in S. cerevisiae. In this review, we describe the
advantages of next generation sequencing (NGS)-based methods
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for genome wide analysis of meiotic recombination compared to
these conventional methods of recombination mapping. We also
discuss issues related to the experimental and bioinformatics
aspects of genome wide recombination analysis to make this
comparatively new area more familiar to the researchers.

CONVENTIONAL METHODS FOR
ANALYSIS OF MEIOTIC
RECOMBINATION IN S. cerevisiae

Classical genetic methods involve the use of auxotrophic or
drug markers whose segregation can be visually monitored in
meiotic spores to measure crossover frequency and gene con-
versions. The information from segregation of markers in mei-
otic spore progeny gives an estimate about the recombination
frequency between those markers. This method is still popular
as it is cost-effective and provides a basic idea of the recombi-
nation frequency before initiating a more elaborate and expen-
sive NGS-based approach. The ease of genetic manipulation in
S. cerevisiae means the markers can be inserted at the desired
location in the genome to estimate the recombination fre-
quency of the locus. These estimates are often extrapolated on
a whole genome scale. For example in the S. cerevisiae SK1
strain, a 395 kb region in chromosome XV has been modified
with six auxotrophic markers that corresponds to a genetic
distance of 100.9 c¢cM in wild-type meiosis (17). To generate
data from more loci, additional genetic markers were inte-
grated into representative small, medium and large chromo-
somes (Chr III, VIII and VII, respectively) (15). The crossover
defects in many meiotic mutants have been analyzed using
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these strains (12,17-20). The major drawback of the recombi-
nation maps generated from this method is that it requires the
analysis of a large population of tetrads and provides locus
specific data. Since recombination rates are not constant
across the S. cerevisiae genome, locus specific measures may
not accurately represent the genome-wide recombination fre-
quency. Another drawback is the dependence on spore viabil-
ity making it difficult to analyze meiotic mutants with severe
defects in viability or meiotic progression. Also only a limited
number of auxotrophic or drug markers can be introduced.

Unlike classical genetic analysis, cytological methods
involve immunostaining of crossover specific proteins like Zip3,
Msh4/Msh5 on meiotic chromosome spreads. This method pro-
vides information on recombination frequency on a genome
wide scale and is independent of the viability of the spores
(13,18). The number of foci correlates with an increase or
decrease in the recombination events. The drawback of this
method is that one has to rely on the proportional change of the
foci number, which does not give a count of the actual number
of recombination events and it also provides low resolution
data. Another cytological method relies on the use of fluores-
cent tetrads to detect recombination events (21). This method
bypasses the necessity of viable tetrads. The selected homolog
pairs are marked in the appropriate loci with fluorescent
markers and direct visualization of the tetrads under the micro-
scope reveals the marker segregation pattern. This method can
analyze crossovers, mnon-crossovers, chromosome non-
disjunction without dissecting numerous tetrads (21). In spite of
its advantages, the method provides locus specific data.

Besides genetic and cytological methods, single locus physical
assays have been developed to quantify the recombination prod-
ucts in S. cerevisiae. A well-characterized DSB hotspot (e.g. HIS4-
LEUZ2 on Chromosome III) is modified with restriction enzyme sites
to distinguish the homologous chromosomes (11,12). The DNA
from synchronized meiotic cultures are digested with the appropri-
ate restriction enzymes. The products are analyzed by two-
dimensional gel electrophoresis and probed to identify DSBs, joint
molecules—both interhomolog and intersister, crossover and non-
crossover products (11,22). This method circumvents the issue of
spore viability and has been used to study meiotic mutants with
severe viability defects (10,14-16,23-25). But this method also has
the limitation of reporting data of only one locus.

In summary, classical genetic analysis, and physical assays
provide recombination information from a specific locus with
good resolution, whereas cytology can provide genome wide
recombination data but at low resolution. With NGS-based
methods, the trade off between resolution and genome coverage
becomes irrelevant. But like any genetic method, recombination
analysis by NGS requires the four spores to be viable, making it
difficult to analyze mutants with poor spore viability or defects
in meiotic progression. With advances in DNA sequencing tech-
niques, the complete sequence of many S. cerevisiae strains are
accessible in the Saccharomyces Genome Database (https:/
www.yeastgenome.org/). The presence of a wide variety of S.
cerevisiae strains with sequenced genomes provides a multitude
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of strain combinations to generate hybrids. Sufficient density of
single nucleotide polymorphisms in the hybrid strains allows us
to map recombination events genome wide at high-resolution
using NGS analysis as described below.

