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Abstract
Vancomycin dosing should be accompanied by area under the concentration-
time curve (AUC)–guided dosing using model-informed precision dosing soft-
ware according to the latest guidelines. Although a peak plus a trough sample 
is considered the gold standard to determine the AUC, single-sample strategies 
might be more economic. Yet, optimal sampling times for AUC determination of 
vancomycin have not been systematically evaluated. In the present study, auto-
mated one- or two-sample strategies were systematically explored to estimate the 
AUC with a model averaging and a model selection algorithm. Both were com-
pared with a conventional equation-based approach in a simulation-estimation 
study mimicking a heterogenous patient population (n  =  6000). The optimal 
single-sample timepoints were identified between 2–6.5 h post dose, with varying 
bias values between −2.9% and 1.0% and an imprecision of 23.3%–24.0% across 
the population pharmacokinetic approaches. Adding a second sample between 
4.5–6.0 h improved the predictive performance (−1.7% to 0.0% bias, 17.6%–18.6% 
imprecision), although the difference in the two-sampling strategies were minor. 
The equation-based approach was always positively biased and hence inferior 
to the population pharmacokinetic approaches. In conclusion, the approaches 
always preferred samples to be drawn early in the profile (<6.5 h), whereas sam-
pling of trough concentrations resulted in a higher imprecision. Furthermore, 
optimal sampling during the early treatment phase could already give sufficient 
time to individualize the second dose, which is likely unfeasible using trough 
sampling.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Gram-positive anti-infective therapy using vancomycin should be supported by 
population pharmacokinetic models, especially in patients who are critically 
ill. Therefore, 1–2 plasma samples (ideally a sample from the early profile and 
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INTRODUCTION

To treat serious invasive infections by multiresistant 
Gram-positive bacteria, vancomycin is indisputably the 
key antibiotic, and therapeutic drug monitoring (TDM) in 
conjunction with individual dose adjustments is required 
to improve treatment outcomes.1–3 The consensual phar-
macokinetic (PK)/pharmacodynamic index to guide van-
comycin is the area under the concentration-time curve 
(AUC) per 24 h divided by the minimum inhibitory con-
centration and values between 400 and 600 are considered 
optimal.4–6

Historically, the clinically relevant drug exposure was 
either approximated via a surrogate trough measurement 
in steady state or calculated with log-linear regression or 
trapezoidal formulas using multiple samples from the 
same individual.7,8 Another appealing approach is to esti-
mate the individual PK parameters using sparse sampling 
in combination with population PK models to guide in-
dividual dosing decisions.9 This combination of present 
patient information and prior knowledge on drug PK (i.e., 
embedded in the population PK models) is usually termed 
model-informed precision dosing and has recently received 
increasing interest in treatment individualization at bed-
side.10–12 The interest grounds on obvious benefits, such as 
adequately adjusting the treatment at early stages, the re-
duced burden to the patient caused through a lower sam-
pling frequency, and a potentially higher rate of successful 
therapies, while reducing the overall costs.12–16

Nonetheless, it is crucial for precision dosing to se-
lect the correct model and assure that the data are ac-
curately collected and the sampling time is adequately 
documented.17,18 However, the recommended number of 

required samples per dosing interval and their optimal 
timing to achieve accurate and precise estimates of the 
individual PK has not been conclusively evaluated yet.19

The aim of the study was to find optimal sampling strat-
egies in intermittent vancomycin therapy to determine the 
individual drug exposure in heterogenous patients using 
two previously developed multimodel approaches. These 
two approaches either automatically select the most suit-
able model from a set of candidate models per individual 
(model selection algorithm [MSA]) or average the predic-
tions of the models according to their individual model 
fit (model averaging algorithm [MAA]).17 Therefore, the 
predictive performance of various one- and two-sampling 
strategies after the simulated first dose (FD) and in steady 
state (SS) were compared (i) within the two multimodel 
approaches; (ii) against a “classical” peak-trough sam-
pling applied to the two multimodel approaches; and (iii) 
against an equation-based approach (EQA) that uses two 
predetermined vancomycin samples and simple analytic 
equations to calculate the area under a monoexponential 
curve.

