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BPGA- an ultra-fast pan-genome 
analysis pipeline
Narendrakumar M. Chaudhari*, Vinod Kumar Gupta* & Chitra Dutta

Recent advances in ultra-high-throughput sequencing technology and metagenomics have led to a 
paradigm shift in microbial genomics from few genome comparisons to large-scale pan-genome studies 
at different scales of phylogenetic resolution. Pan-genome studies provide a framework for estimating 
the genomic diversity of the dataset, determining core (conserved), accessory (dispensable) and 
unique (strain-specific) gene pool of a species, tracing horizontal gene-flux across strains and providing 
insight into species evolution. The existing pan genome software tools suffer from various limitations 
like limited datasets, difficult installation/requirements, inadequate functional features etc. Here we 
present an ultra-fast computational pipeline BPGA (Bacterial Pan Genome Analysis tool) with seven 
functional modules. In addition to the routine pan genome analyses, BPGA introduces a number of 
novel features for downstream analyses like core/pan/MLST (Multi Locus Sequence Typing) phylogeny, 
exclusive presence/absence of genes in specific strains, subset analysis, atypical G + C content analysis 
and KEGG & COG mapping of core, accessory and unique genes. Other notable features include 
minimum running prerequisites, freedom to select the gene clustering method, ultra-fast execution, 
user friendly command line interface and high-quality graphics outputs. The performance of BPGA has 
been evaluated using a dataset of complete genome sequences of 28 Streptococcus pyogenes strains.

With the advent of high-throughput low-cost sequencing technologies and metagenomic techniques, the field of 
microbial genomics has experienced a paradigm shift from single or few genome analyses to large-scale compar-
isons of hundreds to thousands of genomes. One of the important outcomes of such multi-genome studies is the 
concept of the pan-genome - a term coined by Tettelin et al. in 2005 to refer to the complete inventory of genes in 
a particular species [in Greek, pan (π α ν ) means ‘whole’]1. A study of seven Streptococcus agalactiae genomes by 
Tettelin et al. demonstrated that strains of a bacterial species might differ substantially in their gene content and 
total gene pool of a species might be orders of magnitudes larger than the gene content of any single strain1. It is, 
therefore, rational to describe a bacterial species by its pan-genome, which includes a core genome containing 
genes shared by all strains, a dispensable genome containing accessory genes that exist in two or more strains and 
genes unique to single strains (also known singletons). The core genes are responsible for the basic aspects of the 
biology of the species and its major phenotypic traits; while the accessory genes and singletons usually pertain 
to supplementary biochemical pathways and functions that may confer selective advantages such as ecological 
adaptation, virulence mechanisms, antibiotic resistance, or colonization of a new host. The pan genome analyses 
represent a new approach to species definition and provide a framework for estimating and/or modeling the 
genetic diversity of the study group.

During last ten years, pan genomic studies have been conducted on nearly fifty bacterial species, which 
include model organisms like Escherichia coli and members of normal human flora like Lactobacillus paracasei as 
well as a number of pathogens like Haemophilus influenza, Coxiella burnetii, Streptococcus pneumonia, Yersinia 
pestis etc.2–7. Traditionally defined at the species level, the pan genomic approach has later been implemented also 
at higher levels of phylogenetic resolution ranging from genus to phylum and beyond. Genus level studies were 
carried out on Streptococcus, Salmonella, Prochlorococcus etc., and the pan genome study of the Chlamydiae is 
an example of phylum level studies. Recently, Lapierre & Gogarten has extended the concept of the pan genome 
to the entire bacterial domain8–12. The concept has also been implemented in viral, plant and fungal genome 
studies13–17. Pan genome analyses have provided valuable insight into genome dynamics, population structure, 
species evolution, niche specialization, pathogenesis, drug resistance and many other features of the microbial 
world1,18–22. It has also been exploited for development of vaccines against bacteria23.
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A number of free tools and web servers are available for pan genome analysis, but each of them suffers from 
one or the other limitations, leaving rooms for further improvement. For instance, PanOCT, being a web-based 
database, is applicable only to a limited number of species. Panseq, PanGP and Roary provide few functional 
features and hence, lack in downstream analyses. PGAP and ITEP include a number of functional modules, but 
are much slower in speed24–29. There has been, therefore, a pressing need for development a new computational 
pipeline, which will not only offer fast and efficient formalisms for construction of the pan genome through 
clustering of orthologous gene families and but also enable various downstream analyses such as mapping of the 
core, accessory & unique genes to various COG categories and/or KEGG pathways, phylogenetic analysis, in silico 
multi locus sequence typing (MLST) and other relevant analyses. The pipeline should also provide options for 
selecting from different tools available for orthologous clustering and formation of binary gene presence/absence 
matrix. An option for applying the tools to a subset of the total dataset may facilitate identification of exclusive 
genetic features that can discriminate between different serological, ecological or pathogenic groups.

In this context; we have developed an ultra-fast computational pipeline BPGA (Bacterial Pan Genome 
Analysis Tool) with seven functional modules for comprehensive pan genome studies and downstream analyses. 
In addition to all types of analyses offered by currently available tools, this pipeline contains certain novel features 
like Exclusive Gene Family Analysis, KEGG Pathway Analysis, GC Content Analysis, Subset Analysis etc. Other 
notable features of BPGA includes minimum running prerequisites, ease of handling, user friendly command 
line interface, freedom for user to select method for clustering, high quality image output and efficiency in terms 
of time cost.