NGS-BASED ANALYSIS OF HYBRID
S. cerevisiae STRAINS TO MAP MEIOTIC
RECOMBINATION GENOME WIDE

Though high-resolution genome wide recombination analysis
is now routinely performed using NGS, it started with microar-
ray based methods by Mancera et al. (26) using S. cerevisiae
S288¢/YIM789 hybrid (Fig. 2). The YIM789 strain is a clinical
isolate and 0.6% diverged from the standard laboratory S288c
strain (27). DNA isolated from four viable spore tetrads of the
hybrid were fragmented, fluorescently labeled and hybridized
against the microarray that contains probes for both the
parental SNPs at 4 bp resolution. Around 52,000 SNPs were
called which were uniformly distributed throughout the
genome with an average inter-marker distance of 78 bp (26).
A similar study by Chen et al. called 8,000 markers between
the two parental strains (S288c, YIM789) with an average dis-
tance of 1.5 kb between two consecutive markers (28). Both
the studies reported almost similar number of crossovers (90.5
and 95), but non-crossovers (19) were fewer in Chen et al. (28)
compared to the non-crossovers (66) from Mancera et al. (26).
This is because lower SNP density affects the detection of non-
crossovers but not crossovers. Microarray-based analysis of
genome wide recombination data has largely given way to
NGS-based methods due to falling sequencing costs as well as
some of the limitations of microarrays (Fig. 2). These include
(i) requirement of prior knowledge of the genome sequence of
the organism to design oligo probes for hybridization. (ii) Sin-
gle nucleotide resolution provided by NGS methods compared
to microarray based methods where the resolution is depen-
dent on the probe density. (iii) Potential for errors due to false
hybridization in microarray based methods. Below we discuss
some of the issues involved in the design of experimental and
bioinformatics methods for genome wide recombination map-
ping in hybrid yeast using NGS.

Choice of the Appropriate Yeast Hybrid and Marker
Density

The small size of the S. cerevisiae genome (12 Mb) and the
availability of the genome sequences of various S. cerevisiae
strains have made genome wide recombination analysis easier
and cheaper compared to other organisms having complex,
large genomes. The presence of a sufficient number of uni-
formly distributed SNP markers is a requisite for high-
resolution recombination mapping. But a very high density of
SNP markers may not be advantageous as the SNPs are treated
as mismatches during DSB repair using the homolog. High
sequence divergence may cause the mismatch repair response
to reject strand invasion into the homolog. This may result in
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and YJM789 strains to generate hybrid diploid. The diploid is sporulated and the spores are sequenced using NGS methods.

(B) Alignment of whole genome sequence data from spores to a reference genome for calling variants (SNPs). (C) Recombina-
tion outcomes that may be detected from SNP segregation data in the four spores from a single tetrad. Rectangular box shows
simple crossovers that can be identified by the reciprocal exchange of flanking markers in 2:2 segregation pattern. Diamond
box shows crossovers accompanied by gene conversions with the segregation of markers in 1:3 or 3:1 ratio around the
exchange sites. Circle shows simple non-crossovers which can be detected by the presence of 1:3 or 3:1 segregation tracts
without any exchange of flanking markers. In addition minority recombination outcomes caused by events like multiple chro-
matid invasions or exchanges involving more than two chromatids can also be detected by marker segregation patterns con-

taining signatures unique to the mechanism.