METHODS

The simulation-estimation study consisted of six partly re-
petitive main steps (Figure 1) and can be divided into the 
simulation part (i.e., creating the true parameters/drug 
exposure) and the estimation part (i.e., the estimation of 
the drug exposure using a reduced number of one or two 
samples per patient). Details of the study methods are 
described in the next section, and examples of the data, 
model codes, and output are provided in Appendix S1.

a sample from the late profile) should be supplied to model-informed precision 
dosing software to ultimately predict precise individual doses.
WHAT QUESTION DID THIS STUDY ADDRESS?
Besides the influence of the models/approaches used for guidance, we hypoth-
esize that the sampling time might alter prediction depending on the time under 
treatment or the number of samples and optimized sampling strategies might 
outperform currently recommended strategies.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The most informative sampling timepoints were identified to be from the 
early pharmacokinetic profile, whereas trough samples resulted in less-precise 
predictions.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The virtual study implies that model-informed precision dosing of vancomycin 
should be done informing population pharmacokinetic approaches with earlier 
samples (less than 6.5 h) rather than trough samples.
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The data preparation and all statistical and graphical 
evaluations were done in R (Version 4.0.2),20 whereas the 
simulations and data-fitting processes were conducted in 
NONMEM® (Version 7.5; ICON plc).21

Simulation structure

A base set of 1000 virtual patients receiving a loading dose of 
2000 mg and maintenance doses of 1250 mg every 12 h ad-
ministered as 60-min infusions and with randomly sampled 
covariates was constructed once. The randomly acquired co-
variates were sampled from a normal (age and body height), 
log normal (body mass index [BMI], serum creatinine), or a 
binomial distribution (sex). To mimic an adult population 
with adequate covariate relationships and correlations, body 
height was sampled from a normal distribution depending 
on the sex (female, mean 1.65 m; male, 1.75 m [standard 
deviation,  0.035 m]), the corresponding body weight was 
calculated based on the simulated BMI and height, and age 
was truncated to values between 20 and 75 years.

To obtain a preferably heterogenous data set, the PK 
profiles and the “true” drug exposures were simulated in 
NONMEM via sampling from the eta-distribution of six 

distinct population PK models, respectively. The resulting 
data set contained 1000 patients each (6000 in total, i.e., 
six times the base set) of the following populations: ex-
tremely obese using the Adane et al. model22; after heart 
surgery, Mangin et al.23; trauma, Medellín-Garibay et al.24; 
critically ill, Revilla et al.25; sepsis, Roberts et al.26; and 
hospitalized using the Thomson et al. model27 (model de-
tails can be found in Table S1).

The true drug exposures obtained via the individual 
simulated PK parameters (i.e., simulated AUC) were de-
termined via numerical integration of the concentration-
time profiles from 0 to 12 h (AUC0–12) or from 48 to 60 h 
(AUC48–60) for steady-state conditions.

Estimation elements

Sampling strategies

The previously described 6000 patients were reformat-
ted to data sets containing a single plasma measurement 
(i.e., coded as missing dependent variable (MDV)  =  0, 
while all other samples were coded as MDV = 1) at the 
same timepoint between 1–12 h post start of first infusion 
(in 30 min increments) or between 49–60 h post start of 
first infusion, resulting in 23 data sets containing a sin-
gle sample per patient in the FD and 23 single-sampling 
strategies in the fifth dosing interval (i.e., at approximate 
SS), respectively.

Furthermore, to create 23 data sets with two samples in 
the FD and SS, respectively, the optimal single-sampling 
strategies were identified (details in the Approaches to 
Determine Drug Exposures and Identification of the 
Optimal Sampling Strategies sections). The data sets 
therefore contained the identified best single timepoint of 
the multimodel approaches (Identification of the Optimal 
Sampling Strategies section) and an additional second 
sample drawn between 1–12 h after the start of infusion 
(Figure 1, Step 6). The strategies that would draw the sec-
ond sample at the timepoint of the optimal first sample 
were excluded. To compare the two-sampling strategies 
with the current gold standard in reduced sampling, a 
classical “peak-trough” strategy was prepared with sam-
ples drawn at 1 and 11.5 h after the start of infusion.

