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Abstract
Count data are common endpoints in clinical trials, for example magnetic resonance

imaging lesion counts in multiple sclerosis. They often exhibit high levels of overdis-

persion, that is variances are larger than the means. Inference is regularly based on

negative binomial regression along with maximum-likelihood estimators. Although

this approach can account for heterogeneity it postulates a common overdispersion

parameter across groups. Such parametric assumptions are usually difficult to ver-

ify, especially in small trials. Therefore, novel procedures that are based on asymp-

totic results for newly developed rate and variance estimators are proposed in a gen-

eral framework. Moreover, in case of small samples the procedures are carried out

using permutation techniques. Here, the usual assumption of exchangeability under

the null hypothesis is not met due to varying follow-up times and unequal overdis-

persion parameters. This problem is solved by the use of studentized permutations

leading to valid inference methods for situations with (i) varying follow-up times, (ii)

different overdispersion parameters, and (iii) small sample sizes.

K E Y W O R D S
permutation methods, resampling, studentized statistics

1 INTRODUCTION

Metric data and especially count data are common endpoints in clinical trials. Examples include relapses and magnetic resonance

imaging (MRI) lesion counts in relapsing-remitting multiple sclerosis (MS), exacerbations in chronic obstructive pulmonary

disease (COPD), and hospitalizations in heart failure. For several of these the negative binomial distribution has been suggested

to be an appropriate model accounting for between-patient heterogeneity in event rates manifesting in overdispersion, that is

variances exceeding the means. For instance, Wang, Meyerson, Tang, and Qian (2009) suggested the negative binomial model

for the analyses of relapses, and Sormani et al. (1999, 2001, 2005) and Van den Elskamp, Knol, Uitdehaag, and Barkhof (2009)

for various types of MRI lesion counts in MS. Based on two large-scale COPD trials, Keene, Calverley, Jones, Vestbo, and

Anderson (2008) assessed various models and recommended the negative binomial model for application. In the situations

described above, commonly analyses methods (e.g. PROC GENMOD in SAS) are applied based on large sample properties of

underlying Maximum-Likelihood-Estimates (MLE) and the assumption of a common overdispersion parameter across treatment
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groups. Such distributional assumptions, however, can hardly be verified; especially in case of small to moderate sample sizes

(Aban, Cutter, & Mavinga, 2009). Even if the distribution is correctly specified the MLEs of the overdispersion parameters

are biased (Link & Sauer, 1997; Lord, 2006; Paul & Islam, 1995; Saha, 2011; Saha & Paul, 2005) that may lead to wrong

conclusions. Moreover, it is quite common that varying follow-up times occur, see for example, Chen et al. (2013), McCullagh

and Nelder (1989). All of the above- mentioned characteristics may not only be shared by count data, but also by metric data

measured on an arbitrary scale. Simultaneously accommodating all of these complications in an accurate statistical inference

method in a unified way is a rather challenging task. To the best of our knowledge no suitable methods currently exist that can

simultaneously handle heteroscedastic data (counts) with varying follow-up times.

It is the aim of the present paper to develop valid inference procedures for the analysis of such data in general models allowing

for possibly time-varying follow-up times and different overdispersion parameters in a nonparametric way. This is accomplished

by newly derived unbiased estimators (based on the methods of moments) for the (count) rates and their variances. The rigorous

study of their large sample properties then leads to asymptotically correct tests and confidence intervals for treatment effects

using critical values from the standard normal distribution.

With small samples the use of normal quantiles for inference can lead to liberal or conservative decisions whereas permutation

tests offer an opportunity to derive quantiles from appropriate reference distributions. In particular, the application of studentized

permutation procedures is tempting since they have been shown to control the type-𝐼-error rate very accurately in various

situations (Chung & Romano, 2013; Chung & Romano, 2016; Janssen, 1997; Konietschke & Pauly, 2014; Pauly, Brunner, &

Konietschke, 2015). The problem in this particular situation is that with varying follow-up times and unequal overdispersion

parameters the usual assumption of independently identically distributed (iid) observations in the groups is not met. This issue

can be solved by applying more general theorems on permutation statistics by Janssen and Pauls (2003) and Janssen (2005)

and Pauly (2011). Even though data may not be exchangeable under the null hypothesis, the derived permutation methods are

asymptotically correct in that they control the type I error rate or the coverage probability for hypothesis tests and confidence

intervals, respectively.

The paper is organized as follows: The statistical model and point estimates are given in Section 2. Unbiased variance esti-

mators are provided in Section 3. In Section 4, test procedures and confidence intervals are derived. Permutation-based small

sample size approximations and simulation results are presented in Section 5. Finally, two illustrative data examples are analyzed

in Section 6. The paper closes with a discussion of the proposed methods in Section 7. All proofs are given in the supplement

to this paper.

2 STATISTICAL MODEL, POINT ESTIMATES, AND MULTIVARIATE
NORMALITY

We consider a general semi-parametric two-sample layout with independent random variables 𝑋𝑖𝑘 with

𝐸(𝑋𝑖𝑘) = 𝑡𝑖𝑘𝜆𝑖 𝑎𝑛𝑑 𝑉 𝑎𝑟(𝑋𝑖𝑘) = 𝜎2
𝑖𝑘
, 𝑖 = 1, 2, 𝑘 = 1,… , 𝑛𝑖. (1)

Here, the index 𝑖 represents the treatment groups (𝑖 = 1 control, and 𝑖 = 2 treatment), and 𝑘 the subject within treatment group

𝑖 with individual follow-up time 𝑡𝑖𝑘, and 𝜆𝑖 > 0 the expectation of group 𝑖. Note that the variance 𝜎2
𝑖𝑘

may depend on 𝑡𝑖𝑘,

for example if 𝑋𝑖𝑘 follows a Negative Binomial distribution (in this special case 𝜎2
𝑖𝑘
= 𝑡𝑖𝑘𝜆𝑖 + 𝑡2

𝑖𝑘
𝜆2
𝑖
𝜙𝑖), a Poisson distribution

(𝜎2
𝑖𝑘
= 𝑡𝑖𝑘𝜆𝑖), or an Exponential distribution (here 𝜎2

𝑖𝑘
= 𝑡2

𝑖𝑘
𝜆2
𝑖
). We further assume that the fourth moments exist and are bounded,

that is sup𝑘≥1 𝐸(𝑋4
𝑖𝑘
) ≤ 𝐶0 < ∞ for a constant 𝐶0 > 0 and 𝑖 = 1, 2.

