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Many members of the animal kingdom display coat or skin color differences along their dorsoventral axis. To
determine the mechanisms that control regional differences in pigmentation, we have studied how a classical mouse
mutation, droopy ear (de"), affects dorsoventral skin characteristics, especially those under control of the Agouti gene.
Mice carrying the Agouti allele black-and-tan (a‘) normally have a sharp boundary between dorsal black hair and yellow
ventral hair; the de” mutation raises the pigmentation boundary, producing an apparent dorsal-to-ventral
transformation. We identify a 216 kb deletion in de" that removes all but the first exon of the Tbx15 gene, whose
embryonic expression in developing mesenchyme correlates with pigmentary and skeletal malformations observed in
de"/de" animals. Construction of a targeted allele of Tbx15 confirmed that the de" phenotype was caused by Tbx15 loss
of function. Early embryonic expression of Tbx15 in dorsal mesenchyme is complementary to Agouti expression in
ventral mesenchyme; in the absence of Tbx15, expression of Agouti in both embryos and postnatal animals is displaced
dorsally. Transplantation experiments demonstrate that positional identity of the skin with regard to dorsoventral
pigmentation differences is acquired by E12.5, which is shortly after early embryonic expression of Tbx15. Fate-
mapping studies show that the dorsoventral pigmentation boundary is not in register with a previously identified
dermal cell lineage boundary, but rather with the limb dorsoventral boundary. Embryonic expression of Tbx15 in
dorsolateral mesenchyme provides an instructional cue required to establish the future positional identity of dorsal
dermis. These findings represent a novel role for T-box gene action in embryonic development, identify a previously
unappreciated aspect of dorsoventral patterning that is widely represented in furred mammals, and provide insight
into the mechanisms that underlie region-specific differences in body morphology.

Introduction

A fundamental question in developmental biology is how
adjacent regions of the vertebrate body acquire differences in
their appearance or morphology. Mechanisms that establish
the general body plan make use of a relatively small number
of signaling pathways shared among all animals (reviewed in
Pires-daSilva and Sommer 2003), but the extent to which
these pathways control finer differences between body
regions is not clear. Among vertebrates, differences in the
shape or number of skeletal elements, altered morphology of
epidermal appendages, and variation in pigment distribution
combine to produce the majority of what distinguishes one
animal from another. Among these, pigment patterns are an
excellent system to investigate how morphological differences
arise, both for different regions of the body within a species
and for different animals from closely related species. In
natural environments, color variation is a nearly universal
mechanism for recognition, camouflage, or both; conse-
quently, a large number of pigment patterns have been
characterized from an evolutionary and ecological perspec-
tive (Boughman 2001; Jiggins et al. 2001). In the laboratory,
color variation has been the subject of vertebrate genetics for
more than a century (Searle 1968; Silvers 1979), and many
pigmentary components have been identified whose actions
are understood in a cellular or organ-based context (reviewed
in Bennett and Lamoreux 2003).

Several mechanisms may contribute to regional differences
in vertebrate pigmentation. In the embryo, alterations in the
determination or migration of melanoblasts from the neural
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crest affect the number or distribution of pigment cells in the
skin (reviewed in Reedy et al. 1998). Within hair follicles,
paracrine signals control the type of pigment made in specific
regions of the body or at specific times during the hair cycle
(reviewed in Furumura et al. 1996; Barsh et al. 2000). Finally,
movement of pigment granules within melanocytes or from
melanocytes to keratinocytes makes use of cellular machinery
that is shared by a variety of cell types, but that can vary in
different regions of the body (reviewed in Marks and Seabra
2001). However, for all of these mechanisms—white spotting,
pigment-type switching, and melanosome biogenesis—more
is known about the identity of the molecular components
than their spatial and temporal control.

One of the most obvious aspects of regional color variation
in vertebrates is a dark dorsal surface juxtaposed to a light
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ventral surface, apparent in the color of skin, scales, feathers,
or hair, in which the boundary between dorsal and ventral
compartments is often sharp and lies in register with the
limbs. In rodents and probably other mammals, this
dorsoventral difference in hair color is brought about by
differences in pigment type as determined by allelic variation
of the Agouti gene (Bultman et al. 1992; Miller et al. 1993).
Secreted by dermal papilla cells within each hair follicle
(Millar et al. 1995), Agouti protein causes melanocytes in that
follicle to switch from the production of brown/black
eumelanin to redlyellow pheomelanin. Agouti protein has a
short radius of action (Silvers and Russel 1955) and can be
switched on and off during a single hair cycle (Bultman et al.
1992, 1994; Miller et al. 1993; Vrieling et al. 1994); thus, its
regulated expression is thought to be responsible for the
cream-colored or yellow ventral surface of mice carrying the
black-and-tan (a') allele and for the yellow markings around the
feet, ears, or head, i.e., tan points or head spots, of certain dog
breeds.

