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Abstract
Vancomycin	 dosing	 should	 be	 accompanied	 by	 area	 under	 the	 concentration-	
time	 curve	 (AUC)–	guided	 dosing	 using	 model-	informed	 precision	 dosing	 soft-
ware	according	 to	 the	 latest	guidelines.	Although	a	peak	plus	a	 trough	sample	
is	considered	the	gold	standard	to	determine	the	AUC,	single-	sample	strategies	
might	be	more	economic.	Yet,	optimal	sampling	times	for	AUC	determination	of	
vancomycin	have	not	been	systematically	evaluated.	In	the	present	study,	auto-
mated	one-		or	two-	sample	strategies	were	systematically	explored	to	estimate	the	
AUC	with	a	model	averaging	and	a	model	selection	algorithm.	Both	were	com-
pared	with	a	conventional	equation-	based	approach	in	a	simulation-	estimation	
study	 mimicking	 a	 heterogenous	 patient	 population	 (n  =  6000).	 The	 optimal	
single-	sample	timepoints	were	identified	between	2–	6.5 h	post	dose,	with	varying	
bias	values	between	−2.9%	and	1.0%	and	an	imprecision	of	23.3%–	24.0%	across	
the	population	pharmacokinetic	approaches.	Adding	a	second	sample	between	
4.5–	6.0 h	improved	the	predictive	performance	(−1.7%	to	0.0%	bias,	17.6%–	18.6%	
imprecision),	although	the	difference	in	the	two-	sampling	strategies	were	minor.	
The	 equation-	based	 approach	 was	 always	 positively	 biased	 and	 hence	 inferior	
to	 the	 population	 pharmacokinetic	 approaches.	 In	 conclusion,	 the	 approaches	
always	preferred	samples	to	be	drawn	early	in	the	profile	(<6.5 h),	whereas	sam-
pling	 of	 trough	 concentrations	 resulted	 in	 a	 higher	 imprecision.	 Furthermore,	
optimal	sampling	during	the	early	treatment	phase	could	already	give	sufficient	
time	 to	 individualize	 the	 second	 dose,	 which	 is	 likely	 unfeasible	 using	 trough	
sampling.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Gram-	positive	anti-	infective	therapy	using	vancomycin	should	be	supported	by	
population	 pharmacokinetic	 models,	 especially	 in	 patients	 who	 are	 critically	
ill.	Therefore,	1–	2	plasma	samples	(ideally	a	sample	 from	the	early	profile	and	
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INTRODUCTION

To	 treat	 serious	 invasive	 infections	 by	 multiresistant	
Gram-	positive	 bacteria,	 vancomycin	 is	 indisputably	 the	
key	antibiotic,	and	therapeutic	drug	monitoring	(TDM)	in	
conjunction	with	individual	dose	adjustments	is	required	
to	improve	treatment	outcomes.1–	3	The	consensual	phar-
macokinetic	(PK)/pharmacodynamic	index	to	guide	van-
comycin	 is	 the	 area	 under	 the	 concentration-	time	 curve	
(AUC)	per	24 h	divided	by	the	minimum	inhibitory	con-
centration	and	values	between	400	and	600	are	considered	
optimal.4–	6

Historically,	the	clinically	relevant	drug	exposure	was	
either	approximated	via	a	surrogate	trough	measurement	
in	steady	state	or	calculated	with	log-	linear	regression	or	
trapezoidal	 formulas	 using	 multiple	 samples	 from	 the	
same	individual.7,8	Another	appealing	approach	is	to	esti-
mate	the	individual	PK	parameters	using	sparse	sampling	
in	 combination	 with	 population	 PK	 models	 to	 guide	 in-
dividual	 dosing	 decisions.9	 This	 combination	 of	 present	
patient	information	and	prior	knowledge	on	drug	PK	(i.e.,	
embedded	in	the	population	PK	models)	is	usually	termed	
model- informed precision dosing	and	has	recently	received	
increasing	interest	in	treatment	individualization	at	bed-
side.10–	12	The	interest	grounds	on	obvious	benefits,	such	as	
adequately	adjusting	the	treatment	at	early	stages,	the	re-
duced	burden	to	the	patient	caused	through	a	lower	sam-
pling	frequency,	and	a	potentially	higher	rate	of	successful	
therapies,	while	reducing	the	overall	costs.12–	16