The design is allowed to be completely heteroscedastic, that is every observation might have a different expectation and

variance. All statistical procedures for the analysis of iid observations are inappropriate for statistical inference in model (1).

Let 𝑁 =
∑2

𝑖=1 𝑛𝑖 denote the total sample size, 𝑇𝑖 =
∑𝑛𝑖

𝑘=1 𝑡𝑖𝑘 the total follow-up times in group 𝑖, 𝑖 = 1, 2, and let 𝑇 =
∑2

𝑖=1 𝑇𝑖
denote the total follow-up times across both treatment groups. The unknown rate parameters 𝜆𝑖 can be estimated without bias by

𝜆𝑖 =
1
𝑇𝑖

𝑛𝑖∑
𝑘=1

𝑋𝑖𝑘 (2)

and can be interpreted as a weighted mean of the data. The variance of 𝜆𝑖 is given by

𝜎2𝑖 = 𝑉 𝑎𝑟
(
𝜆𝑖

)
= 1

𝑇 2
𝑖

𝑛𝑖∑
𝑘=1

𝜎2
𝑖𝑘
. (3)



618 KONIETSCHKE ET AL.

For the derivation of asymptotic results for the rate estimates (2), the following mild regularity conditions on sample sizes and

follow-up times are required:

𝑡𝑖𝑘 ∈ [𝐿,𝑈 ] 𝑤ℎ𝑒𝑟𝑒 0 < 𝐿 < 𝑈 < ∞, (4)

𝑁 → ∞ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡
𝑛𝑖
𝑁

→ 𝜅𝑖 ∈ (0, 1), (5)

𝑇 → ∞ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡
𝑇𝑖
𝑇

→ 𝜅𝑖 ∈ (0, 1), (6)

1
𝑇𝑖

𝑛𝑖∑
𝑘=1

𝜎2
𝑖𝑘
→ 𝜏2𝑖 ∈ (0,∞), 𝑎𝑠 𝑇𝑖 → ∞. (7)

Assumption (4) ensures that the follow-up times appear on a fixed time interval of interest, while Assumptions (5)–(7) guarantee

the existence of limiting variances of the point estimates, see Theorem 2.1 below. In particular, it follows immediately, that the

estimator 𝜆𝑖 is consistent as 𝑛𝑖 → ∞ and 𝑇𝑖 → ∞, respectively. However, the variance 𝜎2
𝑖

defined in (3) represents an unknown

weighted sequence of the quantities 𝜎2
𝑖𝑘

, which depends on both the follow-up times and sample sizes. Thus, it cannot be

represented by model constants. In order to derive inference methods for the general hypothesis 𝐻0 ∶ ℎ(𝜆1, 𝜆2) = 𝜃0, however,

the estimator needs to be multiplied by adequate known coefficients, such that 𝜎2
𝑖

converges to a specific variance constant,

which is, asymptotically, unaffected by the follow-up times and sample sizes. The result along with the multivariate normality

of the estimator 𝝀 = (𝜆1, 𝜆2)′ of 𝝀 = (𝜆1, 𝜆2)′ are given in the next theorem.

Theorem 2.1.

(1) Under Assumptions (4), (6), and (7),√
𝑇1𝑇2
𝑇

(𝝀 − 𝝀)

→ 𝑁(𝟎,𝚺), 𝑤ℎ𝑒𝑟𝑒 𝚺 = 𝑑𝑖𝑎𝑔

{
𝜅2𝜏

2
1 , 𝜅1𝜏

2
2
}

(8)

is a diagonal limiting covariance matrix.

Note that the diagonal covariance matrix 𝚺 neither depends on the sample sizes 𝑛𝑖, nor on the time-varying coefficients 𝑡𝑖𝑘.

The matrix, is, however, unknown in practical applications, and needs to be estimated. An unbiased and 2-consistent estimator

is derived in the next section.

3 ESTIMATION OF THE VARIANCE

Moment-based estimators for variances denote, roughly speaking, the squared deviation from the mean. In model (1), however,

no uniquely defined mean exists. In particular, the variance 𝜎2
𝑖

is a sum of variances, and is not defined as a fixed variance

constant. Therefore, the usual sample variance moment-based estimator is biased, a rather inappropriate characteristic of a

variance estimator. Below, we derive an unbiased and consistent moment-based estimator of 𝜎2
𝑖
.

Define the random variables 𝑍𝑖𝑘 = 𝑋𝑖𝑘 − 𝑡𝑖𝑘𝜆𝑖, and note that 𝐸(𝑍𝑖𝑘) = 0 for all 𝑖 = 1, 2, and 𝑘 = 1,… , 𝑛𝑖. The variables

𝑍𝑖𝑘 describe the deviation of 𝑋𝑖𝑘 to its estimated expectation. An unbiased moment-based estimator can now be derived by

considering the squared deviation from 𝑍𝑖𝑘 along with a bias correction. Define

𝐾𝑖 =
𝑛𝑖∑
𝑘=1

𝑡2
𝑖𝑘

(𝑇𝑖 − 2𝑡𝑖𝑘)𝑇𝑖
(9)

and consider

𝜎2𝑖 = 1
(1 +𝐾𝑖)𝑇 2

𝑖

𝑛𝑖∑
𝑘=1

𝑇𝑖
(𝑇𝑖 − 2𝑡𝑖𝑘)

𝑍2
𝑖𝑘
. (10)
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The estimator 𝜎2
𝑖

is not a usual sample variance estimator, since it only involves sums of the follow-up times 𝑡𝑖𝑘 as weighting

factors. However, it describes the mean squared deviation from the observations 𝑋𝑖𝑘 to their estimated mean 𝑡𝑖𝑘𝜆𝑖. Further let

𝚺̂ = 𝑑𝑖𝑎𝑔
(
𝜎21 , 𝜎

2
2
)
=

𝑇1𝑇2
𝑇

𝑑𝑖𝑎𝑔
(
𝜎21 , 𝜎

2
2
)

(11)

denote the diagonal matrix with diagonal elements
𝑇1𝑇2
𝑇

𝜎21 and
𝑇1𝑇2
𝑇

𝜎22 , respectively. It is shown in the next theorem, that 𝜎2
𝑖

is

an unbiased estimator of 𝜎2
𝑖

and that 𝚺̂ is 2-consistent.