Approaches to determine drug exposures

Two different approaches to estimate the vancomy-
cin AUC using the reduced sampling strategies (see the 
Sampling Strategies section) were compared and con-
sisted of two multimodel approaches as well as an EQA.

F I G U R E  1   Workflow of the simulation-estimation 
study consisting of six main steps. MAA, model averaging 
algorithm; MAP, maximum a posteriori prediction; 
MAXEVAL=0, NONMEM-specific MAP estimation with fixed 
population parameters; MSA, model selection algorithm; PK, 
pharmacokinetics
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The two multimodel approaches were applied to esti-
mate the individual PK parameters (including the AUC) 
with each of the sampling strategies through maximum a 
posteriori Bayesian estimation (MAXEVAL = 0 procedure 
in NONMEM®). Therefore, the approaches either automat-
ically estimated a weighted average of the individual drug 
exposure using a set of six population PK models simulta-
neously (i.e., MAA) or selected the individually best-fitting 
model from the same set of models (MSA), as described by 
Uster et al.17 In detail, these automated algorithms comprise 
three steps: (i) maximum a posteriori Bayesian estimation 
(MAXEVAL = 0) of the individual PK parameter and drug 
exposure with each model (i.e., AUC obtained via numeri-
cal integration), (ii) automated comparison of the individ-
ual model fit via the likelihood (LL), and (iii) adjustments of 
the predictions (i.e., the AUC) by the respective weighting 
(Equation 1) with the best-fitting model given the highest 
influence and either building a weighted average (MAA) 
or selecting the best model (MSA). The weighting scheme, 
therefore, compared the maximum LL obtained through the 
NONMEM objective function value (OFV) of the ith model 
relative to the set of n models included in the algorithms:

The two approaches were compared to an EQA as proposed 
by Pai et al.,28 which consisted of the following: a post dis-
tributional peak (i.e., 2 h after the start of infusion) and a 
trough measurement (0.5  h before the next dose) were 
used to determine the individual elimination rate con-
stant (Ke) using the Sawchuk–Zaske method (Equation 2). 
Subsequently, the concentration at the theoretical start of in-
fusion (CT0) and the true trough concentration immediately 
before the next dose (CT12) were back-extrapolated from the 
mono-exponential curve via transposing Equation (2) (de-
tails in Appendix S1):

with CP and CT being the concentrations close to the peak 
and trough levels, respectively, and TP and TT being the 
timepoints of the concentrations, respectively. The AUC0–12 
was then approximated via Equation (3):

Given the statistical nature of the simulation to assign neg-
ative plasma measurements in some cases (2.7% of the pa-
tients), but the Sawchuk–Zaske method not allowing for 

them, plasma concentrations smaller than 0.2  mg/L were 
fixed to 0.2 mg/L representing 10% of the typical lower limit 
of quantification for vancomycin.

Identification of the optimal sampling strategies

To assess the sampling strategies of the multimodel ap-
proaches in FD or SS and to compare them with the EQA, 
trends of the median percentage error (MdPE; Equation 5) 
and the interquartile range (IQR; Equation 6) of the rela-
tive prediction errors (rPE; Equation  4) across the total 
population were evaluated:

with quartile1 and quartile3 being the 25th and 75th percen-
tiles of all rPE of the AUC over the 6000 (= i) patients, re-
spectively. Unbiased approaches should therefore result in 
an MdPE close to 0 and the IQR should be as low as possible, 
only being limited by the residual unexplained variability 
components of the simulation models.

To identify the optimal sampling timepoints of the mul-
timodel approaches for the total population, the MdPE and 
IQR were separately evaluated with the best metric given 
the highest ranking (Table S2 contains an example). The 
best resulting ranking of the median and IQR (i.e., the 
minimum sum of both) together indicated the optimal 
single-sampling timepoint of the approach, that is, the 
ideal combination of a low bias and a small imprecision 
compared with the other sampling strategies within the 
respective approach. In case the combined ranking from 
the MdPE and IQR was equal at two or more timepoints 
per approach, a better IQR was prioritized. Subsequently, 
the identified single-sampling timepoint was used as first 
sampling in the two-sampling strategies (see the Sampling 
Strategies section).