Nonetheless,	 it	 is	 crucial	 for	 precision	 dosing	 to	 se-
lect	 the	 correct	 model	 and	 assure	 that	 the	 data	 are	 ac-
curately	 collected	 and	 the	 sampling	 time	 is	 adequately	
documented.17,18	However,	the	recommended	number	of	

required	 samples	 per	 dosing	 interval	 and	 their	 optimal	
timing	 to	 achieve	 accurate	 and	 precise	 estimates	 of	 the	
individual	PK	has	not	been	conclusively	evaluated	yet.19

The	aim	of	the	study	was	to	find	optimal	sampling	strat-
egies	in	intermittent	vancomycin	therapy	to	determine	the	
individual	drug	exposure	in	heterogenous	patients	using	
two	previously	developed	multimodel	approaches.	These	
two	approaches	either	automatically	select	the	most	suit-
able	model	from	a	set	of	candidate	models	per	individual	
(model	selection	algorithm	[MSA])	or	average	the	predic-
tions	 of	 the	 models	 according	 to	 their	 individual	 model	
fit	 (model	averaging	algorithm	[MAA]).17	Therefore,	 the	
predictive	performance	of	various	one-		and	two-	sampling	
strategies	after	the	simulated	first	dose	(FD)	and	in	steady	
state	 (SS)	were	compared	 (i)	within	 the	 two	multimodel	
approaches;	 (ii)	 against	 a	 “classical”	 peak-	trough	 sam-
pling	applied	to	the	two	multimodel	approaches;	and	(iii)	
against	an	equation-	based	approach	(EQA)	that	uses	two	
predetermined	 vancomycin	 samples	 and	 simple	 analytic	
equations	to	calculate	the	area	under	a	monoexponential	
curve.

METHODS

The	simulation-	estimation	study	consisted	of	six	partly	re-
petitive	main	steps	(Figure 1)	and	can	be	divided	into	the	
simulation	 part	 (i.e.,	 creating	 the	 true	 parameters/drug	
exposure)	and	the	estimation	part	(i.e.,	the	estimation	of	
the	drug	exposure	using	a	reduced	number	of	one	or	two	
samples	 per	 patient).	 Details	 of	 the	 study	 methods	 are	
described	 in	 the	next	 section,	and	examples	of	 the	data,	
model	codes,	and	output	are	provided	in	Appendix S1.

a	sample	from	the	late	profile)	should	be	supplied	to	model-	informed	precision	
dosing	software	to	ultimately	predict	precise	individual	doses.
WHAT QUESTION DID THIS STUDY ADDRESS?
Besides	the	influence	of	the	models/approaches	used	for	guidance,	we	hypoth-
esize	that	the	sampling	time	might	alter	prediction	depending	on	the	time	under	
treatment	 or	 the	 number	 of	 samples	 and	 optimized	 sampling	 strategies	 might	
outperform	currently	recommended	strategies.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The	 most	 informative	 sampling	 timepoints	 were	 identified	 to	 be	 from	 the	
early	pharmacokinetic	profile,	whereas	 trough	samples	 resulted	 in	 less-	precise	
predictions.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The	virtual	study	implies	that	model-	informed	precision	dosing	of	vancomycin	
should	be	done	informing	population	pharmacokinetic	approaches	with	earlier	
samples	(less	than	6.5 h)	rather	than	trough	samples.
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The	data	preparation	and	all	 statistical	and	graphical	
evaluations	were	done	in	R	(Version	4.0.2),20	whereas	the	
simulations	and	data-	fitting	processes	were	conducted	in	
NONMEM®	(Version	7.5;	ICON	plc).21

Simulation structure

A	base	set	of	1000	virtual	patients	receiving	a	loading	dose	of	
2000 mg	and	maintenance	doses	of	1250 mg	every	12 h	ad-
ministered	as	60-	min	infusions	and	with	randomly	sampled	
covariates	was	constructed	once.	The	randomly	acquired	co-
variates	were	sampled	from	a	normal	(age	and	body	height),	
log	normal	(body	mass	index	[BMI],	serum	creatinine),	or	a	
binomial	distribution	(sex).	To	mimic	an	adult	population	
with	adequate	covariate	relationships	and	correlations,	body	
height	was	sampled	from	a	normal	distribution	depending	
on	 the	 sex	 (female,	mean	1.65 m;	male,	1.75 m	[standard	
deviation,  0.035	 m]),	 the	 corresponding	 body	 weight	 was	
calculated	based	on	the	simulated	BMI	and	height,	and	age	
was	truncated	to	values	between	20	and	75 years.