Theorem 3.1. For each 𝑖 = 1, 2 the estimator 𝜎2
𝑖

is an unbiased estimator of 𝜎2
𝑖
. Moreover, the estimator 𝚺̂ is 2-consistent,

that is

||𝚺̂𝚺−1 − 𝑰2||22 → 0, 𝑇 → ∞.

A detailed proof is given in the supplementary material.

Remark. We note that the variance estimator 𝜎2
𝑖

may become negative in “severe” situations, that is if any 𝑡𝑖𝑘 is way larger than

the others. In this case we suggest to use the asymptotically unbiased version

𝜎2∗𝑖 = 1
𝑛𝑖(𝑛𝑖 − 1)

𝑛𝑖∑
𝑘=1

(𝑋𝑖𝑘 − 𝑡𝑖𝑘𝜆𝑖)2

of 𝜎2
𝑖

instead.

The asymptotic normality of the point estimates and the consistent variance estimates can now be used for the derivation of

test procedures and confidence intervals.

4 TEST PROCEDURES AND CONFIDENCE INTERVALS

In this section, different procedures for testing the null hypothesis 𝐻0 ∶ ℎ(𝜆1, 𝜆2) = 𝜃0 as well as confidence intervals for

the treatment effect ℎ(𝜆1, 𝜆2) will be discussed, where ℎ ∶ ℝ2
+ → ℝ is continuously differentiable in (𝜆1, 𝜆2). Let 𝒈(ℎ) =

𝒈(ℎ, 𝜆1, 𝜆2) = ( 𝜕ℎ

𝜕𝜆1
, 𝜕ℎ

𝜕𝜆2
)′ denote the gradient of ℎ with estimator 𝒈̂(ℎ) = 𝒈̂(ℎ, 𝜆1, 𝜆2) = ( 𝜕ℎ

𝜕𝜆1
, 𝜕ℎ

𝜕𝜆2
)′. It follows from the multi-

variate delta-method that

𝑓

(
ℎ
(
𝜆1, 𝜆2

)′
− ℎ
(
𝜆1, 𝜆2

)) 
→ 𝑁

(
0, 𝜎2

ℎ

)
, (12)

where

𝑓 =
√

𝑇1𝑇2
𝑇

𝑎𝑛𝑑 𝜎2
ℎ
= (𝒈(ℎ))′ 𝚺𝒈(ℎ). (13)

The variance 𝜎2
ℎ

is unknown, and must be estimated in practical applications. However, 𝜎2
ℎ

is a linear combination of the indi-

vidual variances 𝜎2
𝑖
, respectively. It follows immediately, that a consistent estimator is given by

𝜎2
ℎ
=
(
𝒈̂(ℎ)
)′ 𝚺̂𝒈̂(ℎ). (14)

Based on the asymptotic normality of 𝑓 (ℎ(𝜆1, 𝜆2)′ − ℎ(𝜆1, 𝜆2)) and Slutsky's Theorem, it thus follows that

𝑇(ℎ)(𝜃) = 𝑓

(
ℎ
(
𝜆1, 𝜆2

)
− 𝜃
)

𝜎ℎ


→ 𝑁(0, 1) (15)

where 𝜃 = ℎ(𝜆1, 𝜆2). For large sample sizes, the null hypothesis 𝐻0 ∶ ℎ(𝜆1, 𝜆2) = 𝜃0 will be rejected at a two-sided significance

level 𝛼, if |𝑇(ℎ)(𝜃0)| ≥ 𝑧1−𝛼∕2, where 𝑧1−𝛼∕2 denotes the (1 − 𝛼∕2)-quantile of the standard normal distribution. Asymptotic
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(1 − 𝛼)-confidence intervals for 𝜃 are obtained from

𝑃

(
𝜃 ∈
[
ℎ
(
𝜆1, 𝜆2

)
±

𝑧1−𝛼∕2

𝑓
𝜎ℎ

])
→ 1 − 𝛼. (16)

5 SMALL SAMPLE APPROXIMATIONS AND SIMULATION RESULTS

Extensive simulations were conducted to investigate the accuracies of the test procedures derived in Section 4 for small sample

sizes with regard to (i) controlling the type-1 error rate at the nominal significance level (𝛼 = 5%), (ii) their powers to detect

certain alternatives𝐻1 ∶ ℎ(𝜆1, 𝜆2) ≠ 𝜃0, and (iii) the coverage probabilities of the corresponding confidence intervals in (16). All

simulations were conducted with R environment, version 2.15.2. (R Development Core Team, 2010), each with 𝑛𝑠𝑖𝑚 = 10, 000
simulation runs.

In all simulations, we focus on testing the hypothesis

𝐻
(𝐿)
0 ∶ ℎ𝐿(𝜆1, 𝜆2) = log

(
𝜆1∕𝜆2

)
= 0 𝑣𝑠. 𝐻

(𝐿)
1 ∶ log

(
𝜆1∕𝜆2

)
≠ 0, (17)

corresponding to the function ℎ(𝜆1, 𝜆2) = 𝐿(𝜆1, 𝜆2) = log(𝜆1∕𝜆2). The test statistic is given by

𝑇(𝐿) = 𝑓
log
(
𝜆1∕𝜆2

)
√

𝜎21∕𝜆
2
1 + 𝜎22∕𝜆

2
2

, (18)

which yield to asymptotically valid tests 𝜓𝑓 = 𝟏{|𝑇(𝐿)| ≤ 𝑧1−𝛼∕2} for 𝐻
(𝐿)
0 . Moreover, confidence intervals can be derived from

(16), respectively. Simulation studies indicate, however, that the statistic 𝑇(𝐿) in (18) tends to result in rather liberal conclu-

sions for small sample sizes (𝑛𝑖 ≤ 20). Therefore, we propose a studentized permutation approach to approximate its sampling

distribution for small sample sizes. This will be explained in the next section.