Methods
BPGA is written in perl programing language but complied in executable files for both Windows and Linux so 
that no module installation is required. The perl code is freely available to make BPGA system independent. 
Dependencies like MUSCLE and rsvg-convert are also provided inside the installer, required for sequence align-
ments and tree generation30. Another prerequisite gnuplot 4.6.6 which is required for plotting results into graphs; 
should be manually installed on the system.

BPGA performs pre-processing step to prepare sequence data for clustering. BPGA then runs USEARCH for 
fastest clustering (using 50% sequence identity cut-off by default; user may change this cut-off value). The clus-
tered output is processed to generate tab delimited gene presence absence binary matrix (pan-matrix) which is 
then used for pan-genome profile calculations with iterations (default 20 or user defined) as well as pan genome 
based phylogeny. MUSCLE is used to align concatenated core genes to generate phylogeny tree based on core 
genome and MLST based on user selected housekeeping genes. For assigning COG and KEGG IDs, best hits with 
respective reference databases obtained from ublast function of USEARCH are used. Gnuplot is used for plotting 
all the results as high quality pdf images. Details about each step are provided in Table 1.

BPGA Algorithm. BPGA performs pan genome analysis in stepwise manner using its core modules. The 
steps include:

Input preparation for clustering. Three types of input files can be processed by BPGA:

1. GenBank file: BPGA processes GenBank (.gbk) files for orthologous cluster analysis and generates an input 
file that may be used as an input for USEARCH, CD-HIT or OrthoMCL for clustering proteins.

2. Protein Sequence File: BPGA is also able to process protein sequence files (Standard NCBI/HMP fasta 
formats, .faa/.fsa or any other fasta format) for orthologous cluster analysis and generates an input file that 
may be used as an input for USEARCH, CD-HIT and OrthoMCL.

3. Binary (1/0) Matrix: BPGA processes tab-delimited binary (1/0) matrix file generated by any other tool, for 
pan-genome profile analysis.

Orthologous clustering of functional genes. Input files created by Input Preparation step are used to generate ort-
hologous gene/protein clusters, which are then processed for downstream pan-genome analyses. For clustering 
gene families, user may select from any of the three clustering tools- USEARCH, CD-HIT and OrthoMCL. All 
three clustering tools generate almost similar results, but USEARCH, being the fastest among the three tools, has 
been integrated as the default clustering tool in BPGA. By default, 50% sequence identity is taken as the cut-off 
value for orthologous clustering, but users can set this cut-off value.

Functional modules. BPGA has seven functional modules. These include,

(i) Pan-genome profile analysis. This yields three types of graphical outputs – pan and core genome curves, 
frequency distribution of different gene families within the genomes under study and number of new genes 
added to the pan genome by each genome. The pan genome curve is generated by plotting the total number of 
distinct gene families against the number of genomes considered (Fig. 1c). Similarly, the number of shared gene 
families is plotted against the number of genomes in order to generate the core-genome plot that depicts the trend 
in contraction in the core genome size with sequential addition of more genomes (Fig. 1c). BPGA calculates the 
pan-genome size and core genome size for given n genomes. In order to avoid any bias in the sequential addition 
of new genomes, random permutations are carried out in the order of addition of genomes and median values of 
the total number of distinct gene families and number of shared gene families are taken respectively as the size of 
pan-genomes and core genomes. Number of permutation may be defined by the user. There is a provision for 500 
permutations at each step of genome addition. But by default, 20 random permutations of genomes are carried 
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out, as it has been observed that higher number of permutations does not alter the median values of pan genome 
and core genome sizes significantly.

The pan-genome size and core genome size after addition of each genome is calculated using following 
formulas,

∑= =N f G( ) (1)pan i
n

pan i1

∑= =N f G( ) (2)core i
n

core i1

Where, Gi represents ith gene family, n is the total number of distinct gene families obtained from the entire data-
set and pan/core genome size, (Npan/Ncore) represents the size of the pan/core genome after addition of nth genome 
from the dataset.

fpan (Gi) =  1, if one or more genomes among the n genomes contain at least one member of the gene family Gi
fpan (Gi) =  0, if none of the n genomes contain a member of the gene family Gi
fcore (Gi) =  1, if all of the n genomes contain at least one member of Gi
fcore (Gi) =  0, if at least one of the n genomes does not contain any member of Gi.
The power-law regression model for the pan-genome data and an exponential curve fit model in case of the 

core genome data.

Features Description Tools/scripts Notes Equivalent tools. Citation

Preparation step

Preprocessing of raw files 
(.faa, .fsa or any fasta or 
.gbk) leading to a single 

input file required for 
clustering.

BPGA script
BPGA modifies the files by 
inserting genome ID into 

the sequence headers.
NA This study

Clustering
It is used to cluster genes 

based on sequence 
similarity into orthlogous 

clusters.
USEARCH#, CD-HIT*, OrthoMCL*.

USEARCH is fastest 
clustering tool so far. BPGA 
uses it as default clustering 
tool and can also process 

the clusters from other two.

Roary, PGAP, PGAT, 
ITEP, Panseq. [25,27–29,45]

Matrix Generation (Pan-Matrix)
It generates 1,0–binary 

presence/ absence matrix 
from orthlogous clusters.

