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Abstract

Cycles are fundamental to human health and behavior. Examples include mood cycles, circadian 

rhythms, and the menstrual cycle. However, modeling cycles in time series data is challenging 

because in most cases the cycles are not labeled or directly observed and need to be inferred from 

multidimensional measurements taken over time. Here, we present Cyclic Hidden Markov Models 
(CyH-MMs) for detecting and modeling cycles in a collection of multidimensional heterogeneous 

time series data. In contrast to previous cycle modeling methods, CyHMMs deal with a number of 

challenges encountered in modeling real-world cycles: they can model multivariate data with both 

discrete and continuous dimensions; they explicitly model and are robust to missing data; and they 

can share information across individuals to accommodate variation both within and between 

individual time series.

Experiments on synthetic and real-world health-tracking data demonstrate that CyHMMs infer 

cycle lengths more accurately than existing methods, with 58% lower error on simulated data and 

63% lower error on real-world data compared to the best-performing baseline. CyHMMs can also 

perform functions which baselines cannot: they can model the progression of individual features/

symptoms over the course of the cycle, identify the most variable features, and cluster individual 

time series into groups with distinct characteristics. Applying CyHMMs to two real-world health-

tracking datasets—of human menstrual cycle symptoms and physical activity tracking data—

yields important insights including which symptoms to expect at each point during the cycle. We 

also find that people fall into several groups with distinct cycle patterns, and that these groups 

differ along dimensions not provided to the model. For example, by modeling missing data in the 

menstrual cycles dataset, we are able to discover a medically relevant group of birth control users 

even though information on birth control is not given to the model.
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1 INTRODUCTION

Detecting and modeling cyclic patterns is important for understanding human health and 

behavior [27]. Cycles appear in domains as varied as psychology (e.g., mood cycles [26] and 

cyclic mood disorders [22, 49]); physiology (e.g., circadian rhythms and hormonal cycles [1, 

14]); and biology (e.g., the cell cycle [42]). Modeling such cycles enables beneficial health 

interventions: modeling mood cycles can predict symptoms and guide treatments [41], and 

modeling circadian cycles can predict fatigue and improve safety [1, 18].

In the cycles described above, a latent state progresses cyclically and influences observed 

data. Consider for concreteness the running example of hormone cycles. A person’s 

hormonal state—that is, the levels of hormones in their bloodstream—is generally 

unobserved, but it progresses cyclically and can influence observed behavior [50]. For 

example, in women, a single hormone cycle consists of moving through a series of states—

follicular, late follicular, midluteal, late luteal [7]—before returning to the follicular state. 

(Throughout this paper, completing a cycle means progressing through all latent states in a 

defined order before returning to the original latent state.) Modeling hormone cycles 

includes several problems of interest in human health: How does one compute the length of 

a cycle for a particular person? Can we cluster individuals into groups with distinct cycle 

dynamics, who may benefit from different medical interventions? How do features/

symptoms vary throughout the cycle, since features that increase at the same point in the 

cycle may have the same physiological cause? (We use feature to refer to a single observed 

dimension of a multivariate time series: in the hormone cycles case, a binary feature might 

be whether the person reported negative mood on each day, and a second feature might be 

whether they reported pain).

Modeling cycles presents a number of challenges. The cycle state for each individual at each 

timestep is generally unobserved: a person’s cyclic hormonal state may influence the level of 

positive affect they express on social media, but social media data is rarely linked to data on 

hormone state. In addition, cyclic dynamics vary across individuals—for example, 

individuals may experience cycles of slightly different lengths—and vary over time within a 

single individual as well. Further, real-world time series data is multivariate with discrete as 

well as continuous features and missing data.

Numerous methods have been developed to model cyclic patterns, including Fourier 

transforms, autocorrelation, data mining techniques, and computational biology algorithms 

[5, 9, 13, 15, 27, 40, 51, 63]. However, these techniques fail to address one or more of the 

challenges described above and, because they are not generative models, lack the ability to 

fully model the cycle: for example, they are not designed to model how each feature varies 

throughout the cycle or cluster individuals into distinct groups. In addition, previous work 

has been limited by the lack of ground-truth data on the true latent cycle state, which has 

prevented quantitative evaluation and comparisons between methods. That is, if an 

unsupervised method claims that cycles have a certain length or a certain feature or 

symptom varies particularly dramatically over the course of the cycle, how do we assess 

whether those inferences are accurate?
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This work

Here we present a new method, Cyclic Hidden Markov Models (CyHMMs), which models 

cycles and addresses the challenges described above. CyHMMs take as input a collection of 

multivariate time series, with one time series for every individual in a population; time series 

can have missing data and discrete or continuous values. For each individual and each 

timestep, CyHMMs infer a discrete latent cycle state from the observed time series, using 

the fact that features vary dynamically based on the latent cycle state. Given these inferred 

cycle states, CyHMMs can then (1) compute the cycle length as the time it takes an 

individual to return to the same latent state, (2) predict feature trajectories by using the fitted 

generative model to predict how each feature will change over the course of the cycle, (3) 

identify the most variable features, and (4) cluster individuals into groups with distinct cycle 

dynamics.

We evaluate CyHMMs on both simulated data and two real-world cyclic datasets—of human 

menstrual cycle data, and activity tracking data—where we have knowledge of the true cycle 

state. Using simulated data with known parameters, we show that CyHMMs recover the 

cycle length 58% more accurately than the best performing baseline. On real-world data, 

CyHMMs recover the cycle length 63% more accurately than the best performing baseline. 

Furthermore, we show that CyHMMs can accurately infer other fundamental aspects of the 

cycle which existing methods cannot:

• Feature trajectories: CyHMMs can infer how each feature or symptom fluctuates 

over the course of the cycle. This is important for understanding an individual’s 

likely time course through the cycle, and for understanding which features tend 

to peak during the same cycle state, potentially indicating a common cause.

• Feature variability: CyHMMs can infer which features are most variable. This is 

important for understanding which features are affected by the cycle, and which 

remain relatively constant.

• Clustering: CyHMMs can partition individuals into groups which correlate with 

true population heterogeneity. This is important because not all individuals have 

the same cycle dynamics, and so different individuals may benefit from different 

interventions.

Our inferences on two real-world datasets further demonstrate the utility of cycle modeling 

in the important human health domains of activity tracking, where we show we can 

accurately recover weekly sleep cycles, and menstrual cycle tracking, where we show we 

can accurately recover the 28-day cycle. For example, in the menstrual cycle data, CyHMMs 

identify a subpopulation of users who are much more likely to be taking hormonal birth 

control— even though no information on birth control is provided to the model. Identifying 

such subpopulations is essential for accurately characterizing cycles (since women taking 

birth control experience different menstrual cycle dynamics [45, 48]) and to designing 

medical treatments (since women taking birth control require different pharmacologic 

interventions [30] and have different risks of hormone-related cancers [44, 46]). We 

emphasize that while in this paper we analyze datasets where cycle states are known in order 

to prove that CyHMMs work, CyHMMs are generally applicable to time series where cyclic 
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dynamics are suspected but cycle states are not known. Our CyHMM implementation is 

publicly available.