(1)WOFVi
=

LLi
∑n

1 LLn
=

e(−0.5×OFVi)
∑n

1 e
(−0.5×OFVn)

.

(2)Ke =
Ln

(

CP
CT

)

TT − TP

(3)AUC0−12 =
CT0 − CT12

Ke
.

(4)rPE =
predicted AUC − simulated AUC

simulated AUC
∗100

(5)MdPE =median
({

rPE0 … rPEi
})

(6)

IQR = quartile3
({

rPE0 … rPEi
})

− quartile1
({

rPE0 … rPEi
})

T A B L E  1   Demographics of the simulated population 
(n = 5925)

Characteristics Value, mean (range)

Age, years 50 (20–75)

Body mass index, kg/m2 25 (18–34)

Height, m 1.7 (1.55–1.85)

Serum creatinine, μmol/L 82 (29–198)

Weight, kg 73 (50–102)
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RESULTS

Simulated study population

The study population consisted of 6000 individuals from 
six distinct populations with the representative covari-
ate distributions displayed in Table 1 and Figure S1. To 
avoid unreasonable PK parameters, the eta values of the 
simulation models were restricted to ±2.8 times standard 
deviation (i.e., covering 99.5% of the drawn values under 
ideal normal assumption), which resulted in the exclusion 
of 75 simulated patients in the subsequent analysis. The 
PK parameter distributions of the remaining 5925 patients 
are displayed in Figure S2. Implausible covariate relation-
ships were avoided by restricting the age to 20–75 years 
and correlating body weight, height, and sex via BMI. The 
true individual PK profiles can be inspected in Figure S3 

and resulted in true median AUC0–12 of 253 mg/L*h (IQR, 
192–324  mg/L*h) and AUC48–60 of 299  mg/L*h (IQR, 
226–399 mg/L*h).

Estimation of the AUC and identification  
of the optimal sampling timepoints

In the following, we depict the identification of the opti-
mal sampling timepoints of the multimodel approaches 
in the simulated population (n  =  5925) and therefore 
compare the predictive performance in the MAA and 
MSA, respectively. In general, the predictive performance 
of the two approaches resulted in MdPEs between −4.3% 
and 2.2% across the single-sample strategies, whereas the 
IQR followed an asymmetric positive parabolic pattern 
(Figure 2).

F I G U R E  2   Performance metrics of the multimodel approaches using the single-sample strategies in the total population (n = 5925). The 
median percentage error and the interquartile range (IQR) of the relative prediction errors of the area under the concentration-time curve 
represent accuracy and imprecision, respectively. Time after dose indicates the timepoint of the single sample drawn in the 5925 patients 
either in the first dosing interval (i.e., first dose) or the fifth (i.e., steady state). The filled shapes indicate the optimal first sampling timepoint 
per approach identified via the metrics ranking. MAA, model averaging algorithm; MSA, model selection algorithm
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Both approaches consistently estimated the AUC0–12 
and AUC48–60 with a low bias, although the MSA re-
sulted in slightly more negative MdPE (i.e., between 
−4.3% and − 1.2%) across the single-sampling strategies. 
Sampling time intervals with favorable metrics in the FD 
were identified between 1.5 and 5.5 h. The IQR differed 
less across the single-sampling strategies, when being in 
SS, and resulted in a slightly later optimal time interval 
between 4.5 and 8.5 h. The best single-sampling strategies 
with the best metrics were identified at 2–2.5 h (FD) and 
6–6.5 h (SS) and were statistically significant between the 
MAA and MSA (Table 2).

