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Abstract

The guanine-nucleotide exchange factor Trio encodes two DH-PH domains that catalyze nucleotide exchange on Rac1,
RhoG and RhoA. The N-terminal DH-PH domain is known to activate Rac1 and RhoG, whereas the C-terminal DH-PH domain
can activate RhoA. The current study shows that the N-terminal DH-PH domain, upon expression in HeLa cells, activates
Rac1 and RhoG independently from each other. In addition, we show that the flanking SH3 domain binds to the proline-rich
region of the C-terminus of Rac1, but not of RhoG. However, this SH3 domain is not required for Rac1 or RhoG GDP-GTP
exchange. Rescue experiments in Trio-shRNA-expressing cells showed that the N-terminal DH-PH domain of Trio, but not
the C-terminal DH-PH domain, restored fibronectin-mediated cell spreading and migration defects that are observed in Trio-
silenced cells. Kymograph analysis revealed that the N-terminal DH-PH domain, independent of its SH3 domain, controls the
dynamics of lamellipodia. Using siRNA against Rac1 or RhoG, we found that Trio-D1-induced lamellipodia formation
required Rac1 but not RhoG expression. Together, we conclude that the GEF Trio is responsible for lamellipodia formation
through its N-terminal DH-PH domain in a Rac1-dependent manner during fibronectin-mediated spreading and migration.
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Introduction

Cell adhesion and spreading on extracellular matrix proteins

such as fibronectin (FN) is indispensable for many important

physiological processes, such as development, growth and

migration. During cell spreading, the actin cytoskeleton is

regulated by Rho-GTPases. These Rho-GTPases serve as

molecular switches, transducing signals from the extracellular

environment to elicit cellular responses, such as changes in

morphology and directional migration [1]. Rho-GTPase family

members are small proteins that cycle from an inactive, GDP-

bound to an active GTP-bound state. When bound to GTP, they

interact with a broad range of downstream effectors, initiating

intracellular signals. The exchange from GDP to GTP is mediated

by enzymes called Guanine nucleotide Exchange Factors (GEFs).

These regulate local activation of GTPases and thereby control the

downstream effects of these GTPases [2].

Among the 22 known Rho-GTPase proteins, RhoA stimulates

the formation of stress fibers [3], whereas Rac1 is known to induce

membrane ruffling and lamellipodia formation [4]. Upon integrin-

mediated adhesion to fibronectin-coated surfaces, Rac1 is

activated, resulting in membrane ruffling and cell spreading [5].

Rac1 activation during cell spreading was claimed to be regulated

by a close family member of Rac1, RhoG, through its activation of

the bipartite ELMO and Dock180 GEF complex [6,7]. However,

other investigators showed that nearly complete RhoG depletion

did not substantially inhibit cell adhesion, spreading, migration or

Rac1 activation [8]. We have previously shown that Rac1 activity

and effector functions can also be regulated through its

hypervariable C-terminal tail by binding partners, such as the

GEF b-Pix and caveolin-1 [9,10]. Activation of Rac1 by the GEF

b-Pix appeared to be dependent on the direct interaction between

a proline-rich region within the Rac1 C-terminus and the SH3

domain that precedes the Dbl-homology/Pleckstrin-homology

(DH-PH) GEF domain of b-Pix. The presence of SH3 domains

adjacent to the DH-PH domain is commonly observed in GEFs

that are specific for Rho-family GTPases [11]. However, whether

the interaction of the Rac1 C-terminus with SH3-domains in these

GEFs represents a general prerequisite for Rac1 activation

remains to be established.

The GEF Trio contains two DH-PH domains of which the N-

terminal DH-PH domain has been shown to activate Rac1 and

RhoG [12,13]. The second, C-terminal DH-PH domain is known

for its specific exchange of GTP on RhoA (Medley et al., 2000).

Trio also contains two SH3 domains, of which only one is located

in close proximity of the N-terminal DH-PH domain. It has been

reported that overexpression of the N-terminal GEF domain of

Trio including the SH3 domain promotes 3T3 cell spreading and

haptotactic migration towards a fibronectin gradient [14].

Moreover, it was shown that Trio mediated the migration of

granule cells during cerebellum development [15]. In malignant

glioma’s, Trio-mediated Rac1 activation was implicated in cell

migration and invasion [16], suggesting involvement of the N-

terminal GEF domain of Trio. Interestingly, the N-terminal Trio
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DH-PH domain is 3 times more efficient in exchanging GTP on

RhoG than on Rac1 [17]. Using a dominant-negative construct of

RhoG, Blangy and co-workers could block Trio-D1-mediated

Rac1 activation, suggestive for a role for RhoG, upstream of Rac1

[12].

In this study, we demonstrate that the N-terminal GEF domain

of Trio can interact with the C-terminal hypervariable domain of

Rac1, but not of RhoG, in an SH3-domain dependent manner.

The SH3 domain is, however, dispensable for Trio-mediated Rac1

and RhoG activation. Using siRNA-mediated silencing of RhoG

expression, we show that Trio-induced Rac1 activation is also

independent of RhoG. In Trio-shRNA expressing HeLa cells,

Rac1 activation and cell spreading was impaired, whereas active

RhoG levels did not change. The impaired cell spreading and

migration were rescued by expression of the N-terminal DH-PH

domain of Trio. Moreover, using kymograph analysis, we show

that the N-terminal DH-PH domain of Trio mediates lamellipodia

dynamics. Using siRNA technique to silence Rac1 or RhoG in

Trio-deficient cells that were rescued with the N-terminal DH-PH

domain of Trio, we made clear that Trio-induced lamellipodia

dynamics was dependent on Rac1 and not RhoG. These data

show that Trio regulates cell spreading and migration through its

N-terminal DH-PH domain in a Rac1-dependent manner.