5.1 A studentized permutation approach
Permutation tests are widely known to be robust and exact level 𝛼 tests when the data are exchangeable. Exchangeability implies,

however, that variances across the groups are identical. As mentioned above, the data are allowed to be completely heteroscedas-

tic in model (1). Roughly speaking, a usual permutation test would fail to test the null hypotheses formulated above. However,

asymptotic permutation tests can be obtained, if appropriate studentized statistics are permuted, which will now be briefly

explained: It turns out that the test statistic 𝑇(𝐿) follows, asymptotically, a standard normal distribution under the null hypothe-

sis. A permutation or resampling test would now lead to accurate results (at least asymptotically), if the conditional permutation

distribution of the test statistic 𝑇(𝐿), say 𝐹 ∗, would generally mimick the null distribution of the test statistic. That is, both dis-

tributions should at least coincide asymptotically. If that is the case, critical values (or P-values) could be computed from the

permutation distribution instead of the standard normal distribution for making inferences. Therefore, the goal of the following

investigations is to show that the permutation distribution of 𝑇(𝐿), 𝐹
∗, is indeed the standard normal distribution. In order to do

so, some notations and ideas about the permutation schemes are necessary:

Let 𝐗 = (𝑋11,… , 𝑋1𝑛1 , 𝑋21,… , 𝑋2𝑛2 )
′ denote the pooled sample, and let 𝐭 = (𝑡11,… , 𝑡1𝑛1 , 𝑡21,… , 𝑡2𝑛2 )

′ denote the cor-

responding vector of the pooled follow-up times 𝑡𝑖𝑘. For a fixed, but random permutation 𝜋 of (1,… , 𝑁), let 𝐗𝜋 =
(𝑋𝜋

11,… , 𝑋𝜋
1𝑛1

, 𝑋𝜋
21,… , 𝑋𝜋

2𝑛2
)′ and 𝐭𝜋 = (𝑡𝜋11,… , 𝑡𝜋1𝑛1

, 𝑡𝜋21,… , 𝑡𝜋2𝑛2
)′ denote the permuted data and corresponding follow-up

times, respectively.

Permuting 𝐗 and 𝐭 using the same random permutation 𝜋, the permuted values 𝑋𝜋
𝑖𝑘

and 𝑡𝜋
𝑖𝑘

are not necessarily independent,

which is a rather (at least technically) undesirable property in this context. We therefore propose to permute 𝐗 and 𝐭 inde-

pendently. This is similar to two sample problems with right-censored survival data, where it is also recommended that the

permuted failure times do not occur in general with their corresponding censoring indicators, see Janssen and Mayer (2003) as

well as Brendel, Janssen, Meyer, and Pauly (2014). To this end, we consider another random permutation 𝜋′ of (1,… , 𝑁) that

is independent of 𝜋 and calculate the permuted estimators 𝜆
(𝜋,𝜋′)
𝑖

= 𝜆𝑖(𝐗𝜋, 𝐭𝜋′ ) and 𝜎
2(𝜋,𝜋′)
ℎ

= 𝜎2
ℎ
(𝐗𝜋, 𝐭𝜋′ ). Note that the possible

number of random permutation is considerably increased when permuting both 𝐗 and 𝐭 independently.
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It turns out that the distribution of the test statistic 𝑓ℎ(𝜆1, 𝜆2) differs in the general model (1) from its permutation distribution,

and a valid level 𝛼 test can not be achieved in this setup. Therefore, we consider the distribution of the test statistic 𝑇(ℎ) defined

in (15) and of the studentized quantity

𝑇
(𝜋,𝜋′)
(ℎ) = 𝑓

ℎ
(
𝜆
(𝜋,𝜋′)
1 , 𝜆

(𝜋,𝜋′)
2

)
𝜎
(𝜋,𝜋′)
ℎ

. (19)

The conditional limiting distribution of 𝑇
(𝜋,𝜋′)
(ℎ) given the data 𝐗 will be derived in the next theorem.

Theorem 5.1. Let 𝑇 (𝜋,𝜋′)
(ℎ) as given in (19) and denote by Φ(𝑥) the standard normal distribution function. If 𝜎2

𝐿
> 0, then we

have convergence under the null as well as under the alternative with

sup
𝑥∈ℝ

||||𝑃 (𝑇 (𝜋,𝜋′)
(𝐿) ≤ 𝑥

)
− Φ(𝑥)

|||| 𝑃
→ 0.

Theorem 5.1 states that the limiting standard normal distribution of 𝑇
(𝜋,𝜋′)
(𝐿) does not depend on the distribution of the data,

particularly, it is achieved for arbitrary ℎ(𝜆1, 𝜆2) = 𝜃0, that is it even holds under the alternative.

Let 𝜓
(𝜋,𝜋′)
𝑓

= 1{𝑇(ℎ) ≤ 𝑧
(𝜋.𝜋′)
𝛼∕2 } + 1{𝑇(ℎ) ≥ 𝑧

(𝜋,𝜋′)
1−𝛼∕2}, where 𝑧

(𝜋,𝜋′)
𝛼∕2 denotes the 𝛼∕2-quantile from the studentized permutation

distribution of 𝑇(𝐿). In the next theorem, we will show that both the conditional and unconditional tests are asymptotically

equivalent, which means, that both tests have, asymptotically, the same power to detect certain alternatives.

Theorem 5.2. Suppose that the assumptions of Theorem 5.1 are fulfilled.

1. Under the null hypothesis 𝐻0 ∶ ℎ(𝜆1, 𝜆2) = 0, the studentized permutation test 𝜓 (𝜋,𝜋′)
𝑓

is asymptotically exact at 𝛼 level of

significance, that is 𝐸(𝜓 (𝜋,𝜋′)
𝑓

) → 𝛼, and asymptotically equivalent to 𝜓𝑓 , that is

𝐸
(|||𝜓 (𝜋,𝜋′)

𝑓
− 𝜓𝑓
|||) → 0, 𝑓 → ∞.

2. The permutation test 𝜓 (𝜋,𝜋′)
𝑓

is consistent, that is we have convergence

𝐸(𝜓 (𝜋,𝜋′)
𝑓

) → 𝛼1{ℎ(𝜆1, 𝜆2) = 0} + 1{ℎ(𝜆1, 𝜆2) ≠ 0}, 𝑓 → ∞.

