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Abstract: Leukocytes are a part of the immune system that plays an important role in the
host’s defense against viral, bacterial, and fungal infections. Among the human leukocytes,
two granulocytes, neutrophils (Ne) and eosinophils (EOS) play an important role in the innate
immune system. For that purpose, eosinophils and neutrophils contain specific granules containing
protoporphyrin-type proteins such as eosinophil peroxidase (EPO) and myeloperoxidase (MPO),
respectively, which contribute directly to their anti-infection activity. Since both proteins are structurally
and functionally different, they could potentially be a marker of both cells’ types. To prove this
hypothesis, UV−Vis absorption spectroscopy and Raman imaging were applied to analyze EPO
and MPO and their content in leukocytes isolated from the whole blood. Moreover, leukocytes can
contain lipidic structures, called lipid bodies (LBs), which are linked to the regulation of immune
responses and are considered to be a marker of cell inflammation. In this work, we showed how
to determine the number of LBs in two types of granulocytes, EOS and Ne, using fluorescence and
coherent anti-Stokes Raman scattering (CARS) microscopy. Spectroscopic differences of EPO and
MPO can be used to identify these cells in blood samples, while the detection of LBs can indicate the
cell inflammation process.

Keywords: eosinophils; neutrophils; eosinophil peroxidase; myeloperoxidase; lipid bodies; Raman
microscopy; coherent anti-Stokes Raman scattering (CARS), fluorescence microscopy

1. Introduction

Eosinophils (EOS), neutrophils (Ne) and basophils are granulocytes found in human peripheral
blood and tissues. They are small and round-shaped with specific granules in their cytoplasm,
which contain characteristic proteins specific for each granulocyte type. Granulocytes differ also in the
shape of their nuclei and their physiological functions [1]. Eosinophils are round-shaped immune cells
with a diameter of 10–20 µm, having a bilobed nucleus and large acidophilic cytoplasmic granules [2–5].
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The abundance of EOS in the peripheral blood is about 1–6% of all white blood cells and their lifespan
in blood is about 18 h [4]. Approximately 200 granules with a diameter of 0.9–1.3 µm present in the EOS
cytoplasm contain a pull of proteins including major basic protein (MBP), eosinophil derived neurotoxin
(EDN), eosinophil cationic protein (ECP), and—eosinophil peroxidase (EPO) [6,7]. Eosinophils are
involved in the initiation and propagation of inflammatory responses [8], helminth infections and
allergic diseases [7]. They are mainly known for their antiparasitic activity, but they also constitute a
prevalent cell population in the female reproductive tract [3]. EOS cells secrete an array of cytokines,
which promote T cell proliferation, activation and polarization [3,7] and also participate in the
communication between other cells of the immune system. The number of eosinophils increases in
response to allergies and parasitic infections [6]. Neutrophils are in turn azurophilic granulocytes with
a diameter of 10–12 µm and multilobed nuclei [9]. They are the most abundant leukocytes (54–62%)
and live in circulation for about 6–12 h. Neutrophils migrate to infection sites caused by bacteria [10]
and other microorganisms, where they participate in their phagocytosis [9,11]. Myeloperoxidase (MPO)
is accumulated in the matrix of granules surrounded by trilaminar membrane [2,12,13].

Both the most characteristic proteins, EPO and MPO, are protoporphyrins and belong to the
group of mammalian peroxidases. EPO consists of two subunits, a heavy chain (50–58 kD) and
a light one (10.5–15.5 kD) in 1:1 stoichiometry [2]. The prosthetic group of EPO is a high spin,
hexa-coordinated, ferric protoporphyrin IX. Major functions of EPO include the catalysis of oxidation of
halides, pseudohalidase and nitric oxide to highly reactive oxygen species with cytotoxic properties [6].
MPO is also built of two monomers, which are linked through cysteine bridges [14]. One heavy
subunit is covalently bonded with the heme ring, while glycosylated light chains contain a modified
iron protoporphyrin IX active site [14,15]. MPO in combination with H2O2 and halides is involved
in killing viruses, and bacteria. EPO also shows antibacterial activity but only in the presence of
bromides [2,15–17]. In order to differentiate EOS and Ne cells, their peroxidases have been analyzed by
employing Raman spectroscopy, in particular resonance Raman spectroscopy. Spectra measured under
resonance Raman conditions require the use of laser excitation in the range of electronic absorption of
a chromophore. A few reports have shown this approach by illuminating EOS and Ne with laser lines
at 406, 514, and 660 nm [11,18,19]. However, these previous studies lack details about the molecular
structure of EPO alone [8,18] or a certain group of compounds found in EOS and Ne, e.g., lipids [2].
In our work we employed spontaneous Raman spectroscopy with three different excitation wavelengths
(532, 633, and 785 nm) in broad spectral ranges that allowed us a detailed evaluation of the molecular
properties of EPO and MPO, both on-resonance (532 and 633 nm) and pre-resonance (785 nm), as well
as to deliver information about DNA, protein and lipid composition of EOS and Ne cells.