BPGA script

BPGA script checks the 
presence or absence of 

genes from the individual 
strains and writes in the 

form of matrix.

Roary, PanGP, PGAP. [26–28]

Pan-Genome Profile Analysis

Calculates shared genes 
after stepwise addition of 
each individual genome. 

This trend can be plotted as 
Core or Pan-genome Profile 

Curves.

BPGA script, gnuplot.
BPGA script calculates 

such trends taking 
different permutations/

combinations of genomes.
Roary, PanGP, PGAP. [26–28]

Phylogeny Construction

Pan Phylogeny: Generates 
a phylogenetic tree based 

on pan-matrix data. 
Core/MLST Phylogeny: 

Generates a phylogenetic 
tree based on concatenated 

core/housekeeping gene 
alignments.

BPGA script, MUSCLE#, Librsvg.

BPGA script concatenates 
the core sequences from 
all strains and converts 

pan-matrix into Newick 
tree. MUSCLE is faster and 
more accurate alignment 
and tree generator tool.

Roary, PGAP, Panseq, 
ITEP. [25,27–29]

Function and Pathway† Analysis
COG and KEGG 

Assignments on the basis 
of best hits with respective 

reference databases.
USEARCH#, BPGA script, gnuplot.

Best hits are processed to 
get the % occurrences for 

all COG & KEGG pathway 
categories.

COG: PGAP, 
PGAT,ITEP. KEGG 

Analysis: None
[28,29,45]

Pan-Genome Statistics†

It provides genome wise 
core, accessory, unique and 

exclusively absent gene 
counts.

BPGA script
Gives an idea about 

contribution of each strain 
to the pan-genome.

None This study

Atypical GC Content Analysis†

Identifies genes with 
substantial high or low GC 
content from their genomic 

GC content.
BPGA script Applicable only if Genbank 

files are used as input. None This study

Subset Analysis†

Divides the original dataset 
into user defined smaller 

subsets and performs 
default pan genomic 

analyses.

BPGA script

The subsets may be based 
on pathogenic potential, 

habitat, taxonomical 
groups or any other 

criteria.

None This study

Exclusive gene absence†

Identifies the clusters 
showing exclusive absence 
of a gene from the specific 

strain.
BPGA script Sequences of such clusters 

are given in output file. None This study

Table 1. Description of BPGA Pipeline. #Automated by BPGA script. *Supported outputs. †These are novel 
features by BPGA, NA-Not Applicable.
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= . +Y A x C (3)pan pan
B

pan
pan

= . +− .Y A e C (4)core core
B x

core
core

Where, Apan, Bpan, Cpan and Acore, Bcore, Ccore are the fitting parameters. Ypan and Ycore are calculated pan-genome and 
core genome sizes respectively.

(ii) Pan-genome sequence extraction. This module identifies core, accessory and unique protein families and 
extracts the representative (seed) protein sequence from each orthologous family. For a dataset of n genomes, 
the gene families with members from all of the n genomes are core genes, gene families having members from  
x genomes, where 1 <  x <  n, are accessory genes and those having members in any one particular genome of the 
dataset are unique genes or singletons.

(iii) Exclusive gene family analysis. This identifies the orthologous protein families that contain genes exclu-
sively from a specific genome of the dataset (i.e., unique genes or singletons). It can also identify orthologous 
families that contain genes from all genomes except one specific genome (exclusively absent genes/proteins). The 
module also extracts the protein sequences of such exclusively present/absent families.

(iv) Atypical GC content analysis. This is an unique feature of BPGA, which extracts sequences of the genes, the 
G +  C-contents of which deviate from the average G +  C-content of the respective genomes by more than two or 
three times of the standard deviation, as follows,

∑ σ= ± ×=GC
c

GC n1 ( ) (5)Atypical i
c

1

Where GCAtypical is the Atypical GC cut-off, c is the number of coding sequences in each genome, GC is G +  C 
Content of ith gene and σ  is standard deviation in GC content within the genome and n =  2 or 3 (as defined by the 
user, 2 being the default value).

These genes are then categorized as the core, accessory and unique genes.

(v) Pan-genome functional analysis. This module explores the COG and KEGG pathway distribution. The COG 
and KEGG ids are assigned to all representative protein sequences from each orthologous protein cluster based on 
the protein BLAST against reference COG and KEGG databases. Then, the percentage frequencies of COG and 
KEGG categories are calculated for core genes, accessory genes and singletons (strain specific genes) and using 
gnuplot, outputs are generated in the form of histograms.

(vi) Species phylogenetic analysis. BPGA performs the evolutionary analysis based on concatenated core gene 
alignments and binary (presence/absence) pan-matrix. Gene matrix is calculated using similarity or dissimi-
larity in contribution of genes to orthologous gene clusters. For core genome based phylogenetic tree, BPGA 
first extracts the protein sequences (excluding paralogs) from 20 random orthologous gene clusters to generate 
core genome phylogeny tree and also performs in silico MLST analysis on user selected housekeeping genes. 

Figure 1. BPGA workflow. 
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BPGA automates multiple sequences alignments using MUSCLE. All alignments were concatenated and a 
neighbor-joining phylogenetic tree was constructed.