Results

Trio contains two DH-PH domains, schematically represented

in figure 1A. We found that expression in HeLa cells of a GFP-

tagged N-terminal DH-PH domain, hereafter indicated as Trio-

D1, induced lamellipodia (Figure 1A and 1B), which underscored

data reported by Blangy and co-workers [12]. Also, increased

cortical actin is observed in cells transfected with Trio-D1, which

resembled a phenotype that is normally observed for activated

Rac1 [10]. Expression of the C-terminal DH-PH domain,

hereafter indicated as Trio-D2, induced the formation of actin

stress fibers, which is in line with previous reports, showing that

Trio-D2 facilitates the exchange of GDP for GTP on RhoA

[18,19]. Expression of full-length Trio resulted in a phenotype that

resembled that of Trio-D1, i.e. the induction of lamellipodia

(Figure 1A). Using scanning electron microscopy, we detected

Trio-D1-induced membrane ruffling on the surface of the cells.

These experiments also confirmed that Trio-D1-induced morpho-

logical changes (i.e. apical and lateral membrane ruffles) were

similar to those induced by constitutively active RhoG-Q61L or

Rac1-Q61L (Figure 1C).

We next measured whether exogenous Trio-D1 or Trio-D2

were able to activate Rac1, RhoG or RhoA, using biochemical

pull-down assays, as described in Materials and Methods. The

data showed that Trio-D1 activated endogenous Rac1, as well as

exogenous Myc-RhoG (Figure 2A). As expected, Trio-D1 did not

activate RhoA. As a control, we confirmed Trio-D1-induced JNK

activation (data not shown), as was also shown by Bellanger and

co-workers [18]. Additional experiments with GST-Rhotekin

showed that the expression of Trio-D2 increased the levels of

endogenous GTP-bound RhoA (Figure 2B)

Activation and targeting of Rac1 by the GEF b-Pix depends on

the direct interaction of the Rac1 hypervariable C-terminus with

the SH3-domain of b-Pix [9]. Using a biotinylated peptide

comprising the Rac1 C-terminus, we observed that full-length

Myc-Trio also interacted with the Rac1 C-terminus, whereas

Myc-Trio did not bind to the C-terminus of RhoG (Figure 3A).

Since the N-terminal DH-PH domain of Trio activated Rac1, we

tested whether Trio-D1 could also interact with the hypervariable

Rac1 C-terminus. The results showed that Myc-tagged Trio-D1

interacted with the Rac1 C-terminal peptide, but not with the

RhoG C-terminal peptide (Figure 3B). To study the involvement

of the flanking SH3 domain of Trio-D1 in the interaction with the

Rac1 C-terminus, we generated Trio-D1 mutants that lacked the

SH3 domain (Trio-D1DSH3; Figure 1A). These experiments

showed that the SH3 domain of Trio-D1 was required for the

binding to the Rac1 C-terminus (Figure 3C). A peptide in which

the proline-rich region of the Rac1 C-terminus was replaced with

alanines (Rac1 P-A) showed a reduced interaction with Trio-D1

(Figure 3D). These data confirmed that Trio-D1 interacted with

the Rac1 C-terminal hypervariable domain through the proline-

rich stretch in a SH3-domain-dependent manner.

To determine whether the interaction of the Rac1 C-terminus

with the SH3 domain of Trio-D1 is a prerequisite for Rac1

activation by Trio-D1, we measured Rac1 activation by Trio-D1

lacking its SH3 domain. Overexpression of GFP-Trio-D1 induced

an increase in Rac1 activation compared to control membrane-

anchored GFP (GFP-CAAX) transfected cells. However, deletion

of the SH3 domain did not affect the ability of Trio-D1 to activate

Rac1 (Figure 3E). Analysis of the interaction of Trio-D1 and Trio-

D1DSH3 with a Rac1 mutant that can no longer bind the

nucleotides GDP or GTP (GST-Rac1-G15A) and therefore has a

high affinity for GEFs [20] showed no increase in binding for Trio-

D1 containing the SH3 domain compared to the one lacking the

SH3 domain to nucleotide-free Rac1 (Figure 3F). These results

therefore suggest that the SH3 domain is not required for Trio-

D1-mediated nucleotide exchange on Rac1.

Using a dominant-negative RhoG construct, Blangy and co-

workers have suggested that Trio-D1-mediated Rac1 activation is

dependent on RhoG [12]. Analysis of RhoG activation using

ELMO as bait showed that the SH3 domain is not required for

Trio-D1-induced RhoG activation (Figure 4A). Binding of Trio-

D1 lacking the SH3 domain to a nucleotide-free RhoG mutant

(GST-RhoG-G15A) was significantly less efficient than Trio-

D1+SH3 (Figure 4B). These data indicate that the SH3 domain

may promote, but is not necessarily required for Trio-D1-

mediated nucleotide exchange on RhoG. To determine whether

RhoG is involved in Rac1 activation by Trio-D1, we used RhoG-

specific siRNA to silence RhoG expression in HeLa cells

(Figure 4C). These results show that Rac1 activation by Trio-D1

and Trio-D1DSH3 is not impaired, but rather increased in RhoG

knockdown cells (Figure 4C). Rac1 activation by the N-terminal

GEF domain of Trio is therefore independent of SH3 domain-

mediated interactions and RhoG expression.

To show the functional significance of the Trio-D1 GEF

domain within full-length Trio, we used HeLa cells, stably

expressing a Trio shRNA (Figure 5A). Stable knockdown of Trio

resulted in a severe defect in the ability of the cells to spread on

fibronectin and most of the shTrio cells remained round

(Figure 5B). Quantification of spreading cells showed that after

3 hours almost 50% of the shCTRL cells formed lamellipodia and

spread on fibronectin, whereas in shTrio cells only 10% of the cells

was able to do so (Figure 5C). In addition, quantitative analysis of

cell spreading on fibronectin-coated gold electrodes using electrical

cell-substrate impedance sensing (ECIS) technology [9,10] showed

less efficient spreading of Trio-deficient cells compared to control

cells (Figure 5D). Moreover, Trio knockdown cells were severely

impaired in their migratory capacity towards 1% (v/v) FCS across

fibronectin-coated Transwell filters (Figure 5E).