Lipids constituting lipid bodies (LBs) in granulocytes can be recognized relatively easily by Raman
spectroscopy due to the large Raman cross-section of long nonpolar acyl chains (highly polarizable
C–H and C–C bonds) [20,21]. The occurrence of LBs in leukocytes is associated with infection and
inflammatory responses during which the increased size and number of LBs are considered as a
marker of the leukocyte activation [22,23]. In principle, LBs are rapidly formed and secrete arachidonyl
phopholipids used next in the production of eicosanoids, which are inflammatory mediators [24–26].

Raman spectroscopic imaging is a powerful tool in the analysis of LB composition but a high
through-put requires scanning of a large number of cells since LBs occur in a few percent of granulocytes
only [6]. Therefore, the use of other methods, like fluorescence and coherent anti-Stokes Raman scattering
(CARS) microscopies, is desired to visualize the distribution of LBs in granulocytes. The identification
of LBs by fluorescence microscopy requires staining of the cells with dyes specifically accumulated in
lipidic cellular compartments, e.g., Nile Red or BODIPY [27], whereas CARS relies on multiphoton,
nonlinear processes and provides sensitive, rapid and label-free detection of lipids even in living
cells [28–34]. Moreover, the sensitivity of CARS is better than that of spontaneous Raman scattering [33],
therefore, we decided to apply CARS microscopy to understand the metabolism and regulation of
lipid storage in cells and tissues in the course of diseases [28,30,31].
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Here, we provide a comprehensive chemical characterization of eosinophils and neutrophils by
means of spectroscopic imaging techniques to give a panel of markers suitable for further differentiation
of these granulocytes and to follow stress conditions. Firstly we examine EPO and MPO by spontaneous
Raman spectroscopy with laser excitations at 532, 633, and 785 nm in order to fully understand the
complexity and differences between these two proteins which could be useful for differentiation
between EOS and Ne. Electronic absorption spectra were collected to define precisely the conditions of
resonance and pre-resonance Raman scattering for reference peroxidases and granulocytes. In the next
step of analysis, Raman images of eosinophils and neutrophils were measured with the same three
laser excitations. Beside protoporphyrins, also LBs were analyzed, with regard to their number and
chemical composition. The former were studied by fluorescence and CARS microscopy.

2. Materials and Methods

2.1. Chemicals

EPO solution (LeeBiosolutions, Maryland Heights, MO, USA), MPO solution (LeeBiosolutions,
Maryland Heights, MO, USA), EPO powder (Sigma-Aldrich, St. Louis, MO, USA), MPO powder
(LeeBiosolution, Maryland Heights, MO, USA), dextran from Leuconostoc spp. 500,000 (Sigma-Aldrich,
St. Louis, MO, USA), Ficoll-Paque Plus d = 1.077 g/mL (GE Healthcare, Chicago, IL, USA),
human eosinophil isolation kit (MiltenyiBiotec, Bergisch Gladbach, Germany), DPBS (Dulbecco’s
phosphate-buffered saline, Gibco, ThermoFisher, Waltham, MA, USA), 10% fetal bovine
serum (FBS, Gibco, ThermoFisher, Waltham, MA, USA), penicillin-streptomycin (10,000 U/mL,
ThermoFisher Scientific, Waltham, MA, USA), Roswell Park Memorial Institute (RPMI) 1640 medium
with L-glutamine and 25 mmol/l HEPES (Gibco), EDTA (Sigma-Aldrich, St. Louis, MO, USA).

Reference eosinophil peroxidase (EPO, Munich, Germany) and myeloperoxidase (MPO) were
purchased as lyophilized powders and solutions (LeeBiosolutions, Maryland Heights, MO, USA).
EPO solution (≥98% purity) was dissolved in 0.1 M sodium phosphate solution with 0.4 M sodium
chloride (pH 7.5). MPO solution (≥96% purity) was dissolved in 50 mM sodium acetate and 100 mM
sodium chloride solution with preservative (bromo-nitro-dioxane, pH 6.0).

2.2. Isolation of Eosinophils and Neutrophils from Blood

Human eosinophils and neutrophils were isolated according to the method described by Grosicki
et al. [35]. Briefly, human peripheral blood, from which cells were isolated, was purchased from the
Regional Blood Transfusion Center (Krakow, Poland). Blood was collected in heparin-coated tubes.
Erythrocytes (RBCs) were discarded from the remaining blood cells through 1% dextran solution
sedimentation. Peripheral blood mononuclear cells (PBMCs) were removed by Ficoll−Paque density
gradient separation. Remaining RBCs were removed through hypotonic shock lysis. Eosinophils and
neutrophils were further purified from the remaining cells using an immunomagnetic cell separation
method (human eosinophil isolation kit, Easy Step), according to the manufacturer’s protocol.
The purity of isolated eosinophils was estimated based on flow-cytometric methodology at 97%,
remaining cells consisted of neutrophils. According to Polish law, blood samples purchased from the
Regional Blood Transfusion Center do not require the permission of an Ethics Commission.