(vii) Subset analysis. BPGA has the option for selecting a smaller subset of the original dataset for analysis, i.e., 
sub-grouping of genomes on the basis of their habitats, life-styles, morphology or virulence/symbiotic pheno-
types etc. Such analyses may enable identification of genes exclusively present or absent in a specific sub-group 
along with routine pan genome analysis for all the sub-groups.

Results
Software features. BPGA is a computational pipeline, designed to automate the complete pan-genome 
study and downstream analyses of prokaryotic sequences. As shown in the work flow diagram (Fig. 1), BPGA has 
seven functional modules: (i) Pan Genome Profile Analysis, (ii) Pan Genome Sequence Extraction, (iii) Exclusive 
Gene Family Analysis, (iv) Species Phylogenetic Analysis, (v) Pan Genome Functional Analysis, (vi) Atypical GC 
Content Analysis and (vii) Subset Analysis.

BPGA performs pre-processing step to prepare sequence data for clustering. It’s the only pan genome pipe-
line that allows the user to select from three different tools for protein/gene clustering–USEARCH, CD-HIT or 
OrthoMCL, the first one being the default clustering tool due to its ultra-fast clustering capability31–33. The clus-
tered output is processed to generate binary gene presence/absence matrix (pan-matrix) that is used for further 
downstream analyses by the functional modules of the pipeline with user defined parameters.

First three modules are integrated as a single step called Default Pan Genome Analysis, which includes classifi-
cation of orthologous clusters into core, accessory and unique genes, extraction of their sequences, construction 
and extrapolation of the core and pan genome plots and identification of gene families that are exclusively present 
or absent (i.e., gene gain/loss) in a specific genome or subset of genomes.

The module on Species Phylogenetic Analysis provides options for construction of trees on the basis of pan 
matrix, core genome alignment and in silico Multi Locus Sequence Typing (MLST) based on user selected house-
keeping genes34. The module for Pan Genome Functional Analysis performs the COG and KEGG assignments 
for representative sequences of all orthologous gene families and performs comparative functional analysis for 
core, accessory and unique set of genes. The module of Atypical GC Content Analysis – a unique feature of BPGA, 
extracts the sequences of genes having atypical G +  C-contents i.e. genes with considerably higher or lower 
G +  C-contents from the average G +  C-content of the respective genomes (i.e., potential cases of horizontal 
transfer)35,36. These potential alien sequences are then categorized as the core, accessory or unique genes. Another 
unique feature of BPGA is the provision for analyzing different subsets of data–the Subset Analysis module- where 
the entire analysis can be carried out on a user-defined subset of the genomes, which may be selected on the basis 

Features BPGA Roary27 PanGP26 PGAP28 PGAT45 Panseq25 ITEP29

Input file/s
.GBK/.FAA/

Matrix .gff Cluster/ Matrix
.FAA, .FFN & 

.PTT × Contig file ×

Exclusively absent genes ✓ × × × × × × 

Subset Analysis ✓ × × × × × × 

Atypical GC analysis ✓ × × × × × × 

Distribution of core, accessory and 
unique genome ✓ × × × × × × 

KEGG pathway distribution ✓ × × × × × × 

Pan-genome profile analysis ✓ ✓ ✓ ✓ × × × 

Size of core and pan-genome ✓ ✓ × × × ✓ × 

Extraction of core, accessory and 
unique genome sequence ✓ ✓ × × × × ✓

Evolutionary analysis ✓ ✓ × ✓ × ✓ ✓

Functional distribution analysis 
(COG) ✓ × × ✓ ✓ × ✓

Protein/gene clustering ✓ ✓ × ✓ ✓ ✓ ✓

Input data from user ✓ ✓ ✓ ✓ × ✓ × 

Operating System
Windows, Linux 

and any Perl 
supported OS.

Linux Windows & Linux Linux NA Windows & Linux Linux

Mode of program Standalone Standalone Standalone Standalone Online Database Online & Standalone Standalone

Test dataset S. pyogenes S. typhi E. coli S. pyogenes NA S. pyogenes Enterobacteria

No. of genomes in test dataset 28 24 30 11 NA 11 24

Time cost ~3 m >6 m 48 sec 29–200 m NA ~10 m >1 hr

Performance Very Fast Fast Fast Slow Slow Slow Slow

Table 2.  Comparison of BPGA with other tools currently available for pan-genome analysis. Note: Features 
in bold are unique to BPGA.
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of any specific feature of the respective organisms such as their morphology, pathogenic phenotypes or niche 
specialization37. Comparisons of BPGA features with other available tools are enlisted in Table 2.

Evaluation of BPGA features with Streptococcus pyogenes test dataset. To evaluate the perfor-
mance of BPGA, it was applied to a test dataset comprising of the complete genome sequences of 28 strains of 
Streptococcus pyogenes species, downloaded from NCBI Genome Database (Supplementary Table S1a). Through 
initial input preparation process, BPGA generated a file containing 49891 annotated sequences from 28 S. pyogenes  
genomes, which was then used as the input file for clustering.

Though BPGA uses USEARCH as the default clustering tool, here we have used all three options for cluster-
ing, namely USEARCH, CD-HIT and OrthoMCL, in parallel, to test the compatibility of BPGA with these three 
clustering tools.