recombination outcomes that favor sister chromatid repair as
well as complex recombination outcomes that are difficult to
detect (29,30). For example, Martini et al. have shown that in a
cross between S. cerevisiae SK1 and S288c strains (0.7% diver-
gence), 73 crossovers are made (30). Deletion of the mismatch
repair gene, MSHZ in both the parents increased the crossovers
to 92 (30). Hybrids with higher SNP density also show a signifi-
cant drop in viability (Table 1), suggesting a negative correla-
tion of spore viability with heterozygosity (30,32-34). So, choos-
ing the appropriate hybrid is important. Hybrid choice should
be determined by the evolutionary origin of the strains. The S.
cerevisiae SK1 strain has evolved separately from all other
strains used in the lab. As a result higher sequence divergence,
reduced viability and recombination is observed in crosses
involving SK1 with other S. cerevisiae strains (Table 1). On the
other hand, S. cerevisiae strains like S288c, RM11, YIM789
etc., are of similar origin (35,36). Crosses involving these strains
like S288c¢/YIM789 or RM11/S288c show better spore viability
and have similar crossover frequency as the well-characterized
isogenic SK1 strain (Table 1). An important advantage of using
the S288c¢/YJM789 hybrid is its non-mutagenic nature. The
mitotic base mutation rate of this hybrid (1.82 x 107 '° per
base per division) is almost similar to that of the isogenic S288c
and SK1 strains (34).
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Sequencing and Phasing of SNPs

In principle, any NGS method can be used to genotype SNPs in
the meiotic spores for recombination mapping. Sequencing
techniques with shorter reads like Illumina (https:/www.illu-
mina.com) increase the chance of misalignment in the repeat

S. cerevisiae artificial hybrids

TABLE 1
Spore
Hybrids SNPs Crossovers  viability (%)
S288c/YJM789 (26, 31) 52,000 90.5 84
RM11-1a/YJM789 (32) 30,000 NA 90
S288c/RM11-1a (33) 46,000 91 85
S288c/SK1 (30) 62,000 73 70
SK1/YJM789 (34) 65,000 NA 77
SK1/RM11-1a (34) 69,000 NA 76

The approximate number of SNPs, average crossovers and spore via-
bility of different hybrids is shown.

ANALYSIS OF MEIOTIC RECOMBINATION
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sequences. So, the telomeric regions, Ty element containing
sequences etc are excluded from the SNP analysis when using
such technology. Sequencing technologies with longer reads
like PacBio (https://www.pach.com) or nanopore (https:/nano-
poretech.com) are more useful if SNPs from repeat regions
need to be analyzed for recombination data. New mutations
that are heterozygous can arise while the spore cultures are
grown for several generations to isolate DNA. Although geno-
typed, these are usually ignored and not used for downstream
recombination analysis. It is therefore useful to sequence the
parent strains available in the lab so that new mutations in
spore DNA can be identified and eliminated from the analysis
or used if they are present in the parent as well.

Whole genome recombination mapping requires the knowl-
edge of the phases of the SNP markers, that is, the concerned
marker belongs to which parent. Without phasing, the segrega-
tion analysis of the SNP markers in the spores is not possible.
For standard artificial hybrids like S288¢/YJIM789, SK1/5288c or
RM11/S288c, the reference genomes of the parent strains are
available. Therefore the phases of the SNP markers are known
and any sequencing method, even those with short reads (e.g.,
Mllumina) is fine. But in nature, many yeast hybrids exist and to
understand meiotic recombination in a natural hybrid can be of
great value. But the problem of phasing of the SNP markers
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arises. To overcome this problem, techniques (PacBio, nano-
pore), which give very long reads, are useful since SNPs fre-
quently occurring together in a single read are likely to be in
phase. With long reads (in kbs), the alignment will be easier,
and all the SNP markers can be phased (37,38).

Bioinformatic Analysis of SNP Segregation and
Recombination

The computational analysis of SNP segregation and recombi-
nation from Illumina short sequence reads involves multiple
steps (Fig. 3).

Quality Control (QC) Analysis, Preprocessing and Coverage.