2.3. Spectroscopic Measurements

2.3.1. UV−Vis Absorption Spectroscopy

Reference solutions of EPO and MPO (concentrations ca. 0.5–1.5 and 1.0–2.0 mg/mL, respectively)
as well as eosinophils and neutrophils (ca. 300,000 cells suspended in 1 mL PBS) were measured by
using a Lambda 950 spectrophotometer (PerkinElmer, Waltham, MA, USA). Electronic spectra were
acquired in the 200–800 nm range with a step size of 1 nm and accumulation of 1 scan in a 1 cm
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quartz cuvette. Spectra were baseline corrected using a rubber band method with 64 baseline points
(OPUS 7.2 software).

2.3.2. Raman Spectroscopy

Raman spectra of reference EPO and MPO and isolated cells were recorded using a WITec confocal
CRM alpha 300 Raman microscope equipped with air-cooled lasers operating at 532, 633, and 785 nm.
The CCD detector was cooled to −60 ◦C. The lasers were coupled to the microscope via a single
mode optical fiber with a diameter of 50 µm (for 532 nm) and 100 µm (for 633 nm and 785 nm).
Reference samples were illuminated through an air Olympus MPLAN objective (100 × /0.9 NA) while
the cells were measured with a water immersion Nikon Fluor objective (60 × /1.0 NA). All samples
were placed on CaF2 windows.

In order to avoid photothermal degradation of peroxidases, the laser power was adjusted
individually for each reference sample, i.e., for the 532 nm laser line: 167 and 11.37 µW, for the 633 nm
laser line: 0.5 and 10 mW, and for the 785 nm laser line: 10 and 40 mW for MPO and EPO, respectively.
Adjustment of the laser power was performed applying a live scan measurement mode with the aim to
obtain the best signal-to-noise ratio without affecting the susceptible peroxidases’ structure and was set
on the highest possible value which provided unaltered Raman spectrum. The spectra were recorded
at 10 randomly chosen positions with a 30 s integration time and 10 accumulations for all excitation
wavelengths. Spectra were preprocessed with cosmic spike removal (filter size 3 and dynamic factor 8),
vector normalized and then averaged, using the WITec Project Plus software.

Measurements of cells were performed using the same three laser lines (532, 633 and 785 nm) and a
power at the sample site of 30, 20 and 130 mW, respectively. Raman spectra were acquired in randomly
chosen single points and as Raman images. For the former, 5 spectra per cell (15 cells in total) were
recorded with 1 s integration time and 10 accumulations. Raman imaging of 10 cells was performed
with a 0.5 µm step size, giving a spatial resolution of ca. 1–1.5 µm, and with 1 s integration time for
a single spectrum. K-means cluster analysis was performed after cosmic spike removal (filter size 3
and dynamic factor 8) and baseline correction (polynomial degree of 3) for each imaged cell using the
Manhattan-distance formulation to separate nuclei and cytoplasm region. The analysis was performed
with the WITec Project Plus software. The Raman bands position was obtained by reading the positions
of the maxima using the WITec software.

2.3.3. Fluorescence Microscopy

Fluorescence images were obtained by using an Olympus ScanˆR automated fluorescence
microscope. Cellular nuclei were stained with Hoechst 33,342 (ThermoFisher, Waltham, MA, USA)
(360/497 nm), whereas LBs were stained with BODIPY 493/503 (ThermoFisher, Waltham, MA, USA)
(493/504 nm). Briefly, cells were placed in a poly-L-lysis solution and centrifuged (300 g, 5 min
at room temperature) to attach cells to the bottom of the 96-well plate. Cells were fixed with 4%
paraformaldehyde for 10 min. Afterwards, cells were washed gently with DPBS (Gibco) and stained
with 4 µg/mL BODIPY 493/503 dye for 30 min at room temperature. Next, washed cells were stained
with Hoechst 33,342 (0.5:1000) and imaged using the fluorescence microscope. Fluorescence images
were analyzed using a Columbus 2.4.2 image data storage and analysis system software (PerkinElmer,
Waltham, MA, USA). Data were collected from 4 independent biological experiments.