2 RELATED WORK

Our work draws on an extensive literature of methods developed for detecting and modeling 

cyclic patterns; we briefly describe major approaches. Fourier transforms [9] express a time-

dependent signal as a sum of sinusoids or complex exponentials; the most significant 

frequencies in the signal can be extracted from the amplitudes of the Fourier coefficients. 

While Fourier transforms are a classic technique for univariate time series, they are not 

easily adapted to data which is multivariate, missing, or discrete. Further, because they are 

not generative models, they cannot easily be used to predict how features will vary over the 

course of the cycle. It is also not clear how to apply them to a population of individuals 

whose time series are different but related. Fourier transforms also assume that the cycle 

length in each signal remains constant, which is not true for individuals whose cycle lengths 

vary from cycle to cycle. (Wavelet transforms [15] overcome this last deficiency but not the 

other ones.) Another common technique for detecting periodicity, autocorrelation, computes 

the correlation between a time series and a lagged copy of itself [51]. It is mathematically 

related to the Fourier transform and suffers from similar drawbacks.

More recent data mining techniques find “partial periodic patterns” that occur repeatedly in 

time series, sometimes with imperfect regularity [5, 6, 12, 25, 27–29, 32, 34, 39, 40, 61, 62]. 

These methods represent discrete time series as strings and search for recurring patterns. 

Han et al. [27, 28] introduce the concept of partial periodicity; numerous related approaches 

have been developed, including Ma and Hellerstein’s algorithm for detecting periodic events 

with unknown periods [40] and methods for detecting frequently recurring patterns [25, 29, 

47]. These models do not address several challenges addressed in this work. They are not 

full generative models and do not recover all the cycle parameters in which we are 

interested; they cannot, for example, predict how observed features will vary over the course 

of the cycle. Second, we seek a method applicable to both discrete and continuous data, and 

string-based methods are inherently discrete.

There is also a relevant literature in computational biology which searches for circadian 

rhythms, often in genomic data [16, 33, 60, 63], by fitting a periodic model to individual 

genes. These models have several drawbacks for the real-world datasets we consider: they 

are designed for data which is much higher-dimensional than most human activity datasets; 

they are designed for continuous data, and may not work well on discrete data; they consider 

each feature individually rather than sharing information across features; and they do not 

easily allow sharing of information across individuals.

Because our method infers a hidden state at each timestep, it is also inspired by previous 

approaches which use latent states— and hidden Markov models specifically—to model 

time series. Such latent state approaches have been applied to model time series in domains 

such as speech recognition [52], healthcare [58] and sports [35]. These approaches have 

been successful because multivariate time series in many domains are often generated by 

low-dimensional hidden states, motivating our application to cyclic time series. Our work 
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also draws on ideas from hidden semi-Markov models (HSMMs) and explicit duration 

hidden Markov models (EDHMMs) [21, 37, 65] which develop formalisms for modeling 

latent states with non-geometric duration distributions that are commonly found in real-

world data [1, 36].

3 TASK DESCRIPTION

We assume the data consist of N multivariate time series, one for each individual i in a 

population. Throughout, we use feature to refer to a single dimension of a multivariate time 

series. Each time series, X(i), is a T(i) × K matrix, where T(i) is the number of timesteps in 

the time series and K is the number of features. Xtk
i  denotes the value in the i-th time series 

at the t-th timestep of the k-th feature. Features may be binary or continuous and may have 

missing data. Our task is to infer basic cycle characteristics:

• Cycle length: both for each individual and the whole population.

• Feature progression: how each feature varies over the course of the cycle.

• Feature variability: which features vary the most over the course of the cycle and 

which remain relatively constant.

• Clustering: whether the population can be divided into groups with distinct cycle 

characteristics.

4 PROPOSED MODEL

We propose a new class of generative models for cyclical time series data: Cyclic Hidden 
Markov Models (CyHMMs). As in a standard HMM, at each timestep an individual is in one 

of J latent states Zj, indexed by j, and emits an observed feature vector drawn from a 

distribution specific to that latent state. However, CyHMMs differ from standard HMMs in 

two ways. First, they capture cyclicity by placing constraints on how individuals can 

transition between states: each individual must progress through states Z1, Z2, … in the 

same order (although they can begin in any start state) and after reaching the final state ZJ 

must return to Z1 to begin the cycle again. An individual thus completes a cycle when they 

pass through all latent states and return to the same latent state. We constrain latent state 

progression in this way because it naturally encodes how the latent state in real-world cycles 

progresses cyclically and because it makes the model interpretable. If the latent state 

transitions were unconstrained it would not be clear how to define cycles.

The second difference between our model and an ordinary HMM is that, when an individual 

enters a new state Zj, they also draw a number of timesteps—a duration—to remain in that 

state before transitioning to the next state, an idea from hidden semi-Markov models [65] 

(HSMMs) and explicit duration hidden Markov models [21, 37] (EDHMMs). In ordinary 

HMMs, the time spent in a state is drawn from a geometric distribution [17], but as we 

discuss below, this parameterization is a poor approximation when modeling many real-

world cycles; drawing state durations from arbitrary duration distributions allows for more 

flexible and realistic cycle modeling. Figure 1 illustrates a path an individual might take 

through hidden states over the course of a single cycle. Each state Zj is split into substates 
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indexed by d, where d indicates the amount of time remaining in that state. Substate Zjd 

progresses deterministically to Zj(d−1) unless d = 0, in which case it can progress to any 

substate of state j + 1 with probabilities drawn from 𝒟 j + 1, where 𝒟 is the duration 

distribution. (If j = J, the model progresses instead D to Z1, completing the cycle). All 

substates of state Zj share the same emission distribution ℰ j, and all transitions are either 

deterministic or parameterized by the duration distributions 𝒟 j, so the model’s emissions 

and transitions are completely parameterized by ℰ j and 𝒟 j
11. Expressing the model in this 

way is a commonly used computational technique [65], facilitating fast parameter fitting 

through optimized HMM packages [54].

4.1 Model specification

Specifying a CyHMM requires specifying the emission distributions ℰ, the duration 

distributions 𝒟, and the number of states J. We now describe and motivate our distributional 

choices. We find in our experiments that the distributions described below are sufficiently 

flexible to capture both simulated and real-world data, although our framework extends to 

other distributions.

Emission distributions—Human activity time series have frequent missing 

measurements caused, for example, by a user forgetting to track some event on a given day. 

We show in our real-world case studies (Section 6), that the probability of missing data 

fluctuates over the course of the cycle and is important to model. Consequently, we use 

emission distributions which allow for missing data. We model the data using a mixture 

where each observation has some probability of being missing and is otherwise drawn from 

a Gaussian distribution (for continuous features) or a Bernoulli distribution (for binary 

features)2.