Analysis of Rac1 and RhoG activation during HeLa cell

spreading demonstrated only induction of Rac1 activity

(Figure 6A), whereas no detectable increase in RhoG activation

was detected (Figure 6B). However, in Trio shRNA cells, no

induction in Rac1 activity was measured (Figure 6A), suggesting
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Figure 1. Trio induces membrane ruffles. (A) Schematic overview of the Trio protein (3097 amino acids, molecular weight approximately
350 kDa), indicating in green the N-terminal DH-PH unit including an SH3 domain and in red the C-terminal DH-PH unit. The third catalytic domain of
Trio is a kinase domain (yellow). At the N-terminus, a Sec14 domain and spectrin repeats are present. Below the GFP/Myc-tagged constructs used in
this manuscript are depicted: Trio-D1 encodes for the N-terminal DH-PH domain including the flanking SH3 domain, Trio-D1DSH3 domain represents
the N-terminal DH-PH domain lacking the SH3 domain, and Trio-D2 representing the C-terminal DH-PH domain. (B) HeLa cells were cultured on glass
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that the cell spreading is mainly due to Rac1 activation by Trio.

Del Pozo and co-workers showed that Rac1 is also activated upon

early spreading. Rac1 was activated upon 20 minutes of spreading

on FN [5]. However, in Trio-deficient cells, Rac1-GTP levels were

decreased, indicating for Trio involvement in Rac1-mediated early

spreading events (Figure 6C). In contrast to Rac1, RhoA is known

to be temporarily inactivated during cell spreading (Figure 6D).

Although RhoA activity in shTrio HeLa cells in suspension was

lower than in control cells, after 3 hours of cell spreading no RhoA

activation was measured in both control and Trio-silenced cells

(Figures 6D and S1).

Since the shRNA construct to silence Trio is targeted to the N-

terminus and does not interfere with the expression of the Trio-D1

domain (see Materials and Methods), Trio-D1 can be tested for

rescue of cell spreading. The results showed that Trio-D1

expression, in Trio-deficient cells restored cell spreading in

contrast to Trio-deficient cells that were transfected with GFP-

CAAX (Figure 7A). Expression of Trio-D2 in Trio-deficient cells

did not rescue the impaired cell spreading on FN (Figure S2A).

Quantification of cell spreading by measuring the length of the cell

body along the longitudinal axis showed that Trio-D1 significantly

restored the defect in cell spreading, induced by Trio silencing, to

the same extent as that of control HeLa cells (Figure 7B).

Moreover, the inability of Trio-deficient cells to migrate across

fibronectin-coated filters was recovered when GFP-Trio-D1 was

expressed (Figure 7C).

Detailed study of the dynamics of lamellipodia by means of

kymograph analyses showed that control cells formed broad and

stable lamellipodia, whereas Trio-deficient cells generated thin and

unstable membrane protrusions (Figure 8A). However, in Trio-

silenced cells that expressed Trio-D1, the formation of lamellipo-

dia was restored and comparable to control cells (Figure 8A).

Quantification of the kymographs indicated that Trio-D1

significantly promoted the velocity, distance and frequency of

the lamellipodia (Figure 8B). When compared the lamellipodial

dynamics between the shCTRL and shTrio-treated cells, we found

a significant decrease in lamellipodia velocity when Trio was

silenced (Figure S2B). However, distance and frequency were

unaltered. Expressing TrioD1 on the Trio-deficient cells promoted

lamellipodial dynamics more than in shCTRL-cells (Figure S2B).

We have also tested whether the SH3 domain of Trio-D1 affected

the dynamics of Trio-D1-induced lamellipodia. However, using

Trio-D1 mutant lacking the SH3 domain, we did not observe any

significant difference in the velocity, distance or frequency of the

induced lamellipodia, indicating that the SH3 domain is not

required for lamellipodia dynamics (Figure 8C). To determine

whether Trio-D1-induced lamellipodia dynamics were dependent

on Rac1 or RhoG, we silenced these GTPases with siRNA in

Trio-deficient HeLa cells (Figure 9A), which were rescued by

expressing Trio-D1. Our data showed that the dynamics of

lamellipodia formation in Trio-D1-rescued HeLa cells were

unaltered in siCTRL or siRhoG –treated cells (Figure 9B).

However, in cells that were silenced for Rac1, lamellipodia

dynamics were severely impaired (Figure 9B). Kymograph analysis

underscored these observations and showed a significant reduction

in lamellipodia velocity, distance and frequency when Rac1 was

depleted (Figure 9C). Thus, these data show that the Trio-D1 GEF

domain induces the dynamics of lamellipodia in a Rac1-dependent

manner and is required for fibronectin-mediated cell spreading

and migration.