2.3.4. Coherent Anti-Stokes Raman Scattering Microscopy (CARS)

The experimental platform for CARS imaging has been described in detail previously [36]. In a
nutshell, a frequency doubled continuous wave Nd-Vanadate laser (Verdi-V18 Coherent, Santa Clara,
CA, USA) at 532 nm was used to pump a Ti:sapphire laser (Mira HP Coherent, Santa Clara, CA, USA)
to generate ps pulses at 76 MHz pulse repetition rate and a wavelength of 832(2) nm. A 45:55 R:T
beam splitter was employed to divide the laser into two separate beams. The reflected part of the
beam was used as the Stokes beam, the transmitted part pumped an optical parametric oscillator
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(OPO, APE, Berlin, Germany) in order to generate the tunable pump beam by parametric conversion
into the near-infrared region (NIR) and subsequent frequency doubling by second harmonic generation
(SHG). The SHG of the signal emission can be tuned from 500 to 700 nm. In order to address
the symmetric CH2 stretching vibration at 2850 cm−1, the OPO beam was tuned to 672.5(7) nm.
To recombine Stokes and pump beams and optimize their spatial and temporal overlap, a delay stage
was applied in combination with a retro reflector and an 800 nm long pass dichroic mirror. The beams
were directed into the laser scanning microscope (LSM 510 Meta, Zeiss, Oberkochen, Germany).
The laser radiation was later focused on the samples through a 40x (1.1 NA) water immersion objective
(LD-C-Apochromat, Zeiss, Oberkochen, Germany). The average laser powers at the sample site were
48 mW (pump beam) and 39 mW (Stokes beam). In this experiment the CARS signal was collected in a
forward direction by an NA 0.8 condenser and separated from the residual pump and Stokes light by
dielectric filters (band pass 550/88, short pass 650 nm, Semrock, New York, NY, USA) and was detected
by a photomultiplier (Hamamatsu R6257, Kamioka, Japan). CARS images were recorded in a field of
view of 112.5 × 112.5 µm2 with a resolution of 1024 × 1024 pixels at an integration time of 1.60 µs per
pixel. Sixteen frames were averaged for each image.

3. Results

3.1. Resonance Raman Spectra of EPO and MPO in Solutions

The electronic absorption spectra of the two proteins exhibited some differences (Figure 1B).
Among electronic transitions of EPO, a strong Soret band was observed at 412 nm while Qv, Q0 and QI as
well as CT (charge-transfer) absorbances appeared at 507, 546, 591, and 640 nm, respectively [11,19,37,38].
A band at 741 nm was probably an artefact from the aperture or a lamp. In the spectrum of MPO
these bands were shifted, i.e., the Soret band was present at 428 nm, Qv and Q0 absorbances were
found at 499 and 572 nm, respectively, while the CT absorbance was located at 623 nm. An additional
band at 687 nm was of unknown origin [16,38,39], while the band at 740 nm was again an artefact.
The spectral variations can be attributed to the slightly different molecular structures of the porphyrins
and surrounding polypeptide chains of these proteins (Figure 1A) [11,19,37]. Figure 1C shows the
comparison of Raman spectra of the reference EPO and MPO solutions recorded with excitations at
532, 633 nm and 785 nm. Since 785 nm Raman spectra of EPO and MPO solutions showed the presence
of solvent bands, we included here the spectra of the solid peroxidases (black line).

Resonance Raman spectra of EPO and MPO solutions with an excitation in the region of
charge-transfer electronic transition (633 nm, Figure 1C) allowed the differentiation of these peroxidases
by a set of bands specific for EPO, i.e., at 937 (ν46), 1122 (ν22), 1216 (ν13) and 1610 cm−1 ν(C=C) as
well as for MPO, i.e., at 933 (ν46), 1115 (ν22), 1240 (ν42) and 1534 cm−1 (ν38). Some bands appeared
in the spectra of both proteins, i.e., at 680 (ν7), ca. 750 (ν15), 1005 (phenylalanine), and 1177 cm−1

(ν30) [11,19,40]. In the Raman spectrum of EPO, one can observe a triplet of signals at 1314 (ν21),
1341 (δs(=CH2) out of phase), and 1395 cm−1 (ν40), in which the middle band was the most intense.
In turn, a quartet of bands at 1314 (ν21), 1341 (ν41), 1361 (ν4), and 1395 cm−1 (ν40) was present in this
range of the MPO spectrum. The intensities of these bands differed only slightly [11,19,40].

In the 532 nm spectra of EPO new bands could be observed, which were not visible or hardly
visible, when measured with 633 nm excitation, e.g., 1266 (CH2 wagging) and 1610 cm−1 ν(C=C),
while for MPO a band at 1395 cm−1 (ν40) could be noticed. The use of different excitations allowed the
enhancement of different vibrations in the molecule which, in the case of EPO, could be observed for
the bands at 1122 (ν22), 1361 (ν4), and 1555 cm−1 (ν11), in the case of MPO, for the bands at 1336 (ν41),
1367 (ν4), 1395 (ν40), 1555 (ν11), 1588 (ν2), and 1610 cm−1 [ν(C = C], c.f. Table 1 [11,19,40]. Some of
these bands appeared as weak shoulders or single bands of low intensity.
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Figure 1. Spectral characteristics of neat eosinophil peroxidase (EPO, left) and myeloperoxidase
(MPO, right) with their molecular structures. (A) Structures of the proteins. (B) UV−Vis absorption
spectra of EPO and MPO (strong Soret bands at ca. 410–420 nm were not displayed to improve visibility
of absorption bands in the region of the used excitation lines). (C) Raman spectra of EPO and MPO
solutions collected with different excitation wavelengths. For the 785 nm laser excitation, the black
trace represents the spectra of the solids, while the grey dashed lines are the spectra of the solutions.