To	 obtain	 a	 preferably	 heterogenous	 data	 set,	 the	 PK	
profiles	and	the	“true”	drug	exposures	were	simulated	in	
NONMEM	 via	 sampling	 from	 the	 eta-	distribution	 of	 six	

distinct	population	PK	models,	respectively.	The	resulting	
data	set	contained	1000	patients	each	(6000	in	total,	 i.e.,	
six	 times	 the	 base	 set)	 of	 the	 following	 populations:	 ex-
tremely	obese	using	the	Adane	et	al.	model22;	after	heart	
surgery,	Mangin	et	al.23;	trauma,	Medellín-	Garibay	et	al.24;	
critically	 ill,	 Revilla	 et	 al.25;	 sepsis,	 Roberts	 et	 al.26;	 and	
hospitalized	using	the	Thomson	et	al.	model27	(model	de-
tails	can	be	found	in	Table S1).

The	 true	 drug	 exposures	 obtained	 via	 the	 individual	
simulated	PK	parameters	(i.e.,	simulated	AUC)	were	de-
termined	via	numerical	integration	of	the	concentration-	
time	profiles	from	0	to	12 h	(AUC0–	12)	or	from	48	to	60 h	
(AUC48–	60)	for	steady-	state	conditions.

Estimation elements

Sampling	strategies

The	 previously	 described	 6000	 patients	 were	 reformat-
ted	to	data	sets	containing	a	single	plasma	measurement	
(i.e.,	 coded	 as	 missing	 dependent	 variable	 (MDV)  =  0,	
while	all	other	samples	were	coded	as	MDV = 1)	at	the	
same	timepoint	between	1–	12 h	post	start	of	first	infusion	
(in	30 min	increments)	or	between	49–	60 h	post	start	of	
first	 infusion,	resulting	in	23	data	sets	containing	a	sin-
gle	sample	per	patient	in	the	FD	and	23	single-	sampling	
strategies	in	the	fifth	dosing	interval	(i.e.,	at	approximate	
SS),	respectively.

Furthermore,	to	create	23	data	sets	with	two	samples	in	
the	FD	and	SS,	respectively,	the	optimal	single-	sampling	
strategies	 were	 identified	 (details	 in	 the	 Approaches	 to	
Determine	 Drug	 Exposures	 and	 Identification	 of	 the	
Optimal	 Sampling	 Strategies	 sections).	 The	 data	 sets	
therefore	contained	the	identified	best	single	timepoint	of	
the	multimodel	approaches	(Identification	of	the	Optimal	
Sampling	 Strategies	 section)	 and	 an	 additional	 second	
sample	drawn	between	1–	12 h	after	the	start	of	infusion	
(Figure 1,	Step	6).	The	strategies	that	would	draw	the	sec-
ond	sample	at	 the	 timepoint	of	 the	optimal	 first	 sample	
were	 excluded.	 To	 compare	 the	 two-	sampling	 strategies	
with	 the	 current	 gold	 standard	 in	 reduced	 sampling,	 a	
classical	 “peak-	trough”	 strategy	 was	 prepared	 with	 sam-
ples	drawn	at	1	and	11.5 h	after	the	start	of	infusion.

Approaches	to	determine	drug	exposures

Two	 different	 approaches	 to	 estimate	 the	 vancomy-
cin	 AUC	 using	 the	 reduced	 sampling	 strategies	 (see	 the	
Sampling	 Strategies	 section)	 were	 compared	 and	 con-
sisted	of	two	multimodel	approaches	as	well	as	an	EQA.