The sample at 2 h post start of infusion informed the 
two multimodel approaches to an extent, that the second 
sample mainly resulted in an improved precision. The IQR 
(ranging from 23.0% to 43.2% using the single-sampling 
strategies) was reduced to values between 17.3% and 
21.9% in the FD and 18.0% and 20.7% in the SS (Figure 3). 
Therefore, the timing of the second sample seemed to be 
much less influential given the amplitude of the perfor-
mance metrics in the two-sampling strategies was further 
reduced. Nonetheless, the time interval resulting in the 
best performance metrics of the MAA and MSA was iden-
tified between 4.5 and 6.0 h in both the FD and SS. The 
AUC predictions using the MAA resulted in MdPE values 
between −0.8% and 0.8% independently of the FD or SS, 
whereas the MSA resulted in slightly lower MdPE values 
(−3.0% to −0.7%). The optimal second sampling timepoint 
of the MAA was identified at 5 h in FD as well as in SS, 
while the MSA benefited most from a sample drawn at 6 h 
in FD and 4.5 h in SS.

When comparing the optimized sampling strategies 
with the “peak-trough” strategy using MAA or MSA, the 
optimal two-sample strategy (e.g., two samples drawn at 
2.0 h and 5.0 h for the MAA in the FD; Table 2) outper-
formed the “peak-trough” strategy. Yet, the differences 
between the “peak-trough” and the optimal two-sample 
strategy were minor, for example, MdPE and IQR 
were − 0.6% and 18.4% for the “peak-trough” compared 
with 0.0% and 18.1% for the optimal two-sample strategy 
of the MAA. The optimized single-sample strategy on the 
other hand resulted in less precise but comparably accu-
rate predictions.

The AUC calculations over all 5925 patients using the 
EQA were positively biased using the samples (3.0 and 
11.5 h) in FD (MdPE, 7.4%) or the samples (3.0 and 11.5 h) 
in SS (MdPE, 3.2%) with an imprecision of 26.0% (FD) and 
21.8% (SS). Both multimodel approaches were outperform-
ing the EQA even using the optimized single sampling. 
Given that the population was simulated using three one-
compartment and three two-compartment models and 
that the EQA ignores the α-distribution phase, it might be 
expected that the EQA performs worse in the simulations T
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from two-compartment models. However, a subpopu-
lation analysis (Figure  S4) revealed no such trends. In 
fact, the calculations were more precise in the simulation 
from the two-compartment Thomson et al. model27 (i.e., 
TDM population; IQR, 20.2% [FD] and 20.9% [SS]) com-
pared with simulations from the one-compartment Adane 
et al.22 and Roberts et al.26 models (IQR, 22.5%–29.1%).

For completeness, the six mono models used for sim-
ulating the patients were evaluated in estimating the 
AUC0–12 and AUC48–60 using the same sampling strategies 
(see the Sampling Strategies section) in the 5925 patients 
(Figures S5 and S6). Expectedly, these models developed 
in special populations performed highly variable in the 
heterogenous total population (Figure  S5). Nonetheless, 
the optimal timepoint to draw a single sample was 

always identified to be before 6.5 h in FD and 8.0 h in SS 
(Table S3). The two-sampling strategies indicated that the 
second sample provides the most information, if drawn in 
the time interval between 1–5 h, except estimating with 
the Mangin et al.23 model (Figure  S6). The optimized 
two-sampling strategies outperformed the “classical peak-
trough” strategies in the models, respectively (Table S3).

DISCUSSION

For accurate dose adjustments, model-informed preci-
sion dosing needs reliable estimates of the individual 
PK. Therefore, the optimal sampling time as well as the 
number of samples is complementing the challenge of 

F I G U R E  3   Performance metrics of the multimodel approaches using the optimized first sample and a second sample drawn in between 
1–12 h after the start of infusion. Time after dose indicates the timepoint of the second sample drawn in the 5925 patients either in the first 
dosing interval (i.e., first dose) or the fifth (i.e., steady state) additionally to the optimal first sampling timepoint, which is indicated with 
the gap in the lines. The filled shapes indicate the optimal second sampling timepoint per approach identified via the metrics ranking. 
1-S. displays the performance metrics of the optimal single-sample strategy of the two approaches (see Table 2); 1 + 11.5 represents the 
performance metrics of the gold standard “peak-trough” sampling strategies in the two approaches. Black 'x' indicate the performance 
metrics of the EQA as a reference. EQA, equation-based approach; FD, first dose; IQR, interquartile range of the relative prediction errors of 
the area under the concentration-time curve; MAA, model averaging algorithm; MSA, model selection algorithm; SS, steady state

First dose Steady-state
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selecting the correct model and minimization of docu-
mentation errors.17,18 In this study, we evaluated the in-
fluence of sampling time and number in two multimodel 
approaches and demonstrated that the optimal sample 
was never identified at trough levels.