Table 1. An assignment and symmetry of Raman bands of EPO and MPO observed due to excitations
at 532, 633, and 785 * nm [11,19,40–42].

532 nm 633 nm 785 nm
Assignment of Modes with Their Symmetry

EPO/MPO EPO/MPO EPO/MPO

756/756 756/746 756/746 ν15 (B1g)

937/933 937/933 937/933 ν46, (Eu)

1005/1005 1005/1005 1005/1005 Phenylalanine

-/- 1122/1115 1122/1115 ν22 (A2g)

1135/1135 -/- -/- ν14 (B1g)

1177/- 1177/- -/1177 ν30 (B2g)

-/- 1216/- -/- ν13 (B1g)

-/- -/1240 1252/1252 ν42 (Eu)

1314/1314 1314/1314 -/- ν21 (A2g)
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Table 1. Cont.

532 nm 633 nm 785 nm
Assignment of Modes with Their Symmetry

EPO/MPO EPO/MPO EPO/MPO

-/- 1341/1336 1341/1341-/- ν41 (Eu)/δs(=CH2)

1367/1367 1367/1361 -/- ν4 (A1g)

1395/1395 1395/1395 -/1395 ν40 (Eu)

-/- -/- 1453/1453 CH2/CH3, δs(=CH2)

-/- -/1534 -/1534 unknown

1555/1555 -/- -/- ν11 (B1g)

-/- 1564/- -/- ν19 (A2g)

1588/1588 -/1580 1580/1588 ν2 (A1g)

1610/1610 1610/- 1610/- ν(C = C)

1638/1638 -/1638 -/- ν10 (B1g)

Modes of EPO and MPO correspond to the D4h symmetry of the porphyrin ring; δs: symmetric bending vibration;
ν(C = C) stretching mode of the vinyl substituent, * the band assignment for 785 nm excitation wavelength with
regards to spectra of solid EPO and MPO.

3.2. Electronic and Raman Features of Isolated Eosinophils and Neutrophils

Human EOS and Ne cells were isolated from the blood of healthy donors. Cell suspensions in
phosphate-buffered saline were examined by electronic and Raman spectroscopy, similarly to reference
EPO and MPO standards (Figure 2). In our investigations, a broad Soret band of neutrophils was located
at 448 nm (data not shown). A Q0 band of cyt b558 was observed in turn at 565 nm (Figure 2A) [43].
Other weak bands found in the UV−Vis spectrum of Ne most likely originated from other hemoproteins
occurring in neutrophils. Considering laser excitations at 532 and 633 nm, we expected that Raman
spectra of EOS and Ne would show resonance Raman spectroscopy (rR) enhancement for EPO and
MPO, originating from the Qv and CT electronic transitions, respectively.

The Raman spectra of isolated cells, collected with excitations at 532, 633 and 785 nm, are displayed
in Figure 2B. The Raman spectra of EOS and Ne exhibited the presence of Raman bands typically assigned
to cellular biomacromolecules, i.e., at 977 (CH3 deformation of lipids, proteins), 1005 (phenylalanine),
1240–1254 (amide III), 1309 (δ(CH2) of lipids, amide III), 1330–1344 (ring breathing modes of adenine,
guanine, δ(C-H)), ca. 1335/1445 (δ(CH2/CH3) of proteins and phospholipids), and 1659 cm−1 (amide I:
α-helical conformations, ν(C = C): lipids). The most prominent bands of hemoproteins appeared
as shoulders of the amide I band in the region of 1500–1610 cm−1 and as a band at ca. 756 cm−1,
regardless of the wavelength of the laser line. Other bands labelled in green and blue in the spectra of
EOS and Ne, respectively, showed a contribution of modes assigned to EPO and MPO bands as well as
to cellular biomolecules, see Table 1, Figures 1C and 2B.

Even though the 785 nm excitation line was not close enough to electronic transitions of neutrophils
and eosinophils cells for rR, we found low-intensity bands attributed to their peroxidases; i.e., at 756 (ν15),
1122 (ν22) and 1580 cm−1 (ν2) for EPO and at 756 (ν15), 933 (ν46), and 1588 cm−1 (ν2) for MPO. However,
their intensities hindered a clear discrimination of both types of granulocytes.

Laser illumination of granulocytes in the CT electronic transition (633 nm) resulted in the
enhancement of EPO and MPO bands comparing to the nonresonant conditions at 785 nm (Figure 2B).
Clearly, the most characteristic bands, which can be used to distinguish the cells, appeared at 1117 (ν22),
1216 (ν13), and 1564 cm−1 (ν19) in the spectrum of EOS and at 1115 (ν22), 1240 (ν42), 1534(ν38),
and 1580 cm−1 (ν2) for Ne. The intensities of the porphyrin bands are higher for eosinophils than for
neutrophils due to a higher concentration of EPO than MPO in the respective cells.