All three clustering outputs were processed independently to perform pan-genome analysis on the same data-
set. Using 50% sequence identity as the cut-off value, USEARCH, CD-HIT and OrthoMCL yielded 2790, 2743 
and 2762 distinct clusters respectively, out of which 913, 914 and 855 clusters respectively contain at least one 
gene from each genome and thus construct the core genome of S. pyogenes.

It should be noted that pan genome analysis of S. pyogenes genomes was conducted earlier by two different 
groups. Lefébure and Stanhope carried out the pan genome analysis of the genus Streptococcus using a dataset of 
26 Streptococcus genomes, 11 of which belonged to S. pyogenes8. The other study was conducted by Zhao et al., 
where 11 S. pyogenes strains were employed to evaluate the performance of the pan genome analysis pipeline 
PGAP8,28. With a view to compare the performance of BPGA, we have used this dataset of 11 S. pyogenes genomes 
as a control dataset. Both the pan genome and core genome sizes determined by BPGA (2530 & 1359 respectively) 
(Supplementary Table S1b) are comparable to those reported by these two previous studies (pan genome sizes 
2448/2710 & core genome sizes 1376/1370) and in all three cases, S. pyogenes pan-genome is open. However, 
time taken by BPGA to carry out the analysis is much shorter than that taken by the methods employed in these 
previous reports. Furthermore, many of the downstream analyses conducted by BPGA such as COG distribution, 
KEGG pathway analyses, MLST phylogeny or exclusive absence of genes in different S. pyogenes strains were not 
carried out earlier in these two reports8,28.

Pan-genome profile estimation and statistics. Gene family distribution and new gene distribution 
of S. Pyogenes pan genome are shown in Fig. 2a,b respectively. Figure 2c shows the pan genome profile trends 
obtained using clustering tools- USEARCH, CD-HIT and OrthoMCL; and the pan genome profile curves are 
shown in the Supplementary Fig. S1. The empirical power law equations and exponential equations were used 
for extrapolation of the pan and core genome curves respectively, as displayed in the respective plots generated 
by three clustering tools (Supplementary Fig. S1)28. In all three cases, the pan-genome curve has almost reached 
a plateau, indicating that the Streptococcus pyogenes pan-genome would probably close in near future. As can be 
seen from these figures, the outputs of USEARCH and CD-HIT are quite similar to one another, but those of 
OrthoMCL differ slightly. This could be due to the fact that OrthoMCL estimates the unique gene clusters sepa-
rately while USEARCH and CD-HIT clusters all the genes at a time. Genome wise statistics (i.e., distribution of 
core, accessory, unique and exclusively absent genes) have also been generated by BPGA individually for three 
clustering tools (Supplementary Tables S2–S4).

Figure 2. Overview of the results generated by BPGA using 28 strains of S. pyogenes. (a) The gene family 
frequency spectrum. (b) New gene family distribution after sequential addition of each genome to the analysis. 
(c) The pan genome profile trends obtained using clustering tools- USEARCH, CD-HIT and OrthoMCL.  
(d) COG distribution of core, accessory and unique genes. (e) KEGG distribution of core, accessory and unique 
genes.
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Exclusive presence and absence of genes. As mentioned above, the Exclusive Gene Family Analysis is a 
unique feature of BPGA, which enables extraction of sequences of not only the genes that are exclusively present 
(unique or singletons), but also the gene families that are exclusively absent in a particular genome of the dataset 
(i.e., genes present in all but one of the genomes under study). The number of genes exclusively present (unique 
genes or singletons) and exclusively absent in each strain of S. pyogenes dataset are shown in last two columns of 
Supplementary Tables S2–S4. Intriguingly enough, the number of exclusively absent genes appeared to be excep-
tionally high in S. pyogenes STAB901 and S. pyogenes M1 476 with all three clustering tools. Both these genomes 
are significantly shorter in length as compared to other S. pyogenes under study (Supplementary Table S1a) and 
the number of total genes and accessory genes are also relatively less in these two genomes (Supplementary Tables 
S2–S4). Though to our knowledge, there has been no direct evidence for genome reduction in S. pyogenes, con-
sidering the fact that host restricted commensal and pathogenic bacteria often undergo genome reduction and 
maintain relatively small genome sizes as compared to the free-living bacterial species, it would be intriguing to 
examine whether these two genomes are undergoing the process of genome reduction38–40. It may be noted here 
that the S. pyogenes strain 7F7 also has relatively less number of annotated genes, but all three clustering tools have 
yielded only one exclusively absent gene in this strain.

Sequence extraction. Protein sequences for representatives of core (913), accessory (1490) and unique 
(387) orthologous clusters were extracted using the Pan Genome Sequence Extraction module of the BPGA pipe-
line, as FASTA files. In addition, genome wise sequences for all proteins of the core, accessory, unique and exclu-
sively absent clusters have also been extracted to respective files. Sequences for 928 genes having atypical GC 
contents have also been extracted.

Phylogeny based on MLST, core and pan-genome. BPGA generated three types of phylogenetic trees: 
one, based on concatenated core gene alignments, another based on in silico MLST of housekeeping genes and 
the last one using pan-matrix (i.e., binary gene presence/absence (1/0) matrix). These three types of trees of  
S. pyogenes strains generated using USEARCH clustering are shown in Fig. 3. As expected, there are some varia-
tions across the trees generated by different types of phylogenetic approaches. Pan and core genome based trees 
using other two clustering tools are shown in Supplementary Fig. S2.