Continuous features: if a user is in the j-th latent state at timestep t, we assume their value 

for the k-th feature, Xtk, is drawn as follows:

Xtk =
unobserved if Bernoulli p jk

obs = 0

vtk ∼ 𝒩 μ jk, σ jk
2 otherwise

Hence, Xtk is unobserved with some probability 1 − p jk
obs and otherwise drawn from a 

Gaussian whose parameters are specific to that state and feature. The parameters for the j-th 

latent state and k-th feature are μjk, σjk, and p jk
obs. Each feature is independent conditional on 

the hidden state: the emission probability for all features is the product of the emission 

probabilities for each feature. Binary features: Binary features in real-world time series 

introduce a subtlety: if all features are zero, it is unclear whether they are true zeros or 

1While in theory some duration distributions can allow an infinite number of substates for each state, in practice duration distributions 
have negligible mass beyond a certain maximum duration dmax, so the number of substates can be safely truncated.
2Categorical features could be modeled using a simple extension of our Bernoulli model; as there are no categorical features in our 
real-world datasets, we do not consider them here.
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missing data. For example, if a person on a negative mood-tracking app records no negative 

mood symptoms, it is unclear whether they were content or whether they merely neglected 

to log their negative mood. (With continuous features, it is generally more obvious when 

data is missing, since zero values are out of range). Thus, we assume the following data-

generating process: with some probability at each timestep, the person does not bother to log 

any features and data for all features is missing. Otherwise, they log at least one feature, and 

we assume they did not experience the features they did not log. Hence, if a person is in the 

j-th latent state at the t-th timestep, observed data is drawn as follows:

It
logged anything ∼ Bernoulli p j

obs

Xtk

unobserved if It
logged anything = 0

vtk ∼ Bernoulli E jk otherwise

The parameters of the emission distribution are p j
obs and Ejk.

Duration distributions—For ordinary HMMs, the time spent in each state follows a 

geometric distribution. However, this parameterization does not describe many real-world 

cycles. For example, the length of the luteal phase in the human menstrual cycle is better 

described by a normal distribution [36]. In particular, the monotonicity of the geometric 

probability mass function makes it a poor approximation to many real-world distributions. 

Instead, we use Poisson distributions for the duration distributions 𝒟 j, so the duration 

distribution for the j-th latent state is parameterized by a single rate parameter λj. We use 

Poisson distributions because they are frequently used in HSMMs, they are fast to fit and 

easy to interpret, and we show empirically that they provide a better fit to real-world cycles 

than does an implementation with a geometric distribution. Our framework extends to other 

distributions.

Choosing the number of hidden states—J can be chosen either based on prior 

knowledge about the cycle being modeled (as we do in our case studies) or using cross-

validated log likelihood [11].

4.2 Model fitting

The optimization procedure is an expectation-maximization algorithm often used with 

HMMs; we outline it briefly.

• E-step: Use the Baum-Welch algorithm [8] to infer the probability of being in a 

given latent state at a given timestep, p j
t , and the expected number of transitions 

between each pair of substates Zjd and Zj′d′. Because of the model structure 

(Figure 1), the expected number of transitions is trivial for all start substates with 

d ≠ 0 (since the substate must simply count down to the next substate). Denote 

by C jd
i  the expected number of transitions in time series i into substate Zjd from 

the prior substate Z(j − 1)0.
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• M-step: Update the parameters of the duration distribution 𝒟 j and the emission 

distribution ℰ j for each latent state.

– Updating 𝒟 j: In the case of the Poisson distribution, each state has a 

single rate parameter λj which is estimated as the mean expected 

duration in that state:

λ j =
∑i = 1

N ∑d = 1
D C jd

i ⋅ d

∑i = 1
N ∑d = 1

D C jd
i

We set the probability of beginning in each substate Zjd to be fj(d), 

where fj is the duration probability mass function for the j-th latent 

state.

– Updating ℰ j. We update the emission distribution parameters by 

computing their sufficient statistics. For discrete distributions, the 

sufficient statistics are the sum of weights p j
t  over non-missing 

samples, the sum of weights over all samples, and the weighted sum of 

each feature over non-missing samples. For continuous distributions, 

we must also compute the weighted sum of the square of each feature 

over non-missing samples. The updates are straightforward; we omit 

them due to space constraints and provide our implementation online.

Violation of model assumptions—Model fitting will converge regardless of whether 

there are actually cycles in the data, although convergence may be slow if model 

assumptions are seriously violated. Fit should be assessed by comparing model parameters 

and the outputs discussed in Section 4.3 with prior knowledge about the cycle to determine 

the plausibility of the fitted model.

Parameter initialization—CyHMMs are initialized with a hypothesized cycle length. In 

our simulations (Section 5), we found that CyHMMs are fairly robust to inaccurate 

specification of this parameter: they converged to the true length as long as they were 

initialized within roughly 50% of the true length. In real-world datasets, this is a reasonable 

constraint: the true cycle length is often at least approximately known (as it is in the two 

real-world case studies we consider in Section 6). To further increase robustness, the model 

can be fit using a range of cycle length initializations, and the model with the best log 

likelihood can then be used; we confirm on simulated data that this works reliably.

Scalability—Three features allow our implementation to scale to real-world datasets: we 

specifically adapt our implementation to use an optimized HMM library [54]; model fitting 

can be easily parallelized because the forward-backward computations take up most of the 

computation time and are independent for each time series; and we find that in real-world 

applications a relatively small number of hidden states suffices to capture realistic dynamics. 

Consequently, as we describe in Section 6, we are able to fit a CyHMM model in 3 minutes 
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(using a computer with 16 cores) on an activity dataset 8 million total observations; we are 

able to fit a menstrual cycles dataset with 22 million total observations in 18 minutes (Figure 

2). (By “observation”, we here mean a reading of one feature for one individual at one 

timestep). Both these datasets were provided by companies with large user bases and we 

needed to perform no filtering for scalability; all filtering was performed only to select active 

users who could provide rich data. For extremely large datasets, a random sample of users 

could also be used to fit the model, since statistical power would not be a concern.

4.3 Inference of cycle properties

Cycle length—To infer cycle length for each individual, we fit a CyHMM to the entire 

population, then use the fitted model to infer the Viterbi path—that is, the most likely 

sequence of hidden states— for each individual from their observed data. We define the 

inferred cycle length as the time to return to the same hidden state in the Viterbi path.

Feature trajectories—We use CyHMMs to infer how features fluctuate (increase or 

decrease) over the course of a cycle as follows. After fitting the CyHMM, we assume all 

users are in a single sub-state and propagate the state vector forward by multiplying by the 

learned transition matrix. We compute the expected value of each feature at each timestep 

using the learned emission model.