F I G U R E  1  Workflow	of	the	simulation-	estimation	
study	consisting	of	six	main	steps.	MAA,	model	averaging	
algorithm;	MAP,	maximum	a	posteriori	prediction;	
MAXEVAL=0,	NONMEM-	specific	MAP	estimation	with	fixed	
population	parameters;	MSA,	model	selection	algorithm;	PK,	
pharmacokinetics
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The	 two	 multimodel	 approaches	 were	 applied	 to	 esti-
mate	 the	 individual	 PK	 parameters	 (including	 the	 AUC)	
with	each	of	 the	sampling	strategies	 through	maximum	a	
posteriori	Bayesian	estimation	(MAXEVAL = 0	procedure	
in	NONMEM®).	Therefore,	the	approaches	either	automat-
ically	estimated	a	weighted	average	of	the	individual	drug	
exposure	using	a	set	of	six	population	PK	models	simulta-
neously	(i.e.,	MAA)	or	selected	the	individually	best-	fitting	
model	from	the	same	set	of	models	(MSA),	as	described	by	
Uster	et	al.17	In	detail,	these	automated	algorithms	comprise	
three	steps:	 (i)	maximum	a	posteriori	Bayesian	estimation	
(MAXEVAL = 0)	of	the	individual	PK	parameter	and	drug	
exposure	with	each	model	(i.e.,	AUC	obtained	via	numeri-
cal	 integration),	(ii)	automated	comparison	of	 the	individ-
ual	model	fit	via	the	likelihood	(LL),	and	(iii)	adjustments	of	
the	predictions	(i.e.,	the	AUC)	by	the	respective	weighting	
(Equation 1)	with	 the	best-	fitting	model	given	 the	highest	
influence	 and	 either	 building	 a	 weighted	 average	 (MAA)	
or	selecting	the	best	model	(MSA).	The	weighting	scheme,	
therefore,	compared	the	maximum	LL	obtained	through	the	
NONMEM	objective	function	value	(OFV)	of	the	ith	model	
relative	to	the	set	of	n	models	included	in	the	algorithms:

The	two	approaches	were	compared	to	an	EQA	as	proposed	
by	Pai	et	al.,28	which	consisted	of	the	following:	a	post	dis-
tributional	peak	(i.e.,	2 h	after	the	start	of	 infusion)	and	a	
trough	 measurement	 (0.5  h	 before	 the	 next	 dose)	 were	
used	 to	 determine	 the	 individual	 elimination	 rate	 con-
stant	(Ke)	using	the	Sawchuk–	Zaske	method	(Equation 2).	
Subsequently,	the	concentration	at	the	theoretical	start	of	in-
fusion	(CT0)	and	the	true	trough	concentration	immediately	
before	the	next	dose	(CT12)	were	back-	extrapolated	from	the	
mono-	exponential	curve	via	 transposing	Equation (2)	(de-
tails	in	Appendix S1):

with	CP	and	CT	being	the	concentrations	close	to	the	peak	
and	 trough	 levels,	 respectively,	 and	 TP	 and	 TT	 being	 the	
timepoints	of	the	concentrations,	respectively.	The	AUC0–	12	
was	then	approximated	via	Equation (3):

Given	the	statistical	nature	of	the	simulation	to	assign	neg-
ative	plasma	measurements	in	some	cases	(2.7%	of	the	pa-
tients),	 but	 the	 Sawchuk–	Zaske	 method	 not	 allowing	 for	

them,	 plasma	 concentrations	 smaller	 than	 0.2  mg/L	 were	
fixed	to	0.2 mg/L	representing	10%	of	the	typical	lower	limit	
of	quantification	for	vancomycin.

Identification	of	the	optimal	sampling	strategies

To	 assess	 the	 sampling	 strategies	 of	 the	 multimodel	 ap-
proaches	in	FD	or	SS	and	to	compare	them	with	the	EQA,	
trends	of	the	median	percentage	error	(MdPE;	Equation 5)	
and	the	interquartile	range	(IQR;	Equation 6)	of	the	rela-
tive	 prediction	 errors	 (rPE;	 Equation  4)	 across	 the	 total	
population	were	evaluated:

with	quartile1	and	quartile3	being	the	25th	and	75th	percen-
tiles	of	all	rPE	of	the	AUC	over	the	6000	(=	i)	patients,	re-
spectively.	Unbiased	approaches	should	therefore	result	 in	
an	MdPE	close	to	0	and	the	IQR	should	be	as	low	as	possible,	
only	 being	 limited	 by	 the	 residual	 unexplained	 variability	
components	of	the	simulation	models.

To	identify	the	optimal	sampling	timepoints	of	the	mul-
timodel	approaches	for	the	total	population,	the	MdPE	and	
IQR	were	separately	evaluated	with	the	best	metric	given	
the	highest	 ranking	 (Table S2	contains	an	example).	The	
best	 resulting	 ranking	 of	 the	 median	 and	 IQR	 (i.e.,	 the	
minimum	 sum	 of	 both)	 together	 indicated	 the	 optimal	
single-	sampling	 timepoint	 of	 the	 approach,	 that	 is,	 the	
ideal	 combination	 of	 a	 low	 bias	 and	 a	 small	 imprecision	
compared	 with	 the	 other	 sampling	 strategies	 within	 the	
respective	 approach.	 In	 case	 the	 combined	 ranking	 from	
the	MdPE	and	IQR	was	equal	at	two	or	more	timepoints	
per	approach,	a	better	IQR	was	prioritized.	Subsequently,	
the	identified	single-	sampling	timepoint	was	used	as	first	
sampling	in	the	two-	sampling	strategies	(see	the	Sampling	
Strategies	section).