Function and pathway mapping of genes. The Pan Genome Functional Analysis module of BPGA has 
been used for COG function and KEGG pathway mapping of representative protein sequences of core, accessory 
and unique clusters of the S. pyogenes strains under study. Figure 2d shows the COG distribution profiles of the 
core, accessory and unique gene families. The COG distribution pattern showed involvement of more core genes 
in carbohydrate transport and metabolism and translation, ribosomal structure and biogenesis, while accessory and 
unique genes appear to be enriched in Transcription, Replication, recombination and repair and Cell wall/mem-
brane/envelope biogenesis related functions. Out of 2790 gene clusters, BPGA could map 1218 (43.7%) to KEGG 
pathways. As expected, KEGG assignments from BPGA revealed overall higher representation of metabolism 
related pathways (Fig. 2e). BPGA also provides detailed COG and KEGG distribution for S. pyogenes clusters 
generated by USEARCH, CD-HIT and OrthoMCL (Supplementary Figs S3, S4).

Atypical GC-content Analysis. This module identifies the genes, the G +  C-content of which deviate from 
the average G +  C-content of the respective genome by more than 2σ  (or 3σ , as defined by the user), where σ  is 
the standard deviation from the average G +  C-content35,36. In a microbial genome, the G +  C-content of the 
native genes (i.e., the genes vertically inherited from its parent organism), in general, does not vary appreciably, 
the genes with atypical G +  C-content are likely to be acquired through horizontal gene transfer35,36. The last 

Figure 3. Phylogenetic analysis by BPGA using 28 strains of S. pyogenes based on. (a) concatenated core 
genes (b) concatenated housekeeping genes (MLST) (c) binary pan-matrix. (Blue: Group M1 strains and Red: 
Group M12 strains).
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column of Supplementary Table S1a shows the number of such atypical genes found in each S. pyogenes genome. 
These potential alien sequences are then categorized as the core, accessory and unique genes.

Subset Analysis. We have carried out the pan genome profile analysis for (i) four strains belonging of M-1 
serotype and (ii) four strains of M-12 serotypes of S. pyogenes test dataset. The results obtained for gene fam-
ily distribution in these two subsets is shown in Supplementary Fig. S5, while the gene-families present exclu-
sively in M-1 and M-12 serotypes are enlisted in Supplementary file 241–44. This analysis clearly illustrates how 
BPGA enables identification of serotype-specific gene families. Needless to say, similar type of analysis applied to 
the sub-groups of organisms with distinct ecological or pathogenic traits may help to identify niche-specific or 
virulence-specific genes in bacteria.

Performance and feature comparisons with other tools. Exact comparison of performances of 
various pan-genome analysis tools with BPGA is not possible because they are not identical in their tasks and 
features. But there are considerable advantages like ease of use and improved performance (Table 2). We have 
analyzed the performance and memory requirements of BPGA for various datasets (Supplementary Table S5). 
Smaller datasets (24 and 28 strains; not tiny though) took only 3 to 4 minutes for all analyses together. We also 
tested the performance for extremely large datasets (1000 strains, and 1000 random bacterial genomes); none of 
them exceeded 420 minutes and 3.5 gigabytes memory (RAM).

Discussion
With rapid advances in NextGen sequencing techniques and metagenomics, bacterial genomics has transitioned 
from single-genome studies to cross-genome comparison of hundreds to thousands organisms at different scales 
of phylogenetic resolution. As a consequence, pan genome studies have widened their scope from species to 
higher taxonomic levels, necessitating development of faster analysis tools capable of processing larger datasets. 
In an attempt to speed up the whole process of analysis, the fastest tool for gene family clustering, USEARCH, 
has been incorporated as the default tool in BPGA pipeline. This has decreased the redundancy of genes in the 
dataset by grouping the genes into orthologous clusters and using only the representatives for comparative stud-
ies. As illustrated in the present report, BPGA outperforms most of the existing pan genomic tools in the speed 
of operation (Table 2).

Another major issue in pan genome studies is purposeful use of the binary pan matrix data for downstream 
functional analyses. In addition to all types of analyses offered by currently available tools, BPGA contains cer-
tain novel features like Exclusive Gene Family Analysis, Atypical GC Content Analysis and Subset Analysis etc. 
The option for exclusive presence and absence of genes in one or more genomes in the dataset paves the way 
to probe into the genetic basis of various microbial phenotypes, such as emergence of virulence or symbiosis, 
adaptation to specific niches and so on. Exclusive absence of genes in one or more particular strains may also hint 
towards reductive evolution of the respective genomes– an event often observed in obligatory host-associated 
microbes38,39. The module on subset analysis, when applied to the sub-groups of organisms with distinct serolog-
ical, ecological or pathogenic traits may also provide clues for bacterial genome dynamics and evolution under 
specific conditions.

Identification of genes with atypical GC contents point towards a probable events of horizontal acquisition of 
genes from other bacteria in course of evolution or as an adaptation strategy35,36. To our knowledge, BPGA is the 
only pan genomic tool that can identify such genes or gene clusters. It may be noted that the atypical GC-content 
alone cannot confirm the alien origin of any bacterial gene. There are some other parameters like codon usage, 
oligonucleotide usage etc. which should be checked before coming to any conclusion regarding the possibility of 
horizontal acquisition of these genes. Nevertheless, the Atypical GC Content Analysis module may give some clues 
on the potential cases of Horizontal Gene Transfer in a microbial genome35,36.