Feature variabilities—We define feature variability to be how much a feature fluctuates 

over the course of a cycle and compute it as follows. Given the inferred trajectory for feature 

k—a value Vtk at each timestep t less than or equal to the cycle length L—we define the 

feature variability Δk as how much the feature varies relative to its mean 

μk: Δk = 1
L ∑t = 1

L V tk − μk
μk

. (We divide by the mean to ensure features with different scales 

can be compared; this definition of Δk is similar to the coefficient of variation [10].) Our 

definition of feature variability is not equivalent to merely computing the standard deviation 

of all observations of a feature: for example, if our feature is “person carries umbrella”, its 

variability over the menstrual cycle will be zero because rain (and umbrellas) do not vary 

with hormone state.

Clustering—Previous work has found that clustering time series can identify important 

heterogeneity [38]; we therefore extend our model to divide individuals into clusters with 

similar cycle progression patterns. After initializing the clustering by dividing individuals 

into C clusters3, we use an EM procedure with hard cluster assignment, alternating between 

two steps until convergence: 1) for each cluster c, fit a separate CyHMM ℳc using only 

individuals in that cluster; 2) reassign each individual i to the cluster c whose model 

maximizes the log likelihood of X(i).

3To initialize the clustering, we choose a random subset of 𝒮 individuals and fit one CyHMM ℳs for each individual. We then loop 

over all individuals in the dataset and compute the log likelihood ℒs
i  for each individual i under each model ℳs. We run k-means on 

the matrix of these likelihoods to initially divide individualsMinto C clusters (z-scoring each individual to control for the fact that, for 
example, individual time series vary in length and thus log likelihoods may not be directly comparable). This initialization procedure 
is similar to [56] but their procedure is quadratic in the number of individuals, rendering it too slow for large real-world datasets 
(Section 6).
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5 EVALUATION ON SIMULATED DATA

We first validate the performance of CyHMMs on synthetic data before examining their 

application to two real-world datasets.

5.1 Synthetic data generation

We simulate a population where the data for each individual consists of a multivariate time 

series with missing data. We briefly describe the simulation procedure here and make the 

full implementation available online. To test our model’s robustness to model 

misspecification, we do not generate data using the CyHMM generative model. In our 

simulation, each individual progresses through a cycle, and both the values for each feature 

and the probability that data for the feature is missing vary sinusoidally as a function of 

where the individual is in their cycle. We examine the effects of altering the maximum 

individual time series length (Tmax), the amount of noise in the data (σn), the probability 

data is missing (pmissing), and the between-user and within-user variation in cycle length (σb 

and σw). We generate simulated data in two stages. First, we simulate the fraction of the way 

each person is through their cycle at each timestep, which we refer to as “cycle position"; 

cycle position can be thought of as a continuously varying cycle state. Second, we generate 

observed data given the person’s cycle position.

Simulating cycle position—We draw each individual’s average cycle length from 

L i ∼ N L, σb
2 , where L is the average population cycle length and σb controls between 

individual variation in cycle length; we set L = 30 days in our simulations. We draw each 

individual’s starting cycle day from a uniform distribution over possible cycle days; each 

subsequent day, their cycle day advances by 1, unless they have reached their current cycle 

length, in which case they go back to 0 and we draw the length for their next cycle from 

N L i , σw
2 . σw controls within individual variation in cycle length. We define an individual’s 

cycle position ϕt
i ∈ 0, 1  to be the fraction of the way the individual is through their current 

cycle: i.e., cycle day divided by current cycle length.

Simulating time series given cycle position—Given individual i’s cycle position at 

timepoint t, ϕt
i , we generate the values for a feature k, Xtk

i , as follows. We generate both 

binary and continuous data to evaluate our model under a wide variety of conditions. For 

continuous features, we allow the probability each feature is observed at each timestep, ptk
i , 

to vary sinusoidally in ϕt
i . We draw whether the feature is observed from Bernoulli ptk

i . If 

the feature is observed, we set its value to a second sinusoidal function of ϕt
i . For both 

sinusoids, we draw individual-specific coefficients to allow for variation in cycle dynamics 

across individuals. Our emission model for binary features is similar to the continuous 

model except that at each timestep, a single Bernoulli draw determines whether all features 

are missing, and we draw each feature from a Bernoulli whose emission probability varies 

sinusoidally in cycle position. Our full procedure for generating simulated data is available 

online.
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5.2 Inference of cycle length

A basic question about any cycle is its length, both in individuals and in the population as a 

whole. We thus first evaluate how well CyHMMs infer the true cycle length for each 

individual as compared to baselines. Our evaluation metric is mean error.

Baselines—Based on the previous literature we describe in Section 2, we compare to 

baselines from all three major areas of related work: classical techniques (Fourier transform 

and autocorrelation), data-mining techniques (Partial Periodicity Detection) and circadian 

rhythm detection (the ARSER algorithm):

• Discrete Fourier transform [9]: for each feature, we perform a discrete Fourier 

transform and take the period of the peak with the largest amplitude. We take the 

median of these periods across all features. (Fourier transforms are generally 

used on univariate data; by taking the median, we combine data from all 

features.)

• Autocorrelation [51]: for each feature, we compute the lag which produces the 

maximum autocorrelation in that feature. We take the median of these lags across 

all features.

• Partial Periodicity Detection [40] (binary data only): we apply Ma and 

Hellerstein’s χ2 test for partial periodicity detection4 to each individual feature. 

The algorithm returns a list of statistically significant periods; we take the 

median of these periods. The algorithm relies on specification of a δ parameter, 

which controls the time tolerance in period length; we evaluate δ = 2, 5, 10, find 

the algorithm yields the most accurate cycle length inference with δ = 2, and 

report results for this parameter setting.

• ARSER circadian rhythm detection [63]: the ARSER algorithm fits a 

sinusoidal model to each individual feature5, and reports a p-value for 

periodicity. Consistent with the original authors, we filter for features which 

show statistically significant periodicities after multiple hypothesis correction; 

we then take the period with the largest amplitude for each feature and aggregate 

across multiple features by taking the median. We find that setting a statistical 

significance threshold of p = .01 yields the most accurate cycle length inference, 

and report results for this parameter setting. We note that the original 

implementation does not scale to datasets of our size, so to evaluate it we must 

make two modifications: we parallelize it to use multiple cores, and we fit the 

autoregression models using only the Yule-Walker and Burg methods, because 

the MLE method does not scale.

In assessment, we filter out periods which are shorter than 5 days or longer than 50 days (the 

true cycle length is 30 days). This increases accuracy by, for example, preventing the 

autocorrelation baseline from returning implausibly short lags (which in real-world settings 

an analyst would filter out) which degrade performance. We run 100 binary simulation trials 

4https://github.com/jcborges/PeriodicEventMining
5https://github.com/cauyrd/ARSER
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and 100 continuous simulation trials, systematically varying the maximum individual time 

series length (Tmax) from 90 to 180 days, the amount of noise in the data (σn) from 5 to 50, 

the probability data is missing (pmissing) from 0% to 90%, and the between-user and within-

user variation in cycle length (σb and σw) from 1 to 10 days.