In particular, Theorem 5.1 states that the distributions of the pivotal quantity 𝑇(ℎ) and of the studentized permutation statistic

𝑇
(𝜋,𝜋′)
(ℎ) asymptotically coincide. Under the assumptions of Theorem 5.1, approximate (1 − 𝛼)-confidence intervals for 𝜃 can be

obtained from

𝑃
⎛⎜⎜⎝𝜃 ∈

⎡⎢⎢⎣ℎ
(
𝜆1, 𝜆2

)
−

𝑧
(𝜋,𝜋′)
1−𝛼∕2

𝑓
𝜎ℎ, ℎ

(
𝜆1, 𝜆2

)
−

𝑧
(𝜋,𝜋′)
𝛼∕2

𝑓
𝜎ℎ

⎤⎥⎥⎦
⎞⎟⎟⎠→ 1 − 𝛼. (20)

5.2 Simulation results
In a negative binomial-𝑁𝐵(𝑡𝑖𝑘𝜆𝑖, 𝜙𝑖)-model we investigate the empirical control of the preassigned type-1 error rate at the usual

two-sided significance level 𝛼 = 5% of the statistic 𝑇(𝐿) in (18) using the standard normal approximation as given in (15), and

the permutation test using the quantiles of the conditional distribution of 𝑇
(𝜋,𝜋′)
(ℎ) in (19) as critical values. As a further com-

peting procedure, we estimate the variances 𝜎2
𝑖

using maximum likelihood methods. In this 𝑁𝐵(𝑡𝑖𝑘𝜆𝑖, 𝜙𝑖)-model the variance

𝜎2
𝑖

is given by the weighted sequence of the quantities 𝑡𝑖𝑘𝜆𝑖 + 𝑡2
𝑖𝑘
𝜆2
𝑖
𝜙𝑖, respectively. An intuitive plug-in estimation approach is

achieved by replacing the unknown parameter 𝜆𝑖 by 𝜆𝑖 from above and 𝜙𝑖 by a consistent maximum-likelihood estimator (ML)

𝜙𝑖, for example by using

𝜎̈2𝑖 = 1
𝑇 2
𝑖

𝑛𝑖∑
𝑘=1

{
𝑡𝑖𝑘𝜆𝑖 + 𝑡2

𝑖𝑘
𝜆2𝑖 𝜙𝑖

}
, (21)
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T A B L E 1 Simulated designs, where 𝑚 ∈ {0, 5, 10, 20, 25} and 𝐧1 = (7, 7)′, 𝐧2 = (7, 15)′

Setting 𝝀𝟏 = 𝝀𝟐 Sizes Overdisp. Interpretation
1 1.5 𝐧 = 𝐧1 + 𝑚 𝝓 = 𝝓1 Balanced/equal overdispersion

2 1.5 𝐧 = 𝐧2 + 𝑚 𝝓 = 𝝓1 Unbalanced/equal overdispersion

3 1.5 𝐧 = 𝐧1 + 𝑚 𝝓 = 𝝓2 Balanced/unequal overdispersion

4 1.5 𝐧 = 𝐧2 + 𝑚 𝝓 = 𝝓2 Unbalanced/unequal overdispersion (positive pairing)

5 1.5 𝐧 = 𝐧2 + 𝑚 𝝓 = 𝝓3 Unbalanced/unequal overdispersion (negative pairing)

6 10 𝐧 = 𝐧1 + 𝑚 𝝓 = 𝝓4 Balanced/equal overdispersion

7 10 𝐧 = 𝐧2 + 𝑚 𝝓 = 𝝓4 Unbalanced/equal overdispersion

8 10 𝐧 = 𝐧1 + 𝑚 𝝓 = 𝝓5 Balanced/unequal overdispersion

9 10 𝐧 = 𝐧2 + 𝑚 𝝓 = 𝝓5 Unbalanced/unequal overdispersion (positive pairing)

10 10 𝐧 = 𝐧2 + 𝑚 𝝓 = 𝝓6 Unbalanced/unequal overdispersion (negative pairing)

Here 𝝓1 = (𝜙1, 𝜙2)′ = (0.3, 0.3)′, 𝝓2 = (𝜙1, 𝜙2) = (0.3, 0.5)′, 𝝓3 = (𝜙1, 𝜙2) = (0.5, 0.3)′, 𝝓4 = (𝜙1, 𝜙2)′ = (3, 3)′, 𝝓5 = (𝜙1, 𝜙2) = (3, 5)′, and 𝝓6 = (𝜙1, 𝜙2) = (5, 3)′

denote vectors of overdispersion parameters and 𝐧𝑖 + 𝑚 means that every component of 𝐧𝑖, that is each group size, is increased by 𝑚.

see, for example Schneider, Schmidli, and Friede (2013). This estimation approach, however, has the disadvantage that neither 𝜆2
𝑖

nor 𝜙𝑖 are unbiased estimators of 𝜆2
𝑖

or 𝜙𝑖, respectively, resulting in biased variance estimators. The variance estimators 𝜎2
𝑖

used

in 𝑇(𝐿) are finally replaced by 𝜎̈2
𝑖
, and the corresponding Wald-statistic, which is asymptotically equivalent to the Likelihood-ratio

test, denoted by LRT.

5.2.1 Type-1 error rate simulations
We explore the behavior of the test statistics for smaller and larger effect rates 𝜆1 and 𝜆2 ∈ {1.5, 10} as well as smaller and larger

overdispersion parameters 𝜙1 and 𝜙2 ∈ {0.3, 0.5, 3, 5}.

All simulation designs are motivated by the examples presented in Section 6. A major assessment criterion for the accuracy of

the procedures is their behavior when increasing sample sizes are combined with increasing variance parameter constellations

(positive pairing) or with decreasing variances (negative pairing). We investigate balanced situations with sample size vector

𝐧1 = (𝑛1, 𝑛2)′ = (7, 7) and unbalanced situations with sample size vector 𝐧2 = (𝑛1, 𝑛2) = (7, 15)′. The sample sizes are increased

by adding a constant 𝑚 to the components of the vectors 𝐧𝟏 or 𝐧𝟐, respectively. The different simulation settings are displayed

in Table 1. Each simulation setting 𝐧 = 𝐧𝑠(𝑚) = (𝑛1 + 𝑚, 𝑛2 + 𝑚)′ represents a different design with an increasing sample size

𝑚, where 𝑠 = 1, 2, see Table 1.