BPGA has overcome the shortcomings in earlier pan genome analysis tools. It provides user defined input 
options unlike online resource (e.g. PanOCT) with limited strains and/or lack of newly sequenced strains. It even 
works with most recent bacterial draft genomes from The Human Microbiome Project, submitted to GenBank. 
As mentioned above, BPGA provides important downstream analysis options which Panseq, PanGP and Roary 
lacked. BPGA has significantly higher speed of analysis as compared to that of PGAP or ITEP. Integration of 
support for diverse clustering methods (USEARCH, CD-HIT and OrthoMCL) has increased the scope of BPGA. 
Other notable features of BPGA includes minimum running prerequisites, ease of handling, user friendly com-
mand line interface, freedom for user to select method for clustering, high quality image output and efficiency in 
terms of time cost.

Software availability. BPGA is freely available at: http://sourceforge.net/projects/bpgatool/ and http://
www.iicb.res.in/bpga/index.html.

References
1. Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-

genome”. Proc Natl Acad Sci USA 102, 13950–5 (2005).
2. Rasko, D. A. et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic 

isolates. J Bacteriol 190, 6881–93 (2008).
3. Smokvina, T. et al. Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of 

diversity. Plos One 8, e68731 (2013).
4. Hogg, J. S. et al. Characterization and modeling of the Haemophilus influenzae core and supragenomes based on the complete 

genomic sequences of Rd and 12 clinical nontypeable strains. Genome Biol 8, R103 (2007).
5. Snipen, L., Almoy, T. & Ussery, D. W. Microbial comparative pan-genomics using binomial mixture models. BMC Genomics 10, 385 

(2009).

http://sourceforge.net/projects/bpgatool/
http://www.iicb.res.in/bpga/index.html
http://www.iicb.res.in/bpga/index.html


www.nature.com/scientificreports/

9Scientific RepoRts | 6:24373 | DOI: 10.1038/srep24373

6. Hiller, N. L. et al. Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: insights into the pneumococcal 
supragenome. J Bacteriol 189, 8186–95 (2007).

7. Eppinger, M. et al. Genome sequence of the deep-rooted Yersinia pestis strain Angola reveals new insights into the evolution and 
pangenome of the plague bacterium. J Bacteriol 192, 1685–99 (2010).

8. Lefebure, T. & Stanhope, M. J. Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and 
genome composition. Genome Biol 8, R71 (2007).

9. Donati, C. et al. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol 
11, R107 (2010).

10. Jacobsen, A., Hendriksen, R. S., Aaresturp, F. M., Ussery, D. W. & Friis, C. The Salmonella enterica pan-genome. Microb Ecol 62, 
487–504 (2011).

11. Kettler, G. C. et al. Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. Plos Genet 3, e231 (2007).
12. Lapierre, P. & Gogarten, J. P. Estimating the size of the bacterial pan-genome. Trends Genet 25, 107–10 (2009).
13. Aherfi, S. et al. Complete genome sequence of Cannes 8 virus, a new member of the proposed family “Marseilleviridae”. Virus Genes 

47, 550–5 (2013).
14. Cao, J. et al. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43, 956–63 (2011).
15. Read, B. A. et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499, 209–13 (2013).
16. Li, Y. H. et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 

32, 1045–52 (2014).
17. Dunn, B., Richter, C., Kvitek, D. J., Pugh, T. & Sherlock, G. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of 

copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Res 22, 908–24 (2012).
18. Medini, D., Donati, C., Tettelin, H., Masignani, V. & Rappuoli, R. The microbial pan-genome. Curr Opin Genet Dev. 15, 589–94 

(2005).
19. Vernikos, G., Medini, D., Riley, D. R. & Tettelin, H. Ten years of pan-genome analyses. Curr Opin Microbiol. 23, 148–54 (2015).
20. Mira, A., Martin-Cuadrado, A. B., D’Auria, G. & Rodriguez-Valera, F. The bacterial pan-genome:a new paradigm in microbiology. 

Int Microbiol. 13, 45–57 (2010).
21. Xiao, J., Zhang, Z., Wu, J. & Yu, J. A brief review of software tools for pangenomics. Genomics Proteomics Bioinformatics. 13, 73–6 

(2015).
22. Serruto, D. & Rappuoli, R. Post-genomic vaccine development. FEBS Lett. 580, 2985–92 (2006).
23. Maione, D. et al. Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science. 309, 148–50 

(2005).
24. Fouts, D. E., Brinkac, L., Beck, E., Inman, J. & Sutton, G. PanOCT: automated clustering of orthologs using conserved gene 

neighborhood for pan-genomic analysis of bacterial strains and closely related species. Nucleic Acids Res. 40, e172 (2012).
25. Laing, C. et al. Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic 

regions. BMC Bioinformatics. 11, 461 (2010).
26. Zhao, Y. et al. PanGP: a tool for quickly analyzing bacterial pan-genome profile. Bioinformatics. 30, 1297–9 (2014).
27. Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 31, 3691–3 (2015).
28. Zhao, Y. et al. PGAP: pan-genomes analysis pipeline. Bioinformatics. 28, 416–8 (2012).
29. Benedict, M. N., Henriksen, J. R., Metcalf, W. W., Whitaker, R. J. & Price, N. D. ITEP: an integrated toolkit for exploration of 

microbial pan-genomes. BMC Genomics. 15, 8 (2014).
30. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–7 (2004).
31. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 26, 2460–1 (2010).
32. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 