Results—CyHMMs have lower mean error than do baselines on both binary and 

continuous data (Table 1). Across all 200 trials, they reduce the mean error in cycle length 

inference over the baseline with lowest mean error, autocorrelation, by 58%. Their inferred 

cycle lengths for each person are also better correlated with the true cycle lengths for each 

person (r = .57) than the baseline with the best correlation (ARSER, r = .19) demonstrating 

that they can better identify individual heterogeneity.

When we examine the effects of altering specific simulation parameters, we find that 

CyHMM performance, as measured by correlation with true cycle length, improves as noise 

decreases, fraction of missing data decreases, maximum time series length increases, 

variability in cycle length between individuals increases, and variability in cycle length 

within individuals decreases. We also find that the superior performance of CyHMMs over 

baselines occurs in part because CyHMMs are more robust to noise and missing data. In 

very low noise settings, several baselines perform comparably to CyHMMs (autocorrelation, 

ARSER, and Fourier), but baseline performance rapidly degrades in more realistic scenarios 

as noise increases. It is logical that CyHMMs would be more robust to noise, because they 

share information across individuals and across features, while baselines do not. Similarly, 

CyHMMs should be more robust to missing data because they explicitly incorporate it into 

the generative model and use it to infer cycle state. We also note that it is striking that 

CyHMMs can outperform ARSER and Fourier transforms even though both are based on 

sinusoidal models, and our simulated data is drawn from sinusoids.

5.3 Inference of feature trajectories

We compute feature trajectories and variabilities as described in Section 4.3, and assess how 

well the variabilities computed from the inferred trajectories correlate with the variabilities 

computed from the true trajectories. (To compute the true trajectories, we compute the mean 

value of each symptom on each cycle day.) The mean correlation between the true and 

inferred variabilities is 0.97 across all binary simulations and 0.98 across all continuous 

simulations, demonstrating that CyHMMs are able to correctly infer feature variabilities. 

Because the baselines discussed in Section 5.2 are not generative models designed to infer 

feature trajectories, we do not compare to them.

6 EVALUATION ON REAL-WORLD DATA

We demonstrate the applicability of CyHMMs by using them to infer cycle characteristics in 

two real-world health datasets: a menstrual cycles dataset, and an exercise and activity 

tracking dataset. We choose these datasets for two reasons: first, they have information on 

true cycle state, allowing us to compare our model to existing baselines, and second, they 

track important health-related features6.
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6.1 Datasets

Menstrual cycles dataset—The human menstrual cycle is fundamental to women’s 

health; features of the cycle have been linked to cancer [23], depression [19], and sports 

injuries [59], and the cycle has been proposed as a vital sign [4]. We obtained data from one 

of the most popular menstrual cycle tracking apps. Upon logging into the app, users can 

record binary features including period/cycle start (e.g., light, moderate, or heavy bleeding), 

mood (e.g., happy, sad, or sensitive), pain (e.g., cramps or headache) or sexual activity (e.g., 
protected or unprotected sex). We define the start of each menstrual cycle as the start of 

period bleeding. We confirmed that statistics of the dataset were consistent with existing 

literature on the menstrual cycle: the average cycle duration was 28 days, consistent with 

previous investigations, and features that peaked before the cycle start were consistent with 

previous investigations of premenstrual syndrome [50, 64].

This dataset has a number of traits which make it an useful test case for cycle inference 

methods. It has a rich set of features for each user, a large number of users, and variation in 

cycles both between and within users: menstrual cycle length varies from person to person, 

and even from cycle to cycle, as do cycle symptoms. Most importantly, it contains ground 

truth on the true cycle start times for each user (as indicated by bleeding). While CyHMMs 

are more generally applicable to cases when the true cycle starts are not known, true cycle 

starts are essential for validating that the method works and comparing it to other methods.

We fit a CyHMM using features shown by the tracking app’s default five categories—mood, 

sleep, sex, pain, and energy—because many of the other features had very sparse data. 

Importantly, we did not provide the model with any features directly related to cycle start, 

like bleeding, so the model was given no information about when cycles started. In total this 

left us with 19 binary features for each day. We filtered for users that logged a feature using 

the app at least 20 times and had a timespan of at least 50 days where they used the app 

regularly (logging at least once every two days). After filtering, our analysis included 22 

million observations (i.e., measurements of one feature for one user at one timestep) from 

9,885 app users. We fit a CyHMM with four hidden states because the menstrual cycle is 

often divided into four latent hormonal phases [7]. (To study the robustness of our model to 

this parameter, we also examined results using three or five states.) If a user logged no 

features on a given day, we considered data for that day to be unobserved because, as 

explained above, we did not know whether the user truly had no symptoms or merely 

neglected to log them.

Activity tracking dataset—We obtained data from a large activity tracking mobile app 

that has been previously used in studies of human health [2, 3, 55]. For each user on each 

day, our dataset included sleep start time, sleep end time, steps taken, and total calories 

burned. Each feature had missing data caused, for example, by a user forgetting to log their 

sleep. Our analysis included all regular app users that logged into the app to record a 

measurement at least 20 times, had a timespan of at least 50 days where they used the app 

regularly (logging at least once every two days) and had less than 50% missing data in every 

6Data from both companies has been used in previous studies and users are informed that their data may be used. Because all data 
analyzed is preexisting and de-identified, the analysis is exempt from IRB review.
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feature; in total, after filtering, our data consisted of 8 million observations from 6,882 users. 

Because we are interested in cycles, we removed long-term time trends (e.g., people using 

the app often lose weight) by subtracting off the centered moving average using a two-week 

window around each day. This is analogous to the trend-cycle decomposition often used in 

time-series analysis [20].

Previous research has found that people’s activity patterns show weekly cycles: for example, 

they sleep and wake later on the weekends [43]. We thus assessed how well CyHMMs could 

model this weekend effect from time series data without being provided with the day of the 

week: essentially, testing whether CyHMMs could recover weekly cycle patterns without 

knowing the day of the week. We fit a Gaussian CyHMM with two states to correspond to 

weekday and weekend using sleep start time, sleep end time, steps taken, and calories 

burned as continuous features. We verified that these features did in fact show weekly cycles 

in the data: individuals go to bed and wake up later on average on the weekends, with steps 

taken and calories burned remaining fairly constant across weekends and weekdays.

6.2 Analysis of menstrual cycles

We used ground truth data to evaluate how well CyHMMs could recover basic features of 

the menstrual cycle: cycle length, trajectory of each feature over the course of the cycle, 

most variable features, and clusters of individuals with different symptom patterns.

6.2.1 Inference of cycle length—As with simulated data, we assessed how well 

CyHMMs could infer the true cycle length for each user on the menstrual cycles dataset, 

defining the true cycle length for each user to be their average gap between period starts. To 

ensure we had reliable data for each user, we assessed performance on users who recorded at 

least 5 cycles. We compared our model to the baselines described in Section 5.2. CyHMMs 

inferred the cycle length for each user more accurately than did the baselines (Table 2) and 

were also closer to the population average cycle length7. CyHMMs had a mean error that 

was 63% lower, and a median error that was 78% lower, than autocorrelation, the baseline 

with the lowest mean error.