Figure 2. Trio-D1 activates Rac1 and RhoG, but not RhoA. (A)
HeLa cells were transfected with Myc-Trio-D1 and Myc-RhoG as
indicated. Rac1-GTP and RhoG-GTP and RhoA-GTP levels were
measured as described in Materials and Methods and show that Trio-
D1 activates RhoG and Rac1, but not RhoA. Tubulin is shown as protein
loading control. (B) HeLa cells were transfected with HA-Trio-D2 and
Myc-Trio-D1 as indicated. RhoA-GTP was measured as described in
Materials and Methods and shows that Trio-D2, but not Trio-D1
activates endogenous RhoA. Second panel from above shows RhoA
protein loading in the cell lysates. Data are representative for at least
three independent experiments.
doi:10.1371/journal.pone.0029912.g002

cover slips and transfected as indicated with GFP-tagged constructs. Immunofluorescent imaging showed that GFP did not affect the morphology of
the cells. GFP-Trio full length (FL) and GFP-Trio-D1 induced lamellipodia (arrowheads) and co-localized with F-actin (red), as is shown in the merge
images. For the Trio-FL, 68%67 of the transfected cells induced lamellipodia as illustrated in figure 1B. For Trio-D1, 79%64 of the transfected cells
induced lamellipodia. GFP-Trio-D2 in green induced stress fibers (arrowheads), shown by F-actin staining in red. 46%612 of these transfected cells
i9nduced stress fibers, as shown. Data are mean 6 SEM. Bar, 20 mm. Images at the right show merged magnification of F-actin in red and GFP-tagged
protein in green. Bar, 10 mm. (C) Changes in morphology analyzed by scanning electron microscopy. No change in morphology is observed at the
periphery or surface of GFP-expressing HeLa cells (arrowheads), whereas Trio-D1 induced large dorsal and lateral lamellipodia (arrowheads). Bar,
50 mm. Image on the right shows a magnification (Zoom) of Trio-D1-induced dorsal lamellipodia (arrowheads). Bar, 5 mm. Two lower images show
lamellipodia (arrowheads), induced by a constitutively active form of RhoG (Q61L) (left image) and Rac1 (Q61L) (right image), both comparable with
the lamellipodia induced by Trio-D1. Bar, 10 mm.
doi:10.1371/journal.pone.0029912.g001
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Discussion

The Rac1/RhoG/RhoA GEF Trio is ubiquitously expressed

and plays an important role in neurite outgrowth and secretion of

mediators from granules in neuronal cells [13,21,22]. However,

not much is known about the cellular functions of Trio and the

role of its different GEF domains. We show here that the N-

terminal DH-PH domain of Trio (Trio-D1) activates Rac1

independently from RhoG in cell cultures. In fact, we observed

increased Rac1 activation by Trio-D1 when RhoG expression was

silenced. This suggests that Rac1 competes with RhoG for binding

to Trio-D1. Although it is well recognized that the N-terminal

DH-PH unit of Trio is required for the activation of GTPases, less

is known about the flanking SH3 domain. We show here that the

SH3 domain is required for Trio-D1 binding to the proline-rich C-

terminus of Rac1, but not of RhoG. It has been shown by Yohe

and co-workers that the SH3 domain of NGEF and WGEF acts as

an auto-inhibitory signal by sterically blocking the DH-domain

[23]. However, deleting the SH3 domain of Trio-D1 did not affect

its exchange activity for Rac1 or RhoG, indicating that the SH3

domain is not auto-inhibitory. Interestingly, we noticed that the

nucleotide-free RhoG but not Rac1 mutants bound less efficiently

to Trio-D1 when the SH3 domain was deleted. These nucleotide-

free mutants have a high affinity for GEFs in their activated state,

indicating that the SH3 domain influences the activity state of

Trio. Also, these data show that the SH3 domain is more involved

in the binding of Trio to the GTPase and not so much in the

activation, since expression of Trio-D1 lacking the SH3 domain

still induces Rac1 and RhoG activation. Thus, the SH3 domain

that flanks the N-terminal DH-PH domain of Trio promotes the

exchange between GDP and GTP on Rac1 and RhoG, but is not

essential. Based on this conclusion, one may predict that Trio-D1

lacking the SH3 domain is also less efficient in activating Rac1 or

RhoG, as measured with classical pull-down assays. However,

using these assays, we did not find significant differences in Rac1

or RhoG activation upon expression of Trio-D1, in the absence or

presence of the SH3 domain. The expected effect of the SH3

domain on Trio-induced Rac1 and RhoG activity may be

moderate and therefore easily overlooked, because of the ectopic

expression system that we use. Seipel and colleagues showed that

the Trio-N-terminal SH3 domain is involved in colony formation

in soft agar [14]. However, these assays take 18 days of culture,

which may indicate that the SH3 domain- mediated effects are

subtle and require time to become apparent. Others reported that

the SH3 domain is involved in neurite outgrowth [21]. Also these

assays take more than 2 days in total. Therefore, the effects of the

SH3 domain of Trio-D1 on Rac1 and RhoG activation in our

expression system with cultured HeLa cells may be not sensitive

enough to pick up the differences that we observed with the

nucleotide-free mutants.

Rac1 and RhoG signaling has been implicated in cell spreading

by several groups [5,7]. However, a role for RhoG in cell

spreading is controversial, because others have shown that

depletion of RhoG did not affect cell spreading or Rac1 activation

[8]. Our personal observations show that cell spreading was not

affected upon silencing of RhoG expression (MH, JDvB). The

involvement of RhoGEFs in cell spreading is less well understood.

Some RhoGEFs, such as p115RhoGEF and LARG, have been

implicated in spreading, but others, such as Ect2 or Dbl have been

excluded [24]. Dubash and colleagues showed that these GEFs are

responsible for RhoA activation [24]. Arthur and co-workers

found that the RacGEFs Tiam1 and Vav2, but not b-Pix or

SWAP-70 are involved in cell spreading [25]. These GEFs are

recruited to the plasma membrane, where they are activated and

locally exchange GDP for GTP on Rac1. In addition, DOCK180

has also been implicated in cell spreading, since silencing this a-

typical GEF results in impaired Rac1 activation upon epithelial

cell spreading onto fibronectin [8]. For Trio, the group of Streuli

showed that overexpression of Trio-D1 promoted the formation of

lamellipodia [14]. Using kymograph analysis on Trio-silenced cells

that were rescued with Trio-D1 expression, we showed that Trio-

D1 promotes the induction of lamellipodia, required for proper

cell migration [26]. Interestingly, our data indicated that Trio-D1

acts through Rac1 when mediating lamellipodia formation. These

data were obtained in HeLa as well as Cos7 cells (data not shown).