The resonance Raman effect was also observed in the spectra of the granulocytes after excitation
at 532 nm, i.e., in the region of the Q bands of EPO and MPO (Figures 1B and 2A). The presence of
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the two proteins was confirmed by weak-medium bands located at 756 (ν15), 1177 (ν30, EPO only),
1555 (ν11), 1588 (ν2), and 1610 cm−1 ν(C = C, EPO only). Other bands of peroxidases were overlapped
by bands of cellular components. Similarly to EPO and MPO in solution, the hemoproteins in the cells
possessed a 6-coordinated high spin ferric heme group [11,19,40].Cells 2020, 9, x FOR PEER REVIEW 8 of 16 
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displayed in Figure 2B. The Raman spectra of EOS and Ne exhibited the presence of Raman bands 
typically assigned to cellular biomacromolecules, i.e., at 977 (CH3 deformation of lipids, proteins), 
1005 (phenylalanine), 1240–1254 (amide III), 1309 (δ(CH2) of lipids, amide III), 1330–1344 (ring 
breathing modes of adenine, guanine, δ(C-H)), ca. 1335/1445 (δ(CH2/CH3) of proteins and 
phospholipids), and 1659 cm−1 (amide I: α-helical conformations, ν(C = C): lipids). The most 
prominent bands of hemoproteins appeared as shoulders of the amide I band in the region of 1500–
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labelled in green and blue in the spectra of EOS and Ne, respectively, showed a contribution of modes 
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neutrophils and eosinophils cells for rR, we found low-intensity bands attributed to their peroxidases; 
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Figure 2. Spectral characteristics of eosinophil (EOS, left) and neutrophil (Ne, right) cells. (A) UV−Vis
electronic spectra of suspended EOS and Ne cells (strong Soret bands at ca. 410–440 nm are not shown
to improve visibility of absorption bands in the region of the used excitation lines). (B) Averaged single
point Raman spectra of EOS and Ne cells (n = 10), acquired with excitation wavelengths at 532, 633,
and 785 nm. Bands labelled in green and blue correspond to the bands observed in the spectra of EPO
and MPO, respectively, (Figure 1). In grey there is presented the spectra of PBS.

In addition, we performed Raman imaging of 15 eosinophil and neutrophil cells with excitation
lines at 532 and 633 nm. Figure 3 illustrates results of uni- and multivariate analysis (k-means cluster
analysis) performed for Raman images of the cells. Raman distribution images were constructed by
integration of the high-wavenumber region (2800–3030 cm−1) showing the presence of the stretching
modes of the CH/CH2/CH3 groups of all organic components in the cells and by integration of the
780–800 cm−1 region indicative of the nucleus (breathing vibrations of thymine and cytosine with the
O-P-O backbone mode) (Figure 3A) [44].

KMC analysis was performed in order to segregate pixel Raman spectra into two main
subcellular compartments, i.e., cytoplasm and nuclei (Figure 3B). Nuclei were identified by the
DNA marker bands at 790 (breathing vibrations of thymine and cytosine with O-P-O backbone mode),
1093 (symmetric stretching vibration of the PO2 group), 1261/1311/1344 (CH deformations of T, A and
G), and 1483/1582 cm−1 (stretches of the G and A rings) [18,45,46].
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Figure 3. Raman imaging of eosinophil (EOS, left panel) and neutrophil (Ne, right panel) with
laser excitations at 532 and 633 nm. (A) Raman distribution images of organic matter and nuclei.
(B) False-color k-means cluster analysis (KMC) maps with the distribution of cytoplasm (grey) and
nuclei (brown and purple); (C) Mean Raman spectra extracted from KMC analysis (colors of spectra
correspond to the colors of KMC classes). Bands labelled in green and blue are assigned to EPO and
MPO, respectively. Scale bar: 2 µm.

3.3. Fluorescence and Coherent Anti-Stokes Raman Scattering Imaging of Human Eosinophils and Neutrophils

Staining of cellular structures combined with fluorescence microscopy is the classical tool to
illustrate morphological properties of cells such as the presence and the shape of the nuclei (a Hoechst
dye) as well as the content of LBs (a BODIPY dye), see Figure 4A, upper panel. To examine these
images in detail, a Columbus image data storage and analysis system was employed. It enabled
a multi-parametric analysis of fluorescence intensity recorded for a hundred cells and provided a
set of geometrical parameters of the stained cellular structures such as spot area, symmetry, radius,
etc. (Figure 4B). Obtained images exhibited the presence of both cellular structures in EOS and Ne
cells, but the 20× lens magnification of the CQ1 confocal quantitative image cytometer did not reveal
a clear-cut visualization of the shape and number of the selected cell constituents. Based on the
fluorescent images and BODIPY staining (aimed at LB detection), highly fluorescent and aggregated
BODIPY signals were detected on human eosinophils. On the other hand, such signals were not
detected on human neutrophils, where BODIPY staining was dispersed throughout the neutrophil
cytoplasm. As such, the fluorescent imaging with accessible magnification was not sufficient for correct
LB estimation. For that the CARS imaging was implemented.