(1)WOFVi
=

LLi
∑n

1 LLn
=

e(−0.5×OFVi)
∑n

1 e
(−0.5×OFVn)

.

(2)Ke =
Ln

(

CP
CT

)

TT − TP

(3)AUC0−12 =
CT0 − CT12

Ke
.

(4)rPE =
predicted AUC − simulated AUC

simulated AUC
∗100

(5)MdPE =median
({

rPE0 … rPEi
})

(6)

IQR = quartile3
({

rPE0 … rPEi
})

− quartile1
({

rPE0 … rPEi
})

T A B L E  1 	 Demographics	of	the	simulated	population	
(n = 5925)

Characteristics Value, mean (range)

Age,	years 50	(20–	75)

Body	mass	index,	kg/m2 25	(18–	34)

Height,	m 1.7	(1.55–	1.85)

Serum	creatinine,	μmol/L 82	(29–	198)

Weight,	kg 73	(50–	102)
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RESULTS

Simulated study population

The	study	population	consisted	of	6000	individuals	from	
six	 distinct	 populations	 with	 the	 representative	 covari-
ate	distributions	displayed	 in	Table 1	and	Figure S1.	To	
avoid	unreasonable	PK	parameters,	the	eta	values	of	the	
simulation	models	were	restricted	to	±2.8	times	standard	
deviation	(i.e.,	covering	99.5%	of	the	drawn	values	under	
ideal	normal	assumption),	which	resulted	in	the	exclusion	
of	75	simulated	patients	 in	the	subsequent	analysis.	The	
PK	parameter	distributions	of	the	remaining	5925	patients	
are	displayed	in	Figure S2.	Implausible	covariate	relation-
ships	were	avoided	by	restricting	 the	age	 to	20–	75 years	
and	correlating	body	weight,	height,	and	sex	via	BMI.	The	
true	individual	PK	profiles	can	be	inspected	in	Figure S3	

and	resulted	in	true	median	AUC0–	12	of	253 mg/L*h	(IQR,	
192–	324  mg/L*h)	 and	 AUC48–	60	 of	 299  mg/L*h	 (IQR,	
226–	399 mg/L*h).

Estimation of the AUC and identification  
of the optimal sampling timepoints

In	the	following,	we	depict	the	identification	of	the	opti-
mal	 sampling	 timepoints	 of	 the	 multimodel	 approaches	
in	 the	 simulated	 population	 (n  =  5925)	 and	 therefore	
compare	 the	 predictive	 performance	 in	 the	 MAA	 and	
MSA,	respectively.	In	general,	the	predictive	performance	
of	the	two	approaches	resulted	in	MdPEs	between	−4.3%	
and	2.2%	across	the	single-	sample	strategies,	whereas	the	
IQR	 followed	 an	 asymmetric	 positive	 parabolic	 pattern	
(Figure 2).

F I G U R E  2  Performance	metrics	of	the	multimodel	approaches	using	the	single-	sample	strategies	in	the	total	population	(n = 5925).	The	
median	percentage	error	and	the	interquartile	range	(IQR)	of	the	relative	prediction	errors	of	the	area	under	the	concentration-	time	curve	
represent	accuracy	and	imprecision,	respectively.	Time	after	dose	indicates	the	timepoint	of	the	single	sample	drawn	in	the	5925	patients	
either	in	the	first	dosing	interval	(i.e.,	first	dose)	or	the	fifth	(i.e.,	steady	state).	The	filled	shapes	indicate	the	optimal	first	sampling	timepoint	
per	approach	identified	via	the	metrics	ranking.	MAA,	model	averaging	algorithm;	MSA,	model	selection	algorithm
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Both	 approaches	 consistently	 estimated	 the	 AUC0–	12	
and	 AUC48–	60	 with	 a	 low	 bias,	 although	 the	 MSA	 re-
sulted	 in	 slightly	 more	 negative	 MdPE	 (i.e.,	 between	
−4.3%	and − 1.2%)	across	the	single-	sampling	strategies.	
Sampling	time	intervals	with	favorable	metrics	in	the	FD	
were	 identified	between	1.5	and	5.5 h.	The	IQR	differed	
less	across	the	single-	sampling	strategies,	when	being	in	
SS,	 and	 resulted	 in	 a	 slightly	 later	 optimal	 time	 interval	
between	4.5	and	8.5 h.	The	best	single-	sampling	strategies	
with	the	best	metrics	were	identified	at	2–	2.5 h	(FD)	and	
6–	6.5 h	(SS)	and	were	statistically	significant	between	the	
MAA	and	MSA	(Table 2).