This is in line with the data we obtained when measuring the

influence of Trio on GTPase activity during cell spreading on

fibronectin. Only Rac1, and not RhoA or RhoG activity was

impaired in Trio-deficient cells upon spreading. Others have

shown that RhoG is a major downstream effector GTPase of Trio-

D1 unit [12]. However, these data were obtained with dominant-

negative mutants. Our approach was based on protein silencing.

Trio silencing results in instable lamellipodia, comparable as is

observed in Trio-deficient neurite growth cones [27]. Therefore,

based on the above described data, we conclude that Rac1, and

not RhoG, acts as the major GTPase downstream of Trio-D1.

Altogether, these data indicate that Trio is a regulatory GEF that

promotes integrin-mediated cell spreading through its N-terminal

Figure 3. Trio-D1 binds to the C-terminus of Rac1 but not of RhoG and activates Rac1 independent of its SH3 domain. (A) HeLa cells
were transfected with Myc-Trio-Full-length (FL) and a pull-down experiment with biotin-tagged peptides that encode for the last 10 amino-acids of
the C-terminus of Rac1, RhoG and RhoA was performed, as described in Materials and Methods. Western blot analysis showed that Trio-FL binds to
the Rac1 C-terminus peptide, but not to RhoA or RhoG C-termini. As a control, b-Pix binding to the C-terminus of Rac1, but not of RhoA or RhoG is
shown. (B) Myc-Trio-D1 was transfected into HeLa cells, and a peptide pull down was performed as described under A. Western blot analysis showed
that Trio-D1 associates with the C-terminus of Rac1, but not with the CTRL or RhoG peptide. Left lane shows Myc-Trio-D1 input. (C) HeLa cells were
transfected with GFP-Trio-D1DSH3 or GFP-Trio-D1+SH3 constructs and a Rac1 C-terminal peptide pull down was performed. Western blot analysis
showed that the C-terminus of Rac1 required the SH3 domain of Trio-D1 to interact. Blots were incubated with an Ab against GFP to stain for Trio
constructs. (D) HeLa cells were transfected with GFP-Trio-D1+SH3 constructs and a peptide pull down was performed with biotinylated peptides
encoding control sequence, the Rac1 C-terminal domain or the Rac1 C-terminal domains in which the proline stretch had been mutated to alanines
(P/A) [10]. Western blot analysis showed that Trio-D1+SH3 required the proline-rich stretch in the Rac1 C-terminus to bind. Blots were incubated with
an Ab against GFP to stain for Trio constructs. (E) HeLa cells were transfected with GFP-CAAX, GFP-Trio-D1DSH3 or GFP-Trio-D1+SH3 constructs, and
Rac1-GTP activity assays were performed as described in Materials and Methods. Western blot analysis showed that Rac1 is activated by Trio-D1,
independent of the SH3 domain (upper panel). (F) HeLa cells were transfected with GFP-CAAX, GFP-Trio-D1DSH3 or GFP-Trio-D1+SH3 constructs and
a pull-down assay using glutathione-beads to precipitate GST-Rac1-G15A mutants was performed as described in Materials and Methods. Western
blot analysis showed that Rac1 needed the SH3 domain of Trio-D1 to interact (upper panel), because the binding was less efficient when Trio-D1
lacked the SH3 domain. Lower panel shows GST-Rac1-G15A input. Lower unidentified band in upper panel is due to GST isolation and a-specific
staining of the antibody. Graph below shows the quantification of the binding of GST-Rac1-G15A to Trio-D1DSH3 and Trio-D1+SH3. No significant
difference was found for the presence of the SH3 domain in the binding to GST-Rac1-G15A. Experiment was carried out three times, independently
from each other. Data are mean 6 SEM. ns: not significant.
doi:10.1371/journal.pone.0029912.g003
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Figure 4. Trio-D1 activates RhoG independent of its SH3 domain. (A) HeLa cells were transfected with GFP-CAAX, GFP-Trio-D1DSH3 or GFP-
Trio-D1+SH3 constructs, and RhoG-GTP activity assays were performed as described in Materials and Methods. Western blot analysis showed that
RhoG is activated by Trio-D1, independent of the SH3 domain (upper panel). Middle panel showed the expression of endogenous RhoG in HeLa cells.
Lower panel shows the expression of the Trio constructs. (B) HeLa cells were transfected with GFP-CAAX, GFP-Trio-D1DSH3 or GFP-Trio-D1+SH3
constructs, and a pull-down assay using glutathione-beads to precipitate GST-RhoG-G15A mutants was performed as described in Materials and
Methods. Western blot analysis showed that RhoG required the SH3 domain of Trio-D1 to interact (upper panel), although the binding was less
efficient when Trio-D1 lacked the SH3 domain. Middle panels show the expression of constructs in total cell lysates using an Ab against GFP and the
lower panels show the loading control for RhoG in total cell lysates and GST-RhoG-G15A input. Lower unidentified band in upper panel is due to GST
isolation and a-specific staining of the antibody. Graph below shows the quantification of the binding of GST-RhoG-G15A to Trio-D1DSH3 and Trio-
D1+SH3. A significant difference is found for the presence of the SH3 domain in the binding to GST-RhoG-G15A. Experiment is carried out three times,
independently from each other. Data are mean 6 SEM. * p,0.05. (C) HeLa cells were transfected with RhoG siRNA. Rac1-GTP levels were measured as
described in Materials and Methods and show that GFP-Trio-D1 activates Rac1 independently from RhoG. In fact, Trio-D1-induced Rac1 activity was
increased when RhoG was silenced. Middle panel shows Rac1 protein for loading control in cell lysates and lower panels show the expression of
endogenous RhoG protein and the different Trio-D1 constructs in cell lysates. Graph on the right shows the quantification of the band intensities,
measured using ImageJ software and show that RhoG silencing increased TrioD1-induced Rac1-GTP levels 2-fold.
doi:10.1371/journal.pone.0029912.g004
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DH-PH unit by regulating GTP exchange on the small GTPase

Rac1.