Raw sequence reads that are generated from the Illumina
platform are in fastq file format which includes the quality
information of the bases. It is critical to thoroughly check the
base qualities and read statistics (number of reads, overall
coverage, base distribution, GC content, over represented
reads, adapters contamination, read duplication, etc.) for the
samples that were sequenced. Low quality bases at the ends of
the reads are trimmed and sequencing adapters and artifacts
are removed. The minimum coverage required varies for dif-
ferent types of sequencing projects. For mapping recombina-
tion events, we analyze the change in a set of consecutive
markers, since a crossover or conversion tract involves
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Widely used open source softwares for bioinformatics analysis of NGS data

TABLE 2

Module and specific tool

Website link

Quality control analysis
FastQC
NGS QC Toolkit
Pre-processing of reads
Trimmomatic
FASTX-Toolkit
Alignment to reference genome
Bowtie2
BWA MEM
Stampy
Removal of duplicate reads
Picard (Markduplicates)
Samtools (rmdup)
Indel realignment
GATK (IndelRealignment)
Genotyping
GATK (HaplotypeCaller/UnifiedCaller)
Samtools (mpileup)
Recombination analysis
ReCombine
Statistical analysis and visualization
R
IGV

multiple markers. Therefore the probability of all the markers
within a tract being genotyped incorrectly due to sequencing
error is low. So each SNP coverage can be lower (~10X) com-
pared to the coverage required for mutational analysis. Paired
end reads are preferred over single end reads for better accu-
racy in mapping the reads to a reference genome and genotyp-
ing. Some of the widely used softwares to check the statistics
and the quality of bases in the reads are listed in Table 2.

Read Alignment. After QC analysis and preprocessing, the
reads are aligned to the reference genome. The result of the
aligned reads are in SAM (sequence alignment map) format
which may be compressed to yield BAM (binary alignment map)
files. BAM files contain information regarding the read location
in the reference genome and also some additional information
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(eg mapping quality, uniquely represented reads, duplicated
reads, etc). Duplicate reads detected from the alignment should
be removed as they may skew the allele frequency and lead to
false genotyping. Indel realignment facilitates removal of align-
ment artifacts which reduce the accuracy of genotyping. If the
percentage of mapped reads from the alignment is less, we may
be able to call fewer SNPs. For example, if a sample contains
around 8,000 SNPs (i.e. 1 SNP per 1.5 kb) then that sample can
detect crossovers but not some gene conversions that often have
a median length of 1.5 kb (28).

Genotyping and Generation of Segregation Files. Multi-sam-
ple genotyping or variant calling is preferred. This involves
calling variants across multiple samples (spores) at a given
location, if, any one of the samples contains a variant in the
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same location. Multi-sample variant calling reduces the com-
putational load and is easier for a small genome like that of S.
cerevisiae. This step returns a file containing variants called
VCF (variant calling format). Custom scripts (any programming
language) are used to generate segregation files by clubbing
VCF files of genotyped spores as tetrads.

Recombination Analysis. For recombination analysis, the soft-
ware should correctly identify and classify the recombination
events from the segregation file. Mancera et al. used the ssGeno-
typing program to identify the crossover and non-crossover events
from the microarray data (26). Anderson et al. developed ReCom-
bine package (written in python) that can analyze recombination
events from microarray or NGS data from yeast tetrads (39). This
program takes processed fastq files, genotypes and generates seg-
regation files. The CrossOver program in the ReCombine package
can use the segregation file to detect crossover, non-crossover
and gene conversion events and classify them into categories (39).
By default, ReCombine merges adjacent crossovers or a crossover,
non-crossover event if they are separated by less than 5 kb as
they are likely to have initiated from the same DSB. This parame-
ter can be adjusted. The drawback of ReCombine is that it may
call discontinuous non-crossover tracts from the same initiating
DSB as separate events thereby skewing the non-crossover num-
bers (29). To avoid this problem CrossOver may be run with 0 kb
cut off to identify all the crossover and non-crossover tract
changes as individual events (29). This is then used as an input
for “groupEvents” program, which groups the crossover and non-
crossover events, lying within 5 kb range, together as a single
event (29). These modifications can be used to analyze the com-
plexities of the non-crossover conversion tracts. So adjacent dis-
continuous non-crossover tracts caused by multiple strand inva-
sions from the same initiating DSB which would have been called
as two separate events in Crossover program will be now merged
as a single non-crossover event using the groupEvents script (29).
The “groupEvents” program enabled Oke et al. 2014 (29) to accu-
rately characterize conversion tracts in meiotic mutants and
detect complex recombination outcomes in yeast and the causal
mechanisms (29). Although ReCombine makes recombination
mapping in yeast easy, it can only generate segregation files with
crosses involving S288c. For other yeast hybrids, the program has
to be modified to align and call the SNPs from a different refer-
ence genome. Alternatively, the segregation file can be separately
generated and used as input for the CrossOver module in
ReCombine.