To show the distribution of lipids in the granulocytes, we employed the BODIPY staining for
fluorescence microscopy and label-free CARS imaging detecting the 2853 cm−1 band of the symmetric
stretching mode of the methylene groups in the acyl fatty acids chains (Figure 4).
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Figure 4. (A) Fluorescence (Hoechst 33,342—blue, nuclei and BODIPY 493/503—green, LBs) and
coherent anti-Stokes Raman scattering images (CARS) of human eosinophils and neutrophils.
(B) Multi-parametric morphological analysis of nuclei (upper) and LBs (lower) in fluorescence images.
(C) A graph showing the number of LBs per cell, calculated from fluorescence images. Values are
given as mean ± standard deviation and are shown in box plots: mean (horizontal line), SE (box),
minimal and maximal values (whiskers).
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4. Discussion

Since EPO and MPO are hemoproteins containing a chromophore group, depending on the laser
excitation used (532, 633 and 785 nm) for Raman measurements it is possible to be in resonance or
preresonance conditions [11,19,40] (Figure 1C). In the resonance Raman (rR) spectra we observed
enhancement of Raman intensities of certain modes when an excitation wavelength was selected from
the region of electronic transition. According to the resonance mechanism it can be distinguished
between A-, B- and C-type enhancement depending on the excitation wavelength used and the type of
electronic transition. Excitation in the Soret band region (ca. 400 nm) resulted in enhancement of totally
symmetric modes (type A) while excitation wavelengths closer to the Q bands (500–600 nm, here at
532 nm) yielded enhancement of both, totally and nontotally symmetric modes with predominance
of the latter (type B). C-type occurred upon excitation with energies matching the vibronic side
band of a forbidden or weakly allowed electronic transition, i.e., Qv and QIV regions and led to the
enhancement of overtones and combination modes [47,48]. Excitation in the CT transition region
(ca. 620 nm, here at 633 nm) resulted in the enhancement of modes related to the porphyrin ring and
iron-ligand vibrations [49–51].

In Figure 2A,B we matched the excitation laser lines to the energy close to Q0 and CT electronic
transitions, i.e., 532 and 633 nm, respectively, as well as to non-resonant conditions (785 nm). This part
of our experiment was focused on the determination of the Raman features of the proteins, which were
used for comparison with the in situ Raman signature of the hemoproteins in granulocytes.

A visual comparison of EPO and MPO rR spectra collected with excitations at 532 and 633 nm
showed that the CT-associated Raman spectra clearly differentiated both proteins and these differences
were mainly related to the bands’ positions and their relative intensities (Figure 1, Table 1). On the other
hand, the 532 nm spectra of both proteins were very similar and thus it was difficult to distinguish
EPO and MPO, especially when detected inside cells where such minor changes can be easily missed.
However, 633 and 785 nm excitations provided significantly different Raman spectra with a specific
pattern for each protein and therefore both excitation wavelengths could be employed for unambiguous
recognition of EPO and MPO and further for differentiation of granulocytes. Since both proteins
are mammalian peroxidases and possess heme groups, their Raman spectra exhibit similar profiles.
However, differences in peripheral substituents of their prosthetic groups can be recognized when rR
and specific laser excitation are applied.

In addition, resonance Raman spectra of EPO and MPO acquired with excitation wavelengths in
the visible region of the light indicated coordination number, spin, and oxidation states of the iron in
the porphyrin unit. Bands at 1367 (ν4), 1555 (ν11) and 1610 cm−1 ν(C = C) suggest that both peroxidases
possess a hexa-coordinated, high spin ferric heme group in solution [11,19,40].

Qv, Q0 and CT absorption maxima in EOS and Ne cells appeared at similar positions as in the
spectra of EPO and MPO, only the intensity of the Qv band (ca. 500 nm) increased compared to reference
peroxidases, cf. Figures 1 and 2. No bands appeared above 700 nm. Neutrophilic granulocytes contain
two heme proteins, MPO as well as cytochrome b558, but they can be differentiated only by the position
of the Soret bands located at 430 and 413 nm, respectively [14]. In our study, the electronic spectrum of
EOS cells showed the presence of an additional band at 687 nm that was absent in the spectrum of
neat EPO, see Figures 1 and 2. Except EPO, eosinophilic granules contain major basic protein (MBP),
ribonucleases eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin (EDN), but none of
these proteins contain the heme moiety [4]. There is no report showing their electronic absorption
characteristics, so we cannot exclude their contribution to these bands.