Data were generated from𝑋𝑖𝑘 ∼ 𝑁𝐵(𝑡𝑖𝑘𝜆𝑖, 𝜙𝑖), where 𝑡𝑖𝑘 denotes the realization from a uniformly distributed random variable

𝑇𝑖𝑘 ∼ 𝑈 (1, 2), respectively. For each simulation setting, the same generated follow-up times 𝑡𝑖𝑘 were used for the 𝑛𝑠𝑖𝑚 = 10, 000
simulation runs, but they were newly generated for each design. The number of random permutations was set to 𝑛𝑝𝑒𝑟𝑚 = 10, 000.

The simulated type-1 error rates for a significance level 𝛼 = 5% assuming uniformly distributed follow-up times are displayed

in Figure 1.

It turns out that in case of small effect rates (𝜆1 = 𝜆2 = 1.5) and small overdispersion parameters the statistics 𝑇(𝐿) based

on the normal approximation as well as the LRT statistics based on ML tend to be slightly liberal. It can be readily seen from

Figure 1 that the permutation tests control the type-1 error rate best, even for extremely small sample sizes. In case of larger effect

rates and overdispersion parameters the distribution of the data is much more skewed. In these situations the procedures 𝑇(𝐿)
based on the normal approximation and ML tend to considerably overreject the null hypothesis 𝐻

(𝐿)
0 . Remarkably, the estimated

type-1 error rates are even larger than 20% and 10%, respectively in Settings 6–10 (see Figure 1). In comparison, the permutation

technique greatly improves the finite sample performance of all asymptotic procedures, and is therefore recommended in practical

applications.

In order to investigate the impact of the underlying distributions of the follow-up times, we resimulate the same designs

with exponentially distributed follow-up times 𝑇𝑖𝑘 ∼ 𝐸𝑥𝑝(2) + 1. The results are displayed in the supplementary material. It

can be seen that the shape of the underlying follow-up times distributions slightly affect the behavior of the statistics in all

scenarios. This is intuitively clear, since the different follow-up times particularly influence the variance of the effect estimators,

and increase the variance with wider ranging follow-up times or certain amount of skewness. Therefore, all procedures tend to

be slightly more liberal when wide ranging follow-up times and small sample sizes are apparent. This can be particularly seen

by the permutation test. The liberality, disappears with increasing sample sizes.
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F I G U R E 1 Type-I error level (𝛼 = 5%) simulation results (y-axis) of the statistics 𝑇(𝐿) in (18), permutation test 𝑇
(𝜋,𝜋′)
(ℎ) in (19) and ML-based

statistics for different distributions, sample size increments 𝑚 ∈ {0, 5, 10, 15, 20, 25} (x-axis), where 𝑡𝑖𝑘 denote the realizations from 𝑇𝑖𝑘 ∼ 𝑈 (1, 2).
The simulation settings are described in Table 1

5.2.2 Power comparisons
The type-1 error rate simulation results presented in Section 5.2.1 indicate a quite liberal behavior of the methods 𝑇(𝐿) and ML-

based statistics under certain parameter constellations and small sample sizes. All methods tend to accurate conclusions with

large sample sizes. The liberality of these methods increases the “power” of the methods to detect alternatives in small sample

size settings. In an additional simulation study, not presented here, it turned out, that with large sample sizes, that is when all

competing methods are accurate, their powers are all very similar.

5.2.3 Simulated coverage rates of the confidence intervals
Next we investigate the empirical coverage probabilities of the corresponding confidence intervals. Data were generated by

𝑋1𝑘 ∼ 𝑁𝐵(𝜆1𝑡1𝑘, 𝜙1), 𝑘 = 1,… , 𝑛1 and 𝑋2𝑘 ∼ 𝑁𝐵(𝜆1(1 + 𝛿)𝑡2𝑘, 𝜙2) for varying 𝛿 ∈ {0, 0.1, 0.2,… , 2}, 𝑛1, 𝑛2 ∈ {10, 20},

and different overdispersion parameters. For illustration purposes, we only display the results using uniformly distributed follow-

up times, different overdispersion parameters 𝜙1 = 3 and 𝜙2 = 5 and rate 𝜆1 = 10. The results are displayed in Figure 2. It is

readily seen that the competing procedures tend to be rather liberal, while the empirical coverage probabilities of the permutation-

based confidence intervals are closer to the nominal level of 95%. The quality of the approximation depends on sample sizes and
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F I G U R E 2 Empirical coverage probabilities of nominal 95% confidence intervals of the corresponding confidence intervals given in (16),

permutation- based confidence intervals given in (20) and ML-based LRT statistics for different distributions and rate increments 𝛿 ∈ {0, 0.1,… , 2}
(x-axis) and unequal overdispersion parameters (𝜙1 = 3, 𝜙2 = 5), where 𝑡𝑖𝑘 denote the realizations from 𝑇𝑖𝑘 ∼ 𝑈 (1, 2)

T A B L E 2 Type-I error level (𝛼 = 5%) simulation results of the statistics 𝑇(𝐿) in (18) and the permutation test 𝑇
(𝜋,𝜋′)
(𝐿) in (19) using 𝜒2-square

and exponentially distributed data in different designs, where 𝑡𝑖𝑘 denote the realizations from 𝑇𝑖𝑘 ∼ 𝑈 (1, 2)

𝑿𝒊𝒌 ∼ 𝝌𝟐
𝒕𝒊𝒌

𝑿𝒊𝒌 ∼ 𝑬𝒙𝒑(𝒕𝒊𝒌 ⋅ 𝟏∕𝟐)

𝒏𝟏 𝒏𝟐 𝑻 (𝝅,𝝅′)
(𝑳) 𝑻(𝑳) 𝑻 (𝝅,𝝅′)

(𝑳) 𝑻(𝑳)

7 7 0.0567 0.1168 0.0440 0.0937

7 15 0.0479 0.1063 0.0373 0.0884

12 12 0.0521 0.0862 0.0500 0.0807

12 20 0.0473 0.0825 0.0364 0.0644

17 17 0.0498 0.0757 0.0355 0.0565

17 25 0.0521 0.0769 0.0540 0.0822

27 27 0.0535 0.0694 0.0854 0.1058

27 35 0.0522 0.0684 0.0454 0.0618

32 32 0.0544 0.0698 0.0469 0.0575

32 40 0.0494 0.0634 0.0526 0.0623

the actual levels of heteroscedasticity across the groups and their allocations. If the larger sample has a smaller variance than

the smaller sample (𝑛1 = 20, 𝑛2 = 10), the confidence intervals tend to be slightly liberal for small samples. However, this issue

vanishes with increasing sample sizes.