Inference of feature trajectories: We inferred feature trajectories using the methodology 

described in Section 4.3. In Figure 3 we visualize the inferred feature trajectories for pain, 

emotion, and sleep features. To provide context for the trajectories, we also plot the true 

cycle start day (when period bleeding starts), although this information is not given to the 

model. The model correctly infers that mood and pain features increase just before the cycle 

starts, consistent with existing literature on premenstrual syndrome [50, 64]. Finally, the 

model infers that users are more likely to log in to record features when their cycle is 

starting; this is logical because many people use the app to track cycle starts, and speaks to 

the importance of modeling missing data.

7We report results using the 4-state CyHMM, but also found that 3 and 5 state CyHMMs significantly outperformed baselines. We 
also compared to the baseline of a CyHMM with a geometric duration distribution (rather than a Poisson duration distribution). The 
errors in inferred cycle length using a geometric rather than a Poisson distribution were 10%, 47%, and 129% higher for the 3, 4, and 5 
state models, respectively, confirming that the Poisson distribution provided a better fit to the data.
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Feature variability: We also found that CyHMMs correctly recovered which features 

showed the most variability over the course of the cycle. We compare the variabilities 

computed from the true feature trajectories to the variabilities computed from the inferred 

feature trajectories as described in Section 4.3. (We computed the true feature trajectories by 

aligning all users to their period starts, and computing the fraction of users experiencing a 

given feature on each day relative to period start). The true variabilities were highly 

correlated with the inferred variabilities (r = 0.86): e.g., the model correctly recovered the 

fact that pain features showed greater variability than sleep features.

Clustering of similar individuals: We divided individuals into five clusters with similar 

feature patterns using the methodology described in Section 4.3. We chose the number of 

clusters using the elbow method [57]: beyond five clusters, both the train and test log 

likelihoods increased much more slowly. Our clustering correlates with individual-specific 

features not given to the model (Table 3; all features below the double horizontal line), like 

medical history and age. We report only features which show statistically significant 

differences (categorical F-test p < 0.001), revealing distinct groups:

• Cluster 1: Severe symptom users. This cluster (Table 3, first column), is most 

likely to report going to the doctor or gynecologist or taking pain medication 

(rows below double horizontal line). Our model is able to identify this subcluster 

even though it is given no information on doctors’ visits. These users also have 

the highest rate of pain features, are more likely to report negative emotions and 

less sleep, and are most likely to report having a high sex drive (rows above 

double horizontal line).

• Cluster 2: Birth control users. These users primarily use the app to keep track 

of whether they have taken birth control (“Logged birth control pill” row)—

again, not information given to the model. Hence, they are less likely to log other 

features and have a high fraction of missing data (“Fraction of days with no data” 

row), but likely to be on birth control. Consistent with this, they have a higher 

rate of having unprotected sex than do other users, and the lowest rate of positive 

pregnancy tests.

• Cluster 3: Happy users. This group of users is most likely to report positive 

features like happy emotion (top row), high energy, and sleeping 6-9 hours.

• Cluster 4: Low-emotion users. This group of users is relatively unlikely to log 

any emotion features (top three rows).

• Cluster 5: Infrequent loggers. This cluster of users appears to put less effort 

into using the app; when they record features, they record the fewest of any 

group besides the birth control group (“Features logged per non-missing day” 

row).

The fact that the clustering correlates with features not used in the clustering—like birth 

control, doctors’ appointments, and age—indicates that CyHMMs are correctly identifying 

true population heterogeneity. For example, the model is able to identify “users more likely 

to be on birth control” (information it is not given) as “users with a high probability of 
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missing data” (something it explicitly models). Recovering the birth control subpopulation is 

essential for accurately modeling the menstrual cycle. Previous work has found that women 

on birth control experience different menstrual cycle symptom progression—for example, 

less variability in mood over the course of the cycle [45, 48]. (We note that the fact that 

women in the birth control cluster are relatively unlikely to bother logging emotion 

symptoms is consistent with this lack of variability.) Recovering the birth control 

subpopulation is also important for designing health interventions. For example, women on 

birth control require different pharmacologic treatment [30] and, because their hormone 

cycles are different, have different risks of hormone-related cancers [44, 46].

6.3 Analysis of cycles in activity tracking

Inference of population cycle length—We define the model-inferred cycle lengths as 

in Section 4.3. Since there are no ground truth cycle lengths for all individuals in this dataset

—unlike with the menstrual cycles dataset, there is no clear physiological feature with which 

to define cycle starts—a supervised comparison to baselines is impossible in this setting. 

Instead, we directly evaluate the plausibility of CyHMM cycle length inference. When we 

apply CyHMMs to our dataset, the model infers that the most frequent cycle length in the 

population as a whole is 7 days (Figure 4). Inspecting the model, the two learned hidden 

states also clearly correspond to weekday and weekend, even though day of the week is not 

provided to the model: the “weekend hidden state” has an inferred average duration of 2.2 

days (as compared to the true weekend length of 2 days), while the “weekday hidden state” 

has an inferred average duration of 4.9 days (as compared to the true weekday length of 5 

days). The weekend hidden state has a later inferred mean for sleep start and sleep end than 

the weekday hidden state, consistent with the fact that individuals sleep later on the 

weekends. On timesteps when the model infers an individual is in the weekend state, it is 

twice as likely to be the true weekend. All these facts indicate that the model is successfully 

recovering weekday/weekend cycles. This is consistent with previous findings that human 

activity shows weekly cycles [43].

Clustering of similar individuals—We next investigated whether CyHMMs could 

cluster individuals into groups that correlated with fundamental features like BMI, age, and 

gender without being provided with these features to use in the clustering. Our clustering 

shows statistically significant correlations with all these features (p < 0.001, categorical F-

test). For example, we identify one cluster with the highest proportion of males (78%) with 

the highest BMIs (26.9); another cluster, essentially its opposite, has the lowest proportion 

of males (48%) and the lowest BMIs (25.4). (Cluster differences between BMIs remain 

significant when adjusting for age and sex via linear regression.) None of these features are 

given to the CyHMM in performing the clustering, indicating that the model is successfully 

identifying true population heterogeneity. Our finding is consistent with previous work that 

finds that weekend-weekday sleep differences correlate with important health metrics like 

body mass index (BMI) [53]. CyHMMs can thus identify subpopulations that differ along 

fundamental health metrics like BMI, potentially allowing for unsupervised discovery of 

behavioral risk factors to inform monitoring of obesity.
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7 CONCLUSION

Modeling cycles in time series data is important for understanding human health, but it is 

challenging because cycle starts are rarely labeled. Here we present CyHMMs, which take 

as input a multivariate time series for each individual in a population, infer what latent cycle 

state an individual is in at each timestep, and use this inferred state to recover fundamental 

cycle characteristics. Evaluating our method on both simulated data and two real-world 

datasets with ground-truth information on cycle states, we find CyHMMs infer the true cycle 

length more accurately than do baselines. CyHMMs can also infer cycle characteristics that 

baselines cannot: we show they can infer how each observed feature changes over the course 

of the cycle, accurately recover the most variable features, and find clusters of individuals 

with distinct cycle patterns. While we evaluated CyHMMs on datasets in which cycle starts 

are known in order to validate our method, they are designed to be applied to datasets on 

which cycle starts are unknown: for example, sentiment in individual Twitter feeds.