22, 1658–9 (2006).
33. Li, L., Stoeckert, C. J. Jr. &Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 

2178–89 (2003).
34. Maiden, M. C. et al. Multi locus sequence typing: a portable approach to the identification of clones within populations of pathogenic 

microorganisms. Proc Natl Acad Sci USA 95, 3140–5 (1998).
35. Ravenhall, M., Skunca, N., Lassalle, F. & Dessimoz, C. Inferring horizontal gene transfer. Plos Comput Biol. 11, e1004095 (2015).
36. Liu, M., Siezen, R. J. & Nauta, A. In silico prediction of horizontal gene transfer events in Lactobacillus bulgaricus and Streptococcus 

thermophilus reveals protocooperation in yogurt manufacturing. Appl Environ Microbiol. 75, 4120–9 (2009).
37. Gupta, V. K., Chaudhari, N. M., Iskepalli, S. & Dutta, C. Divergences in gene repertoire among the reference Prevotella genomes 

derived from distinct body sites of human. BMC Genomics. 16, 153 (2015).
38. McCutcheon, J. P. & Moran, N. A. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 10, 13–26 (2011).
39. Sakharkar, K. R., Dhar, P. K. & Chow, V. T. Genome reduction in prokaryotic obligatory intracellular parasites of humans: a 

comparative analysis. Int J Syst Evol Microbiol. 54, 1937–41 (2004).
40. Delorme, C., Abraham, A. L., Renault, P. & Guédon, E. Genomics of Streptococcus salivarius, a major human commensal. Infection, 

Genetics and Evolution. 33, 381–392 (2015).
41. NCBI taxonomy database. Available at: http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id= 342023. (Accessed: 3rd 

November 2015).
42. NCBI taxonomy database. Available at: http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id= 301447. (Accessed: 3rd 

November 2015).
43. Staali, L., Morgelin, M., Bjorck, L. & Tapper, H. Streptococcus pyogenes expressing M and M-like surface proteins are phagocytosed 

but survive inside human neutrophils. Cell Microbiol. 5, 253–65 (2003).
44. Davies, M. R. et al. Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong Kong is associated with toxin 

acquisition and multidrug resistance. Nat Genet. 47, 84–7 (2014).
45. Brittnacher, M. J. et al. PGAT: a multi strain analysis resource for microbial genomes. Bioinformatics. 27, 2429–30 (2011).

Acknowledgements
This work has been supported by the Council of Scientific & Industrial Research (CSIR), Government of India. 
CSIR Network projects GENESIS (BSC0121) and HUM (BSC0119).

Author Contributions
N.M.C. and V.K.G. developed the pipeline, performed analysis and drafted the manuscript. C.D. conceived the 
project and revised the manuscript. All authors read and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=342023
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=301447
http://www.nature.com/srep


www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:24373 | DOI: 10.1038/srep24373

Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Chaudhari, N. M. et al. BPGA- an ultra-fast pan-genome analysis pipeline. Sci. Rep. 6, 
24373; doi: 10.1038/srep24373 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	BPGA- an ultra-fast pan-genome analysis pipeline
	Methods
	BPGA Algorithm. 
	Input preparation for clustering. 
	Orthologous clustering of functional genes. 
	Functional modules. 
	(i) Pan-genome profile analysis. 
	(ii) Pan-genome sequence extraction. 
	(iii) Exclusive gene family analysis. 
	(iv) Atypical GC content analysis. 
	(v) Pan-genome functional analysis. 
	(vi) Species phylogenetic analysis. 
	(vii) Subset analysis. 



	Results
	Software features. 
	Evaluation of BPGA features with Streptococcus pyogenes test dataset. 
	Pan-genome profile estimation and statistics. 
	Exclusive presence and absence of genes. 
	Sequence extraction. 
	Phylogeny based on MLST, core and pan-genome. 
	Function and pathway mapping of genes. 
	Atypical GC-content Analysis. 
	Subset Analysis. 
	Performance and feature comparisons with other tools. 

	Discussion
	Software availability. 

	Acknowledgements
	Author Contributions
	Figure 1.  BPGA workflow.
	Figure 2.  Overview of the results generated by BPGA using 28 strains of S.
	Figure 3.  Phylogenetic analysis by BPGA using 28 strains of S.
	Table 1.  Description of BPGA Pipeline.
	Table 2.   Comparison of BPGA with other tools currently available for pan-genome analysis.



 
    
       
          application/pdf
          
             
                BPGA- an ultra-fast pan-genome analysis pipeline
            
         
          
             
                srep ,  (2016). doi:10.1038/srep24373
            
         
          
             
                Narendrakumar M. Chaudhari
                Vinod Kumar Gupta
                Chitra Dutta
            
         
          doi:10.1038/srep24373
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep24373
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep24373
            
         
      
       
          
          
          
             
                doi:10.1038/srep24373
            
         
          
             
                srep ,  (2016). doi:10.1038/srep24373
            
         
          
          
      
       
       
          True
      
   