Interestingly, bands of EPO and MPO in the Raman spectra of isolated cells were not dominant
in any of the spectra of the granulocytes as observed previously by Salmaso [19] and Sijtsema [41]
and their coworkers (Figure 2B). The nucleus classes in the KMC maps clearly differentiated bi- and
multilobed nuclei typical for eosinophils and neutrophils, respectively (Figure 3B). Their spectral
characteristics were identical, highlighting the lack of chemical differences between their nuclei. In turn,
the classes assigned to cytoplasm exhibited the presence of typical cellular components as well as
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EPO and MPO whose bands’ positions were similar to the single point Raman spectra of the cells,
cf. Figures 2 and 3. As previously, the 532 nm resonance Raman spectra of EOS and Ne cytoplasm
were virtually identical whereas excitation at 633 nm indicated that the hemoproteins in the cells
could be recognized in the 1500–1620 cm−1 region. We noted that pixel Raman spectra collected in
imaging mode exhibited a lower intensity of rR bands of both hemoproteins compared to single
point measurements as a result of the 10-times shorter accumulation time per spectrum for imaging
measurements. However, the signal-to-noise ratio was better in the imaging mode, due to performing
KMC analysis and averaging spectra into classes. Taking also into account the total time required for
the collection of Raman images, we propose that the clinical differentiation of the granulocytes should
preferably be performed by using single point measurements from cells.

As discussed in the introduction, eosinophils and neutrophils are mostly differentiated based
on the nucleus shape, granule content as well as the presence of lipid bodies (LBs) observed in
optical and fluorescence microscopy as we found in Raman images depicted in Figure 3 [6,13,52].
In turn the fluorescence images of EOS and Ne stained with the Hoechst dye and combined with the
Columbus analysis showed that these organelles mainly differed in their symmetry whereas the radius
and compactness were almost identical. Parameters calculated for the nucleus symmetry indicated
that both types of nuclei were not oval and divided into two and three segments, in EOS and Ne
cells, respectively.

We have previously reported the sensing capability of normal Raman scattering imaging for the
detection of LBs in primary eosinophils and eosinophilic cell line EoL-1 [6]. Nevertheless, LBs are
not formed in each cell under normal conditions and without additional stimulation, and thus the
collection of Raman images of single cells to detect LBs is time consuming. The CARS recognized
LBs in some EOS cells (brighter spots in the CARS image, Figure 4A) in contrast to Ne. For the latter
the CARS image visualized the shape of cells with granules evenly distributed near the cell surface.
In turn, fluorescence microscopy detected lipids in the EOS as well as Ne cells upon staining with
BODIPY, but their distribution was not clearly resolved and was overlapped by the Hoechst signal in
the nuclei. On the other hand, the multi-parametric analysis of the BODIPY fluorescent intensity with
the use of the Columbus software indicated that this signal is higher in EOS than in Ne (Figure 4C).
A small spot area in the EOS cells was assigned to LBs and this parameter, as well as the intensity ratio
of the Hoechst and BODIPY dyes, was used to calculate an average number of LBs in all detected cells
amounting to two LBs per cell (Figure 4B). In the case of neutrophils, lipids were rarely accumulated as
droplets. Both fluorescence and CARS images revealed a similar conclusion about the distribution of
lipids and LBs in the cytoplasm of examined cells.

5. Conclusions

Raman (spontaneous, resonance and coherent anti-Stokes scattering) and fluorescence microscopies
were used together for the first time for the recognition of biochemical features of eosinophils and
neutrophils—the main players in fighting infections and inflammation of the body. The examination
of spectroscopic properties of eosinophil peroxidase and myeloperoxidase present in granules of the
cells indicated that resonance Raman conditions are required to differentiate the EOS and Ne cells.
Both peroxidases can be detected upon illumination with VIS and NIR lasers commonly used in Raman
microscopy, regardless of the mode of data collection, i.e., single point spectra or cell Raman images.
All of them determined in situ that iron ion in the heme group is hexa-coordinated with a high spin
configuration. However, specific spectral markers of EPO and MPO appeared only upon excitation of
charge-transfer electronic transitions at 633 nm. In turn, Raman microscopy provided comprehensive
information about the chemical composition of cytoplasm and nucleus, including phospholipids,
proteins and DNA constituents. This label-free analysis was complemented by target-oriented CARS
and fluorescence microscopy to evaluate the distribution of lipids in the granulocytes. Both techniques
revealed their presence but a clear-cut identification of lipid bodies in eosinophils was observed in
the CARS images only. These lipidic reservoirs were unevenly distributed among EOS cells and
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multi-parametric morphological analysis of fluorescence staining estimated the average number of
LBs per cell to be two. In neutrophils, the lipids were spread out in the entire cytosol. We propose
here that the clinical differentiation of the granulocytes should be preferably performed using single
point measurements from cells, which give similar results as imaging but are considerably faster.
The obtained preliminary results may lead to further investigations into the identified biomarkers for
classification of the granulocytes and for a better understanding of the physiology behind them under
stress conditions and diseases.
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