CyHMMs assume that observed data is generated by a single latent state that progresses 

cyclically. Future work could attempt to relax this assumption while retaining the 

interpretability it provides. Natural extensions to the CyHMM model might retain its core 

idea of a cyclic latent state while increasing the model’s expressive power: for example, by 

using a multidimensional hidden state as factorial HMMs [24] or LSTMs [31] do, with some 

cyclic and some unconstrained dimensions. A multidimensional hidden state could capture 

data that includes multiple cycles, or both a cycle and a time trend. These extensions flow 

from the fact that CyHMMs, by using a generative model with hidden state, provide a 

natural and flexible way to model cycles fundamental to human health.

Acknowledgments

We thank David Hallac, Chris Olah, Nat Roth, Marinka Zitnik, the apps that provided data, and the reviewers for 
their valuable feedback. E.P. was supported by Hertz and NDSEG Fellowships. T.A. was supported by National 
Institutes of Health (NIH) grant U54 EB020405 and a SAP Stanford Graduate Fellowship.

References

1. Althoff T, Horvitz E, White RW, Zeitzer J. Harnessing the web for population-scale physiological 
sensing: A case study of sleep and performance. WWW. 2017

2. Althoff T, Jindal P, Leskovec J. Online actions with offline impact: How online social networks 
influence online and offline user behavior. WSDM. 2017

3. Althoff T, Sosic R, Hicks JL, King AC, Delp SL, Leskovec J. Large-scale physical activity data 
reveal worldwide activity inequality. Nature. 2017

4. American Academy of Pediatrics, American College of Obstetricians and Gynecologists. et al. 
Menstruation in girls and adolescents: using the menstrual cycle as a vital sign. Pediatrics. 2006

5. Aref WG, Elfeky MG, Elmagarmid AK. Incremental, online, and merge mining of partial periodic 
patterns in time-series databases. TKDE. 2004

6. Berberidis C, Vlahavas I, Aref WG, Atallah M, Elmagarmid AK. On the discovery of weak 
periodicities in large time series. PKDD. 2002

7. Berga SL, Yen S. Circadian pattern of plasma melatonin concentrations during four phases of the 
human menstrual cycle. Neuroendocrinology. 1990

8. Bilmes JA, et al. A gentle tutorial of the EM algorithm and its application to parameter estimation 
for gaussian mixture and hidden Markov models. International Computer Science Institute. 1998

9. Bracewell RN, Bracewell RN. The Fourier transform and its applications. 1986

Pierson et al. Page 17

Proc Int World Wide Web Conf. Author manuscript; available in PMC 2018 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. Brown CE. Coefficient of variation. Applied multivariate statistics in geohydrology and related 
sciences. 1998

11. Celeux G, Durand JB. Selecting hidden Markov model state number with cross-validated 
likelihood. Computational Statistics. 2008

12. Chanda AK, Saha S, Nishi MA, Samiullah M, Ahmed CF. An efficient approach to mine flexible 
periodic patterns in time series databases. Engineering Applications of Artificial Intelligence. 2015

13. Chaovalit P, Gangopadhyay A, Karabatis G, Chen Z. Discrete wavelet transform-based time series 
analysis and mining. ACM Computing Surveys (CSUR). 2011

14. Chiazze L, Brayer FT, Macisco JJ, Parker MP, Duffy BJ. The length and variability of the human 
menstrual cycle. JAMA. 1968

15. Daubechies I. The wavelet transform, time-frequency localization and signal analysis. Transactions 
on Information Theory. 1990

16. Deckard A, Anafi RC, Hogenesch JB, Haase SB, Harer J. Design and analysis of large-scale 
biological rhythm studies: a comparison of algorithms for detecting periodic signals in biological 
data. Bioinformatics. 2013

17. Dewar M, Wiggins C, Wood F. Inference in hidden Markov models with explicit state duration 
distributions. IEEE Signal Process Lett. 2012

18. Dinges DF. An overview of sleepiness and accidents. Journal of Sleep Research. 1995

19. Endicott J. The menstrual cycle and mood disorders. Journal of Affective Disorders. 1993

20. Fellner W. Trends and cycles in economic activity. 1956

21. Ferguson J. Variable duration models for speech. Proc Symp on the Application of Hidden Markov 
Models to Text and Speech. 1980

22. Findling RL, Gracious BL, McNamara NK, Youngstrom EA, Demeter CA, Branicky LA, 
Calabrese JR. Rapid, continuous cycling and psychiatric co-morbidity in pediatric bipolar I 
disorder. Bipolar disorders. 2001

23. Garland M, et al. Menstrual cycle characteristics and history of ovulatory infertility in relation to 
breast cancer risk in a large cohort of US women. American Journal of Epidemiology. 1998

24. Ghahramani Z, Jordan MI. Factorial hidden Markov models. NIPS. 1996

25. Giannella C, Han J, Pei J, Yan X, Yu PS. Mining frequent patterns in data streams at multiple time 
granularities. Next Generation Data Mining. 2003

26. Golder SA, Macy MW. Diurnal and seasonal mood vary with work, sleep, and daylength across 
diverse cultures. Science. 2011

27. Han J, Dong G, Yin Y. Efficient mining of partial periodic patterns in time series database. ICDE. 
1999

28. Han J, Gong W, Yin Y. Mining segment-wise periodic patterns in time-related databases. KDD. 
1998

29. Han J, Pei J, Yin Y, Mao R. Mining frequent patterns without candidate generation: A frequent-
pattern tree approach. DMKD. 2004

30. Hassan T. Pharmacologic considerations for patients taking oral contraceptives. Connecticut Dental 
Student Journal. 1987

31. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation. 1997

32. Hu YH, Tsai CF, Tai CT, Chiang IC. A novel approach for mining cyclically repeated patterns with 
multiple minimum supports. Applied Soft Computing. 2015

33. Hughes ME, Hogenesch JB, Kornacker K. JTK_CYCLE: an efficient nonparametric algorithm for 
detecting rhythmic components in genome-scale data sets. Journal of Biological Rhythms. 2010

34. Kiran RU, Shang H, Toyoda M, Kitsuregawa M. Discovering recurring patterns in time series. 
EDBT. 2015

35. Kostakis O, Tatti N, Gionis A. Discovering recurring activity in temporal networks. DMKD. 2017

36. Lenton EA, Landgren B, Sexton L. Normal variation in the length of the luteal phase of the 
menstrual cycle: identification of the short luteal phase. British Journal of Obstetrics and 
Gynecology. 1984