Non-detectable Recombination Events. Although NGS anal-
ysis of spores from hybrid strains can facilitate high-resolution
genome wide mapping of recombination events, it is important
to note that not all recombination events can be detected. The
DSBs are repaired using either the homolog or the sister chro-
matid as a template. In wild-type meiosis, interhomolog
recombination is preferred over intersister events (40,41). In
many mutants like pch2, mekl1, etc. the bias is affected, and
the intersister events increase (42-44). NGS-based recombina-
tion analysis requires heterozygous SNPs, so only the
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interhomolog events are detected. The lack of markers on the
sister chromatids makes it difficult to quantify inter-sister
recombination events, especially in mutants where these may
be elevated. As a consequence overall recombination events
are under-estimated and may not correlate with DSB fre-
quency. The Strand-seq technique was recently used to map
inter-sister exchange events genome-wide during mitosis
(45,46) in S. cerevisiae. Such methods could be further devel-
oped to possibly detect inter-sister repair events during meio-
sis. Yeast hybrids often have high marker densities (e.g. 1 SNP
every 78 bp in S288c¢/YIM789 hybrid), which facilitates detec-
tion of all crossover events, since they affect flanking markers.
But it is possible that non-crossover events that occur in
between adjacent markers are not detected (26).

Statistical Analysis, Visualization and Data

Management. All statistical analysis and visualization may
be performed using any statistical analysis package (e.g. R,
Matlab, etc.). The data can be also visualized with many open
source softwares like UCSC genome browser, Integrated Geno-
mics Viewer (IGV) etc. (Table 2). These provide the user an
interactive analysis tool at a single base pair scale (47-49).
Data management and analysis are challenging since millions
of short reads amounting to terabytes of data are generated
from whole genome sequencing of spores. Error free SNP call-
ing requires the genome to be sequenced at high coverage
(10x or greater). For statistical significance in the data, suffi-
cient numbers of tetrads are sequenced to obtain a reliable
count of crossover/non-crossover numbers. These generate a
huge amount of sequence data even for a single experiment.
Storing the raw data requires sufficient space (~2-3 GB per
haploid yeast genome at 30X coverage).

Correlating Data from Hybrids with Isogenic Strains

High-resolution recombination mapping in yeast is built on the
use of hybrids. Apart from issues like sequence divergence
and incompatibilities, the asynchrony in the meiotic kinetics of
hybrids poses problems. Asynchrony does not affect recombi-
nation mapping in hybrid strains, as the tetrads are specifi-
cally selected. But other techniques like immunofluorescence
analysis or ChIP sequencing requires the sporulating culture to
be highly synchronous as the analysis at a particular time
point should reflect the state of the majority of the cell popula-
tion. So, these techniques cannot be used in hybrids to com-
pare with the genetic recombination data obtained from NGS
analysis. Instead, isogenic strains like SK1, which shows high
synchrony in meiosis, are used for cytological and ChIP-
sequencing studies and the data are correlated with the
recombination analysis in hybrid strains. A disadvantage of
this approach is the assumption that the isogenic and the
hybrid strains have similar properties of meiotic recombina-
tion, which may not be the case (50). In addition, meiotic
mutants may show differences in sporulation efficiency and
spore viability in the hybrid compared to isogenic strains. For
example, mms4A sporulates in isogenic SK1 and shows 46%-—
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51% viability (15,20), but it fails to sporulate in S288c/YJM789
hybrid.