The	sample	at	2	h	post	start	of	infusion	informed	the	
two	multimodel	approaches	to	an	extent,	that	the	second	
sample	mainly	resulted	in	an	improved	precision.	The	IQR	
(ranging	 from	 23.0%	 to	 43.2%	 using	 the	 single-	sampling	
strategies)	 was	 reduced	 to	 values	 between	 17.3%	 and	
21.9%	in	the	FD	and	18.0%	and	20.7%	in	the	SS	(Figure 3).	
Therefore,	the	timing	of	the	second	sample	seemed	to	be	
much	 less	 influential	given	 the	amplitude	of	 the	perfor-
mance	metrics	in	the	two-	sampling	strategies	was	further	
reduced.	 Nonetheless,	 the	 time	 interval	 resulting	 in	 the	
best	performance	metrics	of	the	MAA	and	MSA	was	iden-
tified	between	4.5	and	6.0 h	in	both	the	FD	and	SS.	The	
AUC	predictions	using	the	MAA	resulted	in	MdPE	values	
between	−0.8%	and	0.8%	independently	of	the	FD	or	SS,	
whereas	the	MSA	resulted	in	slightly	lower	MdPE	values	
(−3.0%	to	−0.7%).	The	optimal	second	sampling	timepoint	
of	the	MAA	was	identified	at	5 h	in	FD	as	well	as	in	SS,	
while	the	MSA	benefited	most	from	a	sample	drawn	at	6 h	
in	FD	and	4.5 h	in	SS.

When	 comparing	 the	 optimized	 sampling	 strategies	
with	the	“peak-	trough”	strategy	using	MAA	or	MSA,	the	
optimal	 two-	sample	strategy	(e.g.,	 two	samples	drawn	at	
2.0 h	and	5.0 h	for	the	MAA	in	the	FD;	Table 2)	outper-
formed	 the	 “peak-	trough”	 strategy.	 Yet,	 the	 differences	
between	 the	 “peak-	trough”	 and	 the	 optimal	 two-	sample	
strategy	 were	 minor,	 for	 example,	 MdPE	 and	 IQR	
were − 0.6%	and	18.4%	 for	 the	“peak-	trough”	compared	
with	0.0%	and	18.1%	for	the	optimal	two-	sample	strategy	
of	the	MAA.	The	optimized	single-	sample	strategy	on	the	
other	hand	resulted	in	less	precise	but	comparably	accu-
rate	predictions.

The	AUC	calculations	over	all	5925	patients	using	the	
EQA	 were	 positively	 biased	 using	 the	 samples	 (3.0	 and	
11.5 h)	in	FD	(MdPE,	7.4%)	or	the	samples	(3.0	and	11.5 h)	
in	SS	(MdPE,	3.2%)	with	an	imprecision	of	26.0%	(FD)	and	
21.8%	(SS).	Both	multimodel	approaches	were	outperform-
ing	 the	 EQA	 even	 using	 the	 optimized	 single	 sampling.	
Given	that	the	population	was	simulated	using	three	one-	
compartment	 and	 three	 two-	compartment	 models	 and	
that	the	EQA	ignores	the	α-	distribution	phase,	it	might	be	
expected	that	the	EQA	performs	worse	in	the	simulations	 T
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from	 two-	compartment	 models.	 However,	 a	 subpopu-
lation	 analysis	 (Figure  S4)	 revealed	 no	 such	 trends.	 In	
fact,	the	calculations	were	more	precise	in	the	simulation	
from	the	two-	compartment	Thomson	et	al.	model27	(i.e.,	
TDM	population;	IQR,	20.2%	[FD]	and	20.9%	[SS])	com-
pared	with	simulations	from	the	one-	compartment	Adane	
et	al.22	and	Roberts	et	al.26	models	(IQR,	22.5%–	29.1%).