The multimodel approaches (MAA, MSA) preferred an 
FD sample around 2 h after the start of infusion to opti-
mally estimate the AUC, and later sampling times nega-
tively affected the precision of the AUC estimate. In SS 
conditions, the optimal single-sampling timepoint shifted 
to later timings around 6 h after the start of infusion. Yet, 
a smaller amplitude of performance metrics implied that a 
larger interval of sampling times ranging from 4.5 to 8.5 h 
can lead to optimal estimation of the AUC in SS.

A second sample in addition to the optimal single 
sample improved the precision of the AUC prediction. 
Interestingly, the timing of second sample was less im-
portant, in particular in SS. Furthermore, the classical 
“peak-trough” strategy resulted in acceptable predictions 
of the AUC when using a model-based approach.

The EQA provided positively biased estimates of the 
AUC, and the imprecision of the AUC estimates even 
exceeded the optimized single-sampling strategies using 
the multimodel approaches in FD. Hence, the simplicity 
of the EQA, as its major advantage, was opposed by the 
persistent overprediction, which is also discussed but de-
emphasized by the authors themselves.28 In addition, the 
approach always requires two samples.

Although adjustments in the later stages of the anti-
biotic therapy might be important to reduce toxicity, it is 
essential to achieve optimal drug exposure as early as pos-
sible to ensure a rapidly effective antibiosis.29 The identi-
fied early FD optimal sampling time windows allow—if 
rapid bioanalytics of the vancomycin plasma concen-
tration are available—dose adjustments within the first 
dosing interval. This might give sufficient time to already 
individualize the second dose, which is impossible with 
trough sampling.

The study by Shingde et al. investigated the predic-
tive performance of seven population PK models when 
supplied with a single sample at different timepoints 
from 22 patients after the first dose of vancomycin.30 
Another large prospective study by Neely et al. com-
pared a nonparametric dose optimization tool among 
others and revealed that 79% of the optimal sampling 
timepoints were not at the trough.31 Both studies were 
in line with our findings and emphasize that pretrough 
measurements should be preferred in drug exposure es-
timation even when using model-informed approaches. 
Another study evaluated the accuracy and precision of 
one-  and two-sample based Bayesian AUC estimations 
in 12 richly sampled patients under tobramycin therapy. 
The samples drawn at less than 3 h were less biased.32 

Further studies compared the performance of various 
vancomycin PK models but focused on the model struc-
ture and the underlying population instead of the exact 
sample timing.13,33–37

A strength of the study is the broad heterogeneity of 
the virtual population simulated with six distinct and clin-
ically relevant models. This comes along with the draw-
back of every simulation being on a conceptual level. 
Given that the vancomycin samples were purely measured 
for the purpose of AUC calculation and to solely derive 
optimized sampling timepoints, this study did not inves-
tigate different dosing regimens or variability of the sam-
pling times. Yet, small-scale investigations with clinical 
data sets are in line with our findings.30–32 Nonetheless, 
these results should be validated in prospective clinical 
studies covering the influences of different dosing inter-
vals, dosing adjustments, and sampling/dose timing un-
certainties. Therefore, our results could directly indicate 
the ideal and reduced sampling intervals to lessen the bur-
den on patients.

In conclusion, our study suggests that a single sample 
drawn in the first 6.5 h of the dosing interval is preferred 
over sampling once at trough to predict the vancomy-
cin drug exposure using the MAA and MSA. This seems 
particularly useful after the FD and gives sufficient time 
to already individualized the subsequent dose. For two-
sampling strategies, the impact of the second sampling 
time was less marked. This implies a reduced need of 
resource allocation when sampled twice as the algo-
rithms do not demand samples at extremely small time 
windows. The nonmodel based EQA, although always 
requiring two samples, displayed biased estimates of 
the AUC and was inferior compared w the optimized 
single-  and two-sampling strategies of the multimodel 
approaches.
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