NEW INSIGHTS FROM GENOME WIDE
ANALYSIS OF MEIOTIC
RECOMBINATION

Genome-wide fine-scale mapping of recombination using
hybrid S. cerevisiae genomes have provided new insights into
the mechanisms of genetic recombination in eukaryotes. The
initial study by Mancera et al. (26) using the S288c¢/YIM789
hybrid, provided the first genome wide recombination map in
yeast with many new mechanistic insights, such as the pres-
ence of non-crossover hotspots in the genome, interference
between crossovers and non-crossovers etc. A similar study by
Qi et al. using a different hybrid (S288c¢c/RM11) described
crossover, non-crossover and associated gene conversion
tracts at single base resolution in wild type S. cerevisiae (33).
Further studies by Mancera et al. (51) provided information on
the genome wide distribution and prevalence of post meiotic
segregation events. Similarly, genome wide analysis of various
meiotic mutants have revealed novel functions of meiotic
genes. For example, a role for Zipl in suppressing crossing
over at the centromere (28); the effect of diminishing recombi-
nation initiation in spoZ1 hypomorphs on DSB repair outcome
(52); a role for Zip3 in biased resolution of Holliday junctions
into crossovers and a role for Mms4 in suppressing multiple
strand invasions during DSB repair (29). Genome wide map-
ping of recombination in el mutants showed loss of crossover
interference and a role for Tell in regulating DSB distribution
along the chromosome (53). Genome wide recombination map-
ping of msh2A elucidated barriers mismatch repair poses to
recombination as well as new models for recombination (30).
Similarly genome wide recombination mapping in mlh2A
mutants showed a role for MIh1-Mlh2 in regulating the extent
of gene conversion tracts (54). Genome wide recombination
mapping in msh4 hypomorphs that make fewer crossovers but
have normal viability, supported a role for crossover distribu-
tion mechanisms in ensuring the obligate crossover (55).
Genome wide recombination mapping in pch2 mutants
revealed increased crossovers and non-crossovers as well as
loss of chromosome size dependent DSB formation (31).
Another study in a series of mlh3 point mutants showed a
genome wide increase in non-crossovers that supports a struc-
tural role for this complex in deciding the fate of meiotic
recombination intermediates (56). Furthermore, recent studies
in alternate yeast models such as Lachancea kluyveri hybrid
have shed light on the significant inter-specific variation in
meiotic recombination frequency (57). Whole genome analysis
of L. kluyveri meiotic spores revealed lower crossover frequen-
cies compared to S. cerevisiae, a high proportion of non-
exchange chromosomes as well as a high frequency of 4:0 con-
version tracts in the hybrid indicative of the role of abortive
meiosis in genome evolution (57,58). These above mentioned
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studies are a few examples of the new insights into meiotic
recombination mechanisms using genome wide recombination
mapping methods.

FUTURE PROSPECTS

Apart from yeast, genome wide analysis of meiotic recombina-
tion is also being used in other species like humans, Arabidop-
sis, maize, etc. (59-62). There are a few areas where further
developments may overcome some of the limitations in using
NGS analysis for mapping recombination events.

In artificial S. cerevisiae hybrids like S288¢/YIM789 many
meiotic mutants show poor viability. Use of other uncharacter-
ized hybrids or natural hybrids may address the poor viability
issue of some meiotic mutants in a hybrid context. Another
approach is to develop methods for sequencing the spores
directly without germinating them. With the advent of single
cell sequencing technology, the spores isolated from the tet-
rads can be lysed and the DNA amplified from each spore can
be sequenced to map recombination events. This method also
has the additional advantage that it eliminates selection bias
towards viable spores.

Making use of the NGS data requires multiple programs,
most of which are command line based. Expertise in computa-
tional biology is necessary for the data analysis. As many biol-
ogists lack exposure in the computational field, it becomes dif-
ficult for them to analyze the whole genome data. To make the
process more user-friendly, a graphical interface could be
developed instead of command lines, where the user could
feed the segregation files as input and obtain the crossover,
non-crossover and gene conversion data. Such an advance-
ment will make the data analysis considerably easy. Simplifi-
cation of data analysis through user friendly and easy to use
input output formats while maintaining accuracy need to be
developed to promote wider acceptance of NGS in recombina-
tion analysis. These developments and newer NGS technolo-
gies will make whole genome recombination analysis more
popular and accessible to the scientific community.
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