Materials and Methods

Materials
Monoclonal antibodies (mAb) to Rac1, beta-catenin and

paxillin were purchased from Transduction Laboratories (Becton

Dickinson, Amsterdam, The Netherlands). RhoA mAb, p-JNK Ab

and Trio polyclonal Ab (clone D20) were purchased from Santa

Cruz Biotechnology. RhoG mAb was a kind gift from Dr. J.

Meller and Dr. M.A. Schwartz, University of Virginia, Charlottes-

ville, VA, USA). Anti-HA mAb, Texas-Red- or Alexa-633- or

Alexa-405-Phalloidin, Alexa-488-labeled GaM-Ig, Alexa-568-la-

beled GaM-Ig and Alexa-568-labeled GaR-Ig secondary Abs were

purchased from Invitrogen (Leiden, The Netherlands). The GFP

and Myc (clone 9E10) mAbs were purchased from Invitrogen

(Carlsbad, CA, USA). Actin mAb was purchased form Sigma-

Aldrich (Zwijndrecht, the Netherlands).

Cell Culture
HeLa cells were cultured in IMDM (Invitrogen) supplemented

with 10% (v/v) heat-inactivated fetal calf serum, 1% glutamine

and antibiotics and kept at 37uC at 5% CO2, as previously

described by Nethe et al. [10]. Cells were transfected by means of

TransITH-LT1 Transfection Reagent (Mirus Bio, Madison, WI,

USA).

RhoG and Rac1 knockdown
siRNA duplexes against human RhoG (sense, 59-P-GCAA-

CAGGAUGGUGUCAAGUU- 39; antisense, 59-P-UCGUC-

CAAGAUCGACAUCCUU- 39), siRac1, described by De Kreuk

et al [28] and siControl non-targeting siRNA were obtained from

the Dharmacon siRNA collection. HeLa cells were transfected

with 50 nmol/l siRNA by means of INTERFERin transfection

reagent (Polyplus, Illkirch, France). After 48 h, cells were

processed for experiments.

Stable Trio knockdown cells
HeLa cells with stable Trio knockdown through the SilencX

technology were purchased from Tebu-Bio (Heerhugowaard, the

Netherlands). To test stable Trio silencing, Trio protein expression

was routinely tested using pre-cast 3–8% gels (Invitrogen). As a

control, scrambled shRNA sequence was used and stably

expressed in HeLa cells.

cDNA plasmids
GFP-Trio-D2 was generated by cloning Trio-D2 from HA-Trio-

D2 with primers JR2F 59-GAGATCCTCGAGCTGAGCTCGT-

CAGTGCAATTG-39 and JR2R 59-GAGATCGAATTCCTAG-

GCTGCAGAGGAGACCAG-39 into the pEGFP C1 vector using

Figure 5. Silencing Trio results in impaired FN-mediated cell
spreading. (A) shRNA against Trio reduces endogenous Trio
expression in HeLa cells, whereas shCTRL (scrambled sequence) did
not affect Trio expression. Two independent cell line clones were
tested. Actin is shown as protein loading control. (B) Cells were allowed
to spread for 3 hours under serum-free conditions on FN (10 mg/ml).
Phase contrast shows spreading cells in shCTRL-treated cells, whereas
shTrio-treated cells display a round phenotype. Bar, 100 mm. F-actin
staining in red underscores the defect in spreading of the shTrio-treated
cells. Nuclei are in blue. Bar, 20 mm. (C) Percentage of cells that spread
was quantified. A spreading cell was positively scored when the
phenotype resembled the cell shown in figure 5B, right upper image.
Experiment was repeated five times in triplicate. Data are mean 6 SEM.
*p,0.01. (D) Cells were plated on FN-coated gold electrodes and

spreading was measured in time as indicated. ShTrio-treated cells (solid
line) showed reduced spreading capacity compared to shCTRL-treated
cells (dashed line). Per array, 200,000 cells were plated. (E) In a Transwell
system, migration was measured. Filters were coated with FN and HeLa
cells (shCTRL or shTrio) were added to the upper compartment and
allowed to migrate for 5 h to 1% serum, which was present in the lower
compartment. Number of cells that migrated across the filter was
counted by nuclei staining and the migration of shCTRL HeLa cells was
set to 1. Migration across a FN-coated filter is reduced upon Trio
silencing. Experiment was repeated four times in duplicate. Data are
mean 6 SEM. *p,0.01.
doi:10.1371/journal.pone.0029912.g005
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XhoI and EcoRI restriction sites. GFP-Trio-D1 and GFP-Trio-

D1DSH3 were generated by cloning TrioD1 or Trio-D1DSH3 from

Myc-Trio FL with primers JR1F 59-GAGATCCTCGAGCTAG-

GAAAGAGTTCATAATGGCT-39 and JR4R 59-GAGATC-

GAATTCCTAGGCGTCATTGCTGGAGAC-39 or JR3R 59-

GAGATCGAATTCCTACTTAGGGATGTGAATGGGC-39, re-

spectively, into the peGFP C1 vector with XhoI and EcoRI

restriction sites.

Cell spreading
Cells were harvested and washed 3 times in serum-free IMDM

medium. Cells were kept in suspension for 30 minutes at 37uC,

5% CO2. Next, cells were plated on FN-coated surfaces in serum-

free IMDM medium as indicated and subsequently fixed for

immuno-fluorescence imaging analysis or biochemical analysis.