5.2.4 Simulation results for general metric data
As mentioned in the Introduction and in the description of model (1), data is not required to be count data and thus, numerical

investigations of the behavior of the studentized permutation test are intriguing. We therefore investigate the empirical control of

the type-1 error rate of the studentized permutation test 𝑇
(𝜋,𝜋′)
(𝐿) in completely heteroscedastic designs with metric data following

exponential or 𝜒2-distributions. The method will be compared with 𝑇(𝐿) using the standard normal approximation. Exponentially

distributed variables were generated by 𝑋𝑖𝑘 ∼ 𝐸𝑥𝑝(𝑡𝑖𝑘 ⋅ 1∕2), 𝑖 = 1, 2, 𝑘 = 1,… , 𝑛𝑖, and 𝜒2-variables were generated by 𝑋𝑖𝑘 ∼
𝜒2
𝑡𝑖𝑘

, respectively.

The results are displayed in Table 2 and show that the studentized permutation approach controls the nominal type-1 error

rate very well and greatly improves the standard normal approximation.
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6 TWO ILLUSTRATIVE EXAMPLES

Pediatric MS with disease onset under the age of 16 is uncommon and qualifies as a rare disease. Differences in clinical presenta-

tion before and after puberty have been reported (Huppke et al., 2014). Randomized controlled trials in pediatric MS have been

very rare (Unkel et al., 2016), but are becomming more common now (Rose & Müller, 2016). We consider a randomized con-

trolled trial assessing efficacy and safety of interferon beta-1a compared to no treatment in pediatric MS reported by Pakdaman,

Fallah, Sahraian, Pakdaman, and Meysamie (2006). In this trial, 16 patients were randomized to verum or control. Relapse rates

and new T2 lesions were both considered as endpoints. The estimated rates and overdispersion parameters are given in Table 3.

As a second example, we consider the Acyclovir trial reported by Lycke et al. (1996). In this experiment, Acyclovir treatment

was used in a randomized, double-blind, placebo-controlled clinical trial with parallel groups to test the hypothesis that herpes

virus infections are involved in the pathogenesis of MS. In total, 𝑁 = 60 adult patients were recruited, whereas 𝑛1 = 𝑛2 = 30
were randomized to placebo or active treatment, respectively. The data (relapse counts) can be found in Figure 1 in the original

publication (Lycke et al., 1996). As a secondary analysis of this trial, the relapse counts from patients that showed a progressive

course during the trial were excluded from the statistical analysis. In this situation, patients have different follow-up times and

estimators must be weighted accordingly.

The estimated rates and overdispersions being defined as variance-to-mean ratios are given in Table 3. It can be readily seen

from Table 3 that the overdispersion parameters seem to differ between the treatment groups, and even underdispersed counts

are apparent. The effect of the different overdispersion parameters on the behavior of the statistical methods has been analyzed

in detail in extensive simulation studies in Section 5.2.

Both motivating examples discussed above used over- and underdispersed counts as outcomes. Here, we present the results

based on standard methods including normal approximation and maximum-likelihood as well as the new developed methods.

The test statistic being used is given by

𝑇𝑁𝐵 =
log
(
𝜆1∕𝜆2

)
√

𝜎̈
2(𝑐,𝑃 )
1
𝜆
2(𝑐)
1

+
𝜎̈
2(𝑐,𝑃 )
2
𝜆
2(𝑐)
2

, (22)

where

𝜎̈2𝑖 = 1
𝑇 2
𝑖

𝑛𝑖∑
𝑘=1

{
𝑡𝑖𝑘𝜆𝑖 + 𝑡2

𝑖𝑘
𝜆2𝑖 𝜙
}
,

denotes the estimated variance of the effect estimator using a MLE estimator of the overdispersion parameter𝜙, which is assumed

to be identical across both treatment groups.

As competing methods, we also analyze the data using both a Negative Binomial Regression- and Poisson Regression using

SAS PROC GENMOD.

T A B L E 3 Estimated rates and overdispersion parameters (Variance / Mean Ratio) for the two example studies

Endpoint Group Estimated rate 𝝀𝒊 Sample variance Estimated overdispersion
Pediatric MS trial (N=16)

T2 lesions Control 11.875 13.268 1.117

Active 10.625 16.839 1.585

Relapses Control 4.5 6.571 1.460

Active 2.375 0.268 0.113

Acyclovir trial (N=60)

Relapses Control 3.133 6.602 2.107

ACYC 2.067 3.030 1.466

Acyclovir trial (N=60; Secondary analysis)

Relapses Control 3.205 6.602 2.060

ACYC 2.118 3.172 1.498
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T A B L E 4 Statistical analysis of the examples using ℎ(𝜆1, 𝜆2) = 𝑙𝑜𝑔(𝜆1∕𝜆2): Approximate method, Effect (𝑙𝑜𝑔(𝜆1∕𝜆2)), Standard Error (SE),

Test Statistic (= Effect / SE), and 95% confidence intervals

Method Effect SE Statistic P-value 95% CI
T2 lesions

Normal (15) 0.111 0.174 0.638 0.524 (−0.231; 0.453)

LRT (21) 0.111 0.162 0.686 0.493 (−0.207; 0.429)

LRT.Pool (22) 0.111 0.161 0.691 0.489 (−0.204; 0.427)

Perm (19) 0.111 0.174 0.638 0.545 (−0.269; 0.510)

NB-Reg 0.111 0.161 0.691 0.489 (−0.204; 0.428)

Pois-Reg 0.111 0.149 0.745 0.456 (−0.181; 0.405)

Relapses

Normal (15) 0.639 0.216 2.964 0.003 (0.216; 1.062)

LRT (21) 0.639 0.302 2.116 0.034 (0.047; 1.231)

LRT.Pool (22) 0.639 0.284 2.254 0.024 (0.083; 1.195)

Perm (19) 0.639 0.216 2.964 0.026 (0.116; 1.162)

NB-Reg 0.639 0.284 2.254 0.024 (0.096; 1.215)

Pois-Reg 0.639 0.284 2.254 0.024 (0.096; 1.215)