Pierson et al. Page 18

Proc Int World Wide Web Conf. Author manuscript; available in PMC 2018 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



37. Levinson SE. Continuously variable duration hidden Markov models for automatic speech 
recognition. Computer Speech & Language. 1986

38. Li L, Prakash BA. Time series clustering: Complex is simpler! In. ICML. 2011

39. Li Z, Wang J, Han J. ePeriodicity: Mining event periodicity from incomplete observations. TKDE. 
2015

40. Ma S, Hellerstein JL. Mining partially periodic event patterns with unknown periods. International 
Conference on Data Engineering Proceedings. 2001

41. McMahon B, et al. Seasonal difference in brain serotonin transporter binding predicts symptom 
severity in patients with seasonal affective disorder. Brain. 2016

42. Mitchison JM. The Biology of the Cell Cycle. 1971

43. Monk TH, Buysse DJ, Rose LR, Hall JA, Kupfer DJ. The sleep of healthy people – a diary study. 
Chronobiol Int. 2000

44. Narod SA, Risch H, Moslehi R, Dørum A, Neuhausen S, Olsson H, Provencher D, Radice P, Evans 
G, Bishop S, et al. Oral contraceptives and the risk of hereditary ovarian cancer. New England 
Journal of Medicine. 1998

45. Oinonen KA, Mazmanian D. To what extent do oral contraceptives influence mood and affect? 
Journal of Affective Disorders. 2002

46. C. G. on Hormonal Factors in Breast Cancer. et al. Breast cancer and hormonal contraceptives: 
collaborative reanalysis of individual data on 53,297 women with breast cancer and 100,239 
women without breast cancer from 54 epidemiological studies. The Lancet. 1996

47. Orlando S, Palmerini P, Perego R, Silvestri F. Adaptive and resource-aware mining of frequent sets. 
ICDM. 2002

48. Paige KE. Effects of oral contraceptives on affective fluctuations associated with the menstrual 
cycle. Psychosomatic Medicine. 1971

49. Partonen T, Lönnqvist J. Seasonal affective disorder. The Lancet. 1998

50. Pearlstein T, Yonkers KA, Fayyad R, Gillespie JA. Pretreatment pattern of symptom expression in 
premenstrual dysphoric disorder. Journal of affective disorders. 2005

51. Pindyck RS, Rubinfeld DL. Econometric models and economic forecasts. 1998

52. Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition. 
Proceedings of the IEEE. 1989

53. Roenneberg T, Allebrandt KV, Merrow M, Vetter C. Social jetlag and obesity. Current Biology. 
2012

54. Schreiber J. Pomegranate: fast and flexible probabilistic modeling in Python. arXiv preprint arXiv:
1711.00137. 2017

55. Shameli A, Althoff T, Saberi A, Leskovec J. How gamification affects physical activity: Large-
scale analysis of walking challenges in a mobile application. WWW. 2017

56. Smyth P. Clustering sequences with Hidden Markov Models. NIPS. 1997

57. Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap 
statistic. JRSS-B. 2001

58. Wang X, Sontag D, Wang F. Unsupervised learning of disease progression models. KDD. 2014

59. Wojtys EM, Huston LJ, Lindenfeld TN, Hewett TE, Greenfield MLV. Association between the 
menstrual cycle and anterior cruciate ligament injuries in female athletes. The American Journal of 
Sports Medicine. 1998

60. Wu G, Zhu J, Yu J, Zhou L, Huang JZ, Zhang Z. Evaluation of five methods for genome-wide 
circadian gene identification. Journal of Biological Rhythms. 2014

61. Yang J, Wang W, Yu PS. Infominer: mining surprising periodic patterns. Knowledge Discovery and 
Data Mining. 2001

62. Yang J, Wang W, Yu PS. Mining asynchronous periodic patterns in time series data. TKDE. 2003

63. Yang R, Su Z. Analyzing circadian expression data by harmonic regression based on autoregressive 
spectral estimation. Bioinformatics. 2010

64. Yonkers KA, O’Brien PS, Eriksson E. Premenstrual syndrome. The Lancet. 2008

65. Yu SZ. Hidden semi-Markov models. Artificial Intelligence. 2010

Pierson et al. Page 19

Proc Int World Wide Web Conf. Author manuscript; available in PMC 2018 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Latent states in a CyHMM with J = 4 states and maximum state duration dmax = 2. The red 

circles and arrows illustrate one possible path through the CyHMM over the course of a 

single cycle. The j-th latent state counts down until the remaining duration in the state, d, is 

zero and then transitions to the next latent state. All substates with equal j have the same 

emission parameters.

Pierson et al. Page 20

Proc Int World Wide Web Conf. Author manuscript; available in PMC 2018 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Time to fit CyHMM models on our real-world datasets. To provide runtimes on a range of 

sample sizes, we take random subsamples of the dataset. The menstrual cycles dataset is 

larger, so we can extrapolate further.
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Figure 3. 
Model-inferred feature trajectories for a subset of menstrual cycle features. The vertical axis 

is the relative probability of emitting a feature (conditional on non-missing data); the 

horizontal axis is cycle day. For context, the vertical black line shows the day of the true 

cycle start, although this information is not given to the model. We center cycle start for ease 

of visualization. Pain and negative mood features increase just prior to cycle start; sleep 

features do not show consistent patterns. The relative probability that no features are logged 

(“No features logged”) decreases near cycle start, because many people use the app to track 

their cycle starts.
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Figure 4. 
Histogram of cycle lengths for individuals in the activity tracking dataset. The cycle length 

for each individual is the modal cycle length for that individual.
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Table 1

Mean error in inferring cycle length across simulation trials. CyHMMs have lower mean error than all 

baselines. Relative error improvement of CyHMM over baselines shown in parentheses. We order methods by 

their mean error. Partial Periodicity Detection can only be applied to binary data.

All trials Binary Continuous

CyHMM 2.5 days 3.1 days 1.9 days

Autocorrelation 5.9 (58%) 6.8 (55%) 4.9 (62%)

ARSER 10.5 (76%) 13.7 (78%) 7.2 (74%)

Fourier 13.3 (81%) 16.0 (81%) 10.6 (83%)

Partial Periodicity Detection Binary only 19.4 (84%) Binary only
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Table 2

Comparison of our model to baselines on menstrual cycle data for users who recorded five or more cycles. 

Errors reported are averaged across all users; the error for each user is the difference between the true cycle 

length for each user and the inferred cycle length for that user. We order methods by their mean error.

Method Population cycle length Median error Mean error

Ground truth 28.0 days 0.0 days 0.0 days

CyHMM 29.0 2.0 3.6

Autocorrelation 19.0 9.0 9.9

Partial Periodicity Detection 21.9 8.4 10.0

Fourier transform 14.8 12.7 11.9

ARSER 20.9 13.3 12.7
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