Cell migration
Cells were kept in suspension for 30 minutes at 37uC at 5%

CO2 in serum-free conditions. Next, cells were added to the upper

compartment of a Transwell filter and allowed to migrate through

the filter pores (8 mm) to the other side for 5 h. The filter was

Figure 7. Trio-D1 rescues the spreading and migration defect
in Trio-deficient cells. (A) GFP-CAAX (upper panels) or GFP-Trio-
D1+SH3 (lower panels) were transfected into Trio-deficient cells. Next,
cells were allowed to spread for 3 h on FN. GFP-tagged proteins are
visible in green, F-actin in red and the merge is shown in yellow. Nuclei
are in blue. Bar, 20 mm. (B) Graph shows the quantification of cell
spreading on FN. The maximum diameter of the cell was measured in
mm and displayed on the Y-axis. Experiment was carried out four times
in duplicate. Data are mean 6 SEM. *p,0.01. (C) Bar graph shows
quantification of cell migration assay across FN-coated Transwell filters.
Trio-deficient HeLa cells were transfected with GFP alone or GFP-Trio-
D1 and allowed to migrate from the top to the bottom part of the filter.
The lower compartment contained 1% serum. Number of cells that
migrated across was counted by nuclei staining and GFP-expressing
cells counted were set as 1. Experiment was carried out four times in
duplicate. Data are mean 6 SEM. *p,0.001.
doi:10.1371/journal.pone.0029912.g007

Figure 6. Trio regulates Rac1 activity upon FN-mediated cell
spreading. (A) Rac1 activity was measured with biotin-CRIB peptides
as described in Materials and Methods. Rac1 activity was increased after
3 h of spreading in shCTRL cells, whereas changes in Rac1 activation
were absent in Trio-deficient cells (shTrio). (B) Trio RhoG activity was
measured with GST-ELMO as bait (Materials and Methods). RhoG
activity was unaltered in shCTRL and shTrio cells upon cell spreading on
FN. (C) Early Rac1 activation upon spreading was affected in Trio-
deficient cells as well. Rac1-GTP levels were measured upon 10 or
20 minutes spreading on FN or in suspension as described under A. (D)
RhoA activity was measured in the GST-Rhotekin pull-down assay as
described in Materials and Methods. RhoA activity was high in cells that
were in suspension (0 minutes) and decreased upon spreading on FN
(180 minutes). No difference between shCTRL and shTrio cells was
measured. All experiments described above were carried out at least
three times.
doi:10.1371/journal.pone.0029912.g006
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Figure 8. Trio-D1 regulates the dynamics of lamellipodia. (A) Upper panel shows magnification of lamellipodia, stained for F-actin in red in
cells transfected with scrambled shRNA (shCTRL), shRNA against Trio (shTrio) or Trio-deficient cells transfected with Trio-D1 (shTrio+Trio-D1). Bar,
10 mm. Middle panel shows a still image of a movie showing lamellipodia dynamics in DIC. Dotted line represents the position of the kymograph
that is shown in the lower panel. Kymographs represent the dynamics of lamellipodia for 500 seconds as indicated. Y-axis represents 10 mm distance.
(B) Kymograph analysis as described in Material and Method section of lamellipodia in Trio-deficient HeLa cells was performed. Cells were transfected
with GFP-CAAX or GFP-Trio-D1. Trio-D1 promotes the velocity (left graph), distance (middle graph) and frequency (right graph) of lamellipodia
dynamics significantly. At least nine different lamellipodia were quantified in nine different cells over three independent experiments. Data are mean
6 SEM. *p,0.01; **p,0.01 (C) Kymograph analysis as described above. Trio-deficient HeLa cells were transfected with Trio-D1 containing the SH3
domain (closed bars) or lacking the SH3 domain (open bars). No difference was observed between the two conditions in the velocity (left graph),
distance (middle graph) or frequency (right graph) of lamellipodia. At least nine different lamellipodia were quantified in nine different cells over
three independent experiments. Data are mean 6 SEM.
doi:10.1371/journal.pone.0029912.g008
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coated with 10 mg/mL FN. Cells were removed from the upper

compartment with a cotton swap and cells on the bottom side were

stained with DAPI to mark the nuclei. By confocal imaging and

Image J (NIH), the number of nuclei per field of view was quantified.

Scanning electron microscopy
Transfected cells were grown on glass coverslips, fixed in

McDowell’s fixative for 30 minutes at room temperature, and

processed for scanning electron microscopy as described previously

[29]. Cells were examined on a scanning electron microscope

(model 820; JEOL Corp., Peabody, MA, USA) at 15 kV.

Immuno-fluorescence imaging
HeLa cells were plated on FN-coated glass cover slips for the

indicated times and subsequently fixed and immuno-stained as

described [30]. Staining was followed by secondary staining with

fluorescently labeled Abs. F-actin was visualized by Phalloidin

staining. Images were recorded with a ZEISS LSM510 confocal

microscope with appropriate filter settings. Cross-talk between

different channels was avoided by use of sequential scanning. The

dynamics of membrane ruffles were analyzed on kymographs

generated from the time-lapse movies with ImageJ (NIH).