Acyclovir relapses

Normal (15) 0.416 0.215 1.939 0.052 (−0.004; 0.837)

LRT (21) 0.416 0.228 1.824 0.068 (−0.031; 0.863)

LRT.Pool (22) 0.416 0.231 1.805 0.071 (−0.036; 0.868)

Perm (19) 0.416 0.215 1.939 0.054 (−0.007; 0.842)

NB-Reg 0.416 0.231 1.805 0.071 (−0.035; 0.870)

Pois-Reg 0.416 0.164 2.544 0.011 (0.098; 0.741)

Acyclovir relapses (Secondary analysis)

Normal (15) 0.414 0.218 1.904 0.057 (−0.012; 0.841)

LRT (21) 0.414 0.230 1.798 0.072 (−0.037; 0.866)

LRT.Pool (22) 0.414 0.233 1.781 0.075 (−0.076; 0.845)

Perm (19) 0.414 0.218 1.904 0.062 (−0.022; 0.845)

NB-Reg 0.415 0.233 1.780 0.075 (−0.040; 0.874)

Pois-Reg 0.422 0.165 2.553 0.011 (0.101; 0.750)

Thus, the illustrative examples include constant as well as varying follow-up times, and even the analyses with constant follow-

up times still presents a challenge since the sample sizes are with 16 and 60 very and moderately small, and the overdispersion

is fairly pronounced, in particular for the MRI lesion counts and relapses. The effect estimates, standard errors, test statistics,

P-values as well as 95%-confidence intervals are displayed in Table 4.

It can be readily seen from Table 4, that the estimated standard errors of the effect estimates for the T2 lesions are likely,

and therefore all methods results in the same conclusion. Only the estimated standard error being computed via a Poisson-

Regression tends to be smaller. This occurs because the Poisson-Regression sets the overdispersion to be zero, by default. A

significant effect at 5% level can not be detected with any method (P > 0.05). The relapse rates are significantly different at 5%-

level of significance. It can be seen, however, that the estimates of the standard errors significantly differ from the moment-based

unbiased variance estimators (SE = 0.216 vs. SE = 0.302 using ML). Therefore, the P-values based on ML estimates are larger

than using the moments-based estimator and standard normal distribution (P = 0.003 vs. P = 0.034). However, since sample

size is rather small, the permutation approach is the most robust method in this setup, and results in a P-value of P = 0.026.

Since both over- and underdispersed counts were observed, the ML.Pool, the negative binomial, and poisson regression are tend

to provide identical results.

The results obtained for the Acyclovir trial, however, differ significantly. First, both treatment groups show a different overdis-

persion. Therefore, the SE obtained by a Poisson-Regression is way smaller than with all other methods, and thus results

in a significant treatment effect at 5% level of significance. Comparing the other estimation approaches it can be seen that

the ML-based estimation approaches (assuming negative binomial distribution) of the SE tend to be larger than the unbiased
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methods-of-moments based methods. The largest SE is estimated via ML.Pool (which is identical to a NB-Regression). The

estimated standard error based on the unbiased variance estimate is given by SE = 0.215. Therefore, the P-values range from

0.052 through 0.071. Due to the moderate sample size of 𝑁 = 60, both the normal and permutation approximation tend to

provide similar P-values with 𝑃 = 0.052 and 𝑃 = 0.054, respectively. The secondary analysis of the the Acyclovir trial shows

similar results to the above. This occurs because only the relapse counts from four of the 60 patients were excluded from the

analysis. However, slightly different effect estimates coming from the Negative Binomial and Poisson Regression can be seen.

This occurs, because in case of unequal follow-up times the rates are estimated using maximum likelihood estimation methods,

which are not identical to moment (mean-based) methods.

7 DISCUSSION

In this paper, inference methods for testing hypotheses formulated in terms of the effect rates of overdispersed counts were devel-

oped without assuming a specific data distribution and/or different overdispersion parameters. They are based on the asymptotic

properties of novel unbiased estimators of the count rates and their variances. In order to provide valid methods for small sample

sizes, resampling methods have been derived. Although data is in general not exchangeable, following the ideas of Neuhaus

(1993), Janssen (1997, 2005), and Chung and Romano (2013), studentized permutation techniques could be applied. Simulation

studies indicate, however, that the procedures control the nominal level reasonably well even with 𝑛𝑖 ≈ 5.

Furthermore, in clinical trials, the computation of confidence intervals for the treatment effects is important, following the ICH

E9 guideline for randomized clinical trials: “Estimates of treatments shall be accompanied by confidence intervals, whenever
possible& (ICH E9 Guideline 1998, chap. 5.5, p. 25). For instance, Saha (2013) investigates different methods for the compu-

tation of confidence intervals for the mean difference in the analysis of overdispersed count data (assuming constant follow-up

times 𝑡𝑖𝑘). In this paper, these procedures were generalized for possibly time-varying and overdispersed count data and equipped

with the studentized permutation approach. Extensive simulation studies show that the new methods improve the existing meth-

ods in terms of coverage probability and type-𝐼-error rate control. Furthermore, we only considered one possible unbiased

estimator of the rates 𝜆𝑖 by 𝜆𝑖 =
1
𝑇𝑖

∑𝑛𝑖
𝑘=1 𝑋𝑖𝑘, which is known as a weighted mean estimator. Another unbiased estimator is

given by the unweighted mean 𝜆
(𝑢)
𝑖

= 1
𝑛𝑖

∑𝑛𝑖
𝑘=1

𝑋𝑖𝑘

𝑡𝑖𝑘
, or least-square based estimators 𝜆𝑖 = (𝐭′

𝑖
𝐭𝑖)−1𝐭′𝑖𝐗𝑖, where 𝐭𝑖 = (𝑡𝑖1.… , 𝑡𝑖𝑛𝑖 )

′

and 𝐗𝑖 = (𝑋𝑖1,… , 𝑋𝑖𝑛𝑖
)′ denote the vectors of follow-up times and response per group 𝑖, respectively. Investigating and com-

paring those estimators and generalizations thereof is tempting and will be subject to future research.

In future investigations, the results shall be extended to more general models allowing for covariates (e.g. for baseline adjust-

ment) and several samples. Furthermore, investigating the overlap of range-preserving confidence intervals for the effects is an

interesting attempt for making inferences (Noguchi & Marmolejo-Ramos, 2016).
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