For	completeness,	the	six	mono	models	used	for	sim-
ulating	 the	 patients	 were	 evaluated	 in	 estimating	 the	
AUC0–	12	and	AUC48–	60	using	the	same	sampling	strategies	
(see	the	Sampling	Strategies	section)	in	the	5925	patients	
(Figures S5	and	S6).	Expectedly,	these	models	developed	
in	 special	 populations	 performed	 highly	 variable	 in	 the	
heterogenous	 total	 population	 (Figure  S5).	 Nonetheless,	
the	 optimal	 timepoint	 to	 draw	 a	 single	 sample	 was	

always	identified	to	be	before	6.5 h	in	FD	and	8.0 h	in	SS	
(Table S3).	The	two-	sampling	strategies	indicated	that	the	
second	sample	provides	the	most	information,	if	drawn	in	
the	 time	 interval	between	1–	5 h,	 except	estimating	with	
the	 Mangin	 et	 al.23	 model	 (Figure  S6).	 The	 optimized	
two-	sampling	strategies	outperformed	the	“classical	peak-	
trough”	strategies	in	the	models,	respectively	(Table S3).

DISCUSSION

For	 accurate	 dose	 adjustments,	 model-	informed	 preci-
sion	 dosing	 needs	 reliable	 estimates	 of	 the	 individual	
PK.	Therefore,	 the	optimal	sampling	 time	as	well	as	 the	
number	 of	 samples	 is	 complementing	 the	 challenge	 of	

F I G U R E  3  Performance	metrics	of	the	multimodel	approaches	using	the	optimized	first	sample	and	a	second	sample	drawn	in	between	
1–	12 h	after	the	start	of	infusion.	Time	after	dose	indicates	the	timepoint	of	the	second	sample	drawn	in	the	5925	patients	either	in	the	first	
dosing	interval	(i.e.,	first	dose)	or	the	fifth	(i.e.,	steady	state)	additionally	to	the	optimal	first	sampling	timepoint,	which	is	indicated	with	
the	gap	in	the	lines.	The	filled	shapes	indicate	the	optimal	second	sampling	timepoint	per	approach	identified	via	the	metrics	ranking.	
1-	S.	displays	the	performance	metrics	of	the	optimal	single-	sample	strategy	of	the	two	approaches	(see	Table 2);	1 + 11.5	represents	the	
performance	metrics	of	the	gold	standard	“peak-	trough”	sampling	strategies	in	the	two	approaches.	Black	'x'	indicate	the	performance	
metrics	of	the	EQA	as	a	reference.	EQA,	equation-	based	approach;	FD,	first	dose;	IQR,	interquartile	range	of	the	relative	prediction	errors	of	
the	area	under	the	concentration-	time	curve;	MAA,	model	averaging	algorithm;	MSA,	model	selection	algorithm;	SS,	steady	state

First dose Steady-state
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selecting	 the	 correct	 model	 and	 minimization	 of	 docu-
mentation	errors.17,18	 In	 this	study,	we	evaluated	 the	 in-
fluence	of	sampling	time	and	number	in	two	multimodel	
approaches	 and	 demonstrated	 that	 the	 optimal	 sample	
was	never	identified	at	trough	levels.

The	multimodel	approaches	(MAA,	MSA)	preferred	an	
FD	sample	around	2 h	after	the	start	of	infusion	to	opti-
mally	estimate	the	AUC,	and	later	sampling	times	nega-
tively	 affected	 the	 precision	 of	 the	 AUC	 estimate.	 In	 SS	
conditions,	the	optimal	single-	sampling	timepoint	shifted	
to	later	timings	around	6 h	after	the	start	of	infusion.	Yet,	
a	smaller	amplitude	of	performance	metrics	implied	that	a	
larger	interval	of	sampling	times	ranging	from	4.5	to	8.5 h	
can	lead	to	optimal	estimation	of	the	AUC	in	SS.

A	 second	 sample	 in	 addition	 to	 the	 optimal	 single	
sample	 improved	 the	 precision	 of	 the	 AUC	 prediction.	
Interestingly,	 the	 timing	 of	 second	 sample	 was	 less	 im-
portant,	 in	 particular	 in	 SS.	 Furthermore,	 the	 classical	
“peak-	trough”	strategy	resulted	in	acceptable	predictions	
of	the	AUC	when	using	a	model-	based	approach.

The	 EQA	 provided	 positively	 biased	 estimates	 of	 the	
AUC,	 and	 the	 imprecision	 of	 the	 AUC	 estimates	 even	
exceeded	 the	 optimized	 single-	sampling	 strategies	 using	
the	multimodel	approaches	in	FD.	Hence,	the	simplicity	
of	 the	EQA,	as	 its	major	advantage,	was	opposed	by	 the	
persistent	overprediction,	which	is	also	discussed	but	de-
emphasized	by	the	authors	themselves.28	In	addition,	the	
approach	always	requires	two	samples.