RhoA, RhoG and Rac1 pull down assay
After lysis of the cells (25 mM Tris, 150 mM, NaCl, 10 mM

MgCl2, 2 mM EDTA, 0.02% SDS, 0.2% Deoxycholate, 1%

Triton X-100, pH 7.4) and centrifugation (10 minutes at 14,000 g)

of the cytoskeletal fraction, C21-Rhotekin-GST fusion protein (for

active RhoA), according to Ren et al. [31], or biotin-tagged CRIB

peptide (for active Rac1), as described previously [10] or GST-

Figure 9. Rac1 is required for Trio-D1-induced lamellipodia. (A) Trio-deficient cells were transfected with Trio-D1 and silenced as indicated
with siRNA duplexes, as described in Materials and Method section. Tubulin serves as a protein loading control. (B) GFP-Trio-D1 is expressed in Trio-
deficient HeLa cells and shows lamellipodia formation in siCTRL and siRhoG-treated cells (arrowheads), whereas siRac1-treated cells showed impaired
Trio-D1-induced lamellipodia formation (arrowheads). Bar, 20 mm. Images at the right show magnification area. Bar, 5 mm. (C) Kymograph analysis as
described in Materials and Methods section of the dynamics of lamellipodia in Trio-deficient HeLa cells was measured. Trio-deficient cells were
rescued with Trio-D1 expression and subsequently transfected with siCTRL (open bars), siRac1 (hatched bars) or siRhoG (closed bars). siRac1-treated
cells showed significant decrease in the velocity (left graph), distance (middle graph) and frequency (right graph) of lamellipodia dynamics. At least
nine different lamellipodia are quantified in nine different cells over three independent experiments. Data are mean 6 SEM. *p,0.01.
doi:10.1371/journal.pone.0029912.g009
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ELMO (GST fusion protein containing the full-length RhoG effector

ELMO) conjugated to glutathione–Sepharose beads (GE Healthcare,

Zeist, The Netherlands), as described previously [6], was added to the

supernatant. After incubation for 30 minutes at 4uC, GST-beads

were centrifuged, washed and analyzed by SDS-PAGE.

Fusion proteins
GST-ELMO, RhoG-G15A and GST-Rac1-G15A fusion proteins

were purified from BL21 Escherichia coli cells (Agilent technologies,

Amstelveen, The Netherlands) with glutathione–Sepharose 4B as

previously described [6]. GST fusion proteins were stored in 30% (v/v)

glycerol at 280uC. The pull down experiment for the Rac1/RhoG-

G15A mutants was performed using the same method as for the

GTPase pull down assays, as described above.

Peptide pull-down assays
Peptide pull-down assays were performed as described previ-

ously [9]. In short, each assay was performed with 5 mg of

indicated biotin-labeled peptide and 25 ml Streptavidin-coated

beads (Sigma-Aldrich) in lysis buffer (25 mM Tris, 150 mM,

NaCl, 10 mM MgCl2, 2 mM EDTA, 0.02% SDS, 0.2%

Deoxycholate, 1% Triton 6100, pH 7.4).

Peptide synthesis
Peptides were synthesized on a peptide synthesizer (Syro II) by

means of Fmoc solid-phase chemistry. Peptides encoded a

biotinylated protein transduction domain (biotin-YARAAAR-

QARAG) [32] followed by the 10 amino acids preceding the

CAAX domain for all Rho GTPase peptides used. The sequences

of Rac1 (P-A) and the Rac1 (RKR-AAA) mutants are

CAAAVKKRKRK and CPPPVKKAAAK, respectively.

Western blot analysis
Samples were analyzed by SDS-PAGE. Proteins were trans-

ferred to 0.45-mm nitro-cellulose sheets (Schleicher and Schnell

Inc., USA) and subsequently incubated with the appropriate Abs

overnight and finally developed with an enhanced chemilumines-

cence (ECL) detection system (Amersham).

Electric Cell-substrate Impedance Sensing (ECIS)
HeLa cells were added at 100,000 cells per well (0.8 cm2) to a

FN-coated electrode-array and allowed to spread in serum-free

conditions. The resistance was measured on line at 37uC at 5%

CO2 with the ECIS-Model-Z Theta Controller from BioPhysics,

Inc. (Troy, NY, USA). After 6–8 h, data were collected and

changes in resistance of the monolayer were analyzed.

Kymograph analysis
Lamellipodia dynamics with statistical significance by means of

kymograph analysis were described by Hinz et al [33]. Briefly,

protruding and retracting membrane ruffles were manually

tracked with ImageJ. Specific parameters of a lamellipodium were

the velocity, in um per minute, persistence in minutes and the

frequency, in ruffle per minute. At least 9 different cells were

analyzed from three independent experiments. Of each cell, at

least two different lamellipodia were analyzed.

Statistics
Student’s t-test for paired samples (two-tailed) was used where

indicated.

Supporting Information

Figure S1 Trio does not affect RhoA inactivation upon
spreading on fibronectin. Cells were allowed to spread on FN

for indicated times in minutes. RhoA activity was measured with

G-LISA according to manufacturer’s protocol (Cytoskeleton Inc,

Denver, CO). Data show that RhoA activity was high in

suspended cells and decreased in time upon spreading. No

difference between shCTRL and shTrio cells was measured.

(TIF)

Figure S2 (A) Expression of Trio-D2 does not rescue
defect in cell spreading. HeLa cells with a stable knock down

for Trio (shTrio) were allowed to spread on fibronectin-coated

surfaces under serum-free conditions. Cells were transfected with

either GFP-Trio-D1 or GFP-Trio-D2 (green), as indicated. Image

analysis by confocal microscopy showed that Trio-D1, but not

Trio-D2 rescued the spreading defect induced by Trio silencing.

Bar, 20 mm. (B) Kymograph analysis as described in Materials and

Methods section of the dynamics of lamellipodia in control HeLa

cells, Trio-deficient HeLa cells and Trio-deficient cells that were

rescued with Trio-D1 expression. Trio-deficient cells showed

significant decrease in the velocity (left graph), but not in the

distance (middle graph) and frequency (right graph) of lamellipodia

dynamics compared to control cells. Rescuing TrioD1 activity in

Trio-deficient cells did promote lamella velocity, distance and

frequency significantly compared to Trio-deficient cells. At least

nine different lamellipodia are quantified in nine different cells

over three independent experiments. Data are mean 6 SEM.

**p,0.01, *p,0.05.

(TIF)
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