Although	 adjustments	 in	 the	 later	 stages	 of	 the	 anti-
biotic	therapy	might	be	important	to	reduce	toxicity,	it	is	
essential	to	achieve	optimal	drug	exposure	as	early	as	pos-
sible	to	ensure	a	rapidly	effective	antibiosis.29	The	identi-
fied	early	FD	optimal	 sampling	 time	windows	allow—	if	
rapid	 bioanalytics	 of	 the	 vancomycin	 plasma	 concen-
tration	 are	 available—	dose	 adjustments	 within	 the	 first	
dosing	interval.	This	might	give	sufficient	time	to	already	
individualize	 the	 second	 dose,	 which	 is	 impossible	 with	
trough	sampling.

The	 study	by	Shingde	et	al.	 investigated	 the	predic-
tive	performance	of	seven	population	PK	models	when	
supplied	 with	 a	 single	 sample	 at	 different	 timepoints	
from	 22	 patients	 after	 the	 first	 dose	 of	 vancomycin.30	
Another	 large	 prospective	 study	 by	 Neely	 et	 al.	 com-
pared	 a	 nonparametric	 dose	 optimization	 tool	 among	
others	 and	 revealed	 that	 79%	 of	 the	 optimal	 sampling	
timepoints	were	not	at	 the	 trough.31	Both	studies	were	
in	line	with	our	findings	and	emphasize	that	pretrough	
measurements	should	be	preferred	in	drug	exposure	es-
timation	even	when	using	model-	informed	approaches.	
Another	study	evaluated	the	accuracy	and	precision	of	
one-		 and	 two-	sample	based	Bayesian	AUC	estimations	
in	12	richly	sampled	patients	under	tobramycin	therapy.	
The	samples	drawn	at	 less	 than	3 h	were	 less	biased.32	

Further	 studies	 compared	 the	 performance	 of	 various	
vancomycin	PK	models	but	focused	on	the	model	struc-
ture	and	the	underlying	population	instead	of	the	exact	
sample	timing.13,33–	37

A	strength	of	 the	 study	 is	 the	broad	heterogeneity	of	
the	virtual	population	simulated	with	six	distinct	and	clin-
ically	 relevant	models.	This	comes	along	with	 the	draw-
back	 of	 every	 simulation	 being	 on	 a	 conceptual	 level.	
Given	that	the	vancomycin	samples	were	purely	measured	
for	 the	 purpose	 of	 AUC	 calculation	 and	 to	 solely	 derive	
optimized	sampling	timepoints,	this	study	did	not	inves-
tigate	different	dosing	regimens	or	variability	of	the	sam-
pling	 times.	 Yet,	 small-	scale	 investigations	 with	 clinical	
data	 sets	 are	 in	 line	 with	 our	 findings.30–	32	 Nonetheless,	
these	 results	 should	 be	 validated	 in	 prospective	 clinical	
studies	covering	 the	 influences	of	different	dosing	 inter-
vals,	 dosing	 adjustments,	 and	 sampling/dose	 timing	 un-
certainties.	Therefore,	our	 results	 could	directly	 indicate	
the	ideal	and	reduced	sampling	intervals	to	lessen	the	bur-
den	on	patients.

In	conclusion,	our	study	suggests	that	a	single	sample	
drawn	in	the	first	6.5 h	of	the	dosing	interval	is	preferred	
over	 sampling	 once	 at	 trough	 to	 predict	 the	 vancomy-
cin	drug	exposure	using	the	MAA	and	MSA.	This	seems	
particularly	useful	after	the	FD	and	gives	sufficient	time	
to	already	individualized	the	subsequent	dose.	For	two-	
sampling	strategies,	the	impact	of	the	second	sampling	
time	 was	 less	 marked.	 This	 implies	 a	 reduced	 need	 of	
resource	 allocation	 when	 sampled	 twice	 as	 the	 algo-
rithms	do	not	demand	samples	at	extremely	small	time	
windows.	 The	 nonmodel	 based	 EQA,	 although	 always	
requiring	 two	 samples,	 displayed	 biased	 estimates	 of	
the	 AUC	 and	 was	 inferior	 compared	 w	 the	 optimized	
single-		 and	 two-	sampling	 strategies	 of	 the	 multimodel	
approaches.
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