In laboratory mice, previous studies from our group and
others identified two predominant Agouti mRNA isoforms
that differ by virtue of their transcriptional initiation site and
5" untranslated exons. A “hair cycle-specific” transcript is
expressed in both dorsal and ventral skin for 2-3 days during
early hair growth, while a “ventral-specific” transcript is
expressed throughout the entire period of active hair growth,
but only in ventral skin (Bultman et al. 1994; Vrieling et al.
1994). Animals carrying the a' allele express only the ventral-
specific Agouti transcript (Bultman et al. 1994; Vrieling et al.
1994) and have black dorsal hairs and cream-colored to
yellow ventral hairs, with a sharp boundary at the level of the
limb-body wall articulations and in the middle of the whisker
pad. Ventral-specific Agouti isoforms are also expressed in
developing skin from embryonic day 10.5 (E10.5) and beyond
and may play a role in pigment cell differentiation (Millar et
al. 1995). Thus, regulatory elements for ventral-specific Agouti
isoforms are responsive to dorsoventral positional cues
established in the embryo and whose effects persist after
birth.

The boundary between dorsal and ventral color compart-
ments in a'la’ mice bears superficial resemblance to dorso-
ventral boundaries apparent for many other mammals, but
morphogenetic differences between dorsal and ventral skin
seem likely to include more elements than the type of
pigment made by hair follicle melanocytes. In particular,
dermis of the flank has at least two distinct origins:
dermatomal derivatives of somites and loose mesenchyme
derived from the lateral plate mesoderm (Mauger 1972;
Christ et al. 1983; Olivera-Martinez et al. 2000; Nowicki et al.
2003); these lineages are established early in development and
could, in principle, set up compartments whose identity
contributes to dorsoventral differences in adult skin.

To better understand the mechanisms that give rise to
differences between dorsal and ventral skin and to the
boundary between them, we have determined how several
morphologic characteristics vary along the dorsoventral axis
of the mouse and how these characteristics correspond to
ventral-specific Agouti expression and the lineage boundary
that distinguishes somite from lateral plate derivatives. Our
results indicate that the apparent uniformity of the dorso-
ventral boundary represents the sum of independent mech-
anisms that affect melanocyte density and/or differentiation,
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pigment-type synthesis, and hair length; surprisingly, none of
these coincide with the somite-lateral plate lineage boun-
dary. We also make use of a classical mouse mutation, droopy
ear (Curry 1959), that produces a dorsal-to-ventral trans-
formation of flank coat color by allowing expansion of the
ventral-specific Agouti transcript. By positional cloning and
gene targeting, we identify an allele of droopy ear, deH, as a loss
of function for Thx15, which encodes a T-box transcription
factor expressed in a dynamic and spatially restricted manner
in the developing skin and musculoskeletal system. Embry-
onic expression and transplantation studies suggest that
Tbx15 is required to establish certain characteristics of dorsal
patterning in mesenchymal cells of the developing flank.
These results identify a previously unappreciated aspect of
dorsoventral patterning that is widely represented in furred
mammals and provide insight into the mechanisms that
underlie region-specific differences in body morphology.

Results

Morphological Components of Dorsoventral Skin
Differences

Besides the obvious change in hair color that frequently
distinguishes dorsal from ventral skin, casual observation
suggests there are additional differences in hair length,
distribution of hair type, and skin thickness. Furthermore,
dorsoventral differences in pigmentation can represent
differences in the number and/or differentiated state of
pigment cells, as well as the type of pigment synthesized in
response to expression of Agouti. In particular, ventral hair of
a'la’ animals can vary from cream-colored to reddish-yellow
depending on age, strain background, and position along the
dorsoventral axis. To evaluate the relationship among these
components, we compared their features among mice of
different Agouti genotypes.

Semiquantitative measurements of hair length plotted as a
function of dorsoventral position reveal that the apparent
sharp boundary between dorsal and ventral pigment com-
partments in a'la’ mice coincides with a more gradual change
in both hair color and hair length (Figure 1A-1D). Within the
region of transition from dorsum to ventrum (Figure 1B),
flank hairs from a'la’ mice become progressively shorter and
exhibit increasing amounts of pheomelanin deposition
progressing from the tip to the base of the hair. However,
the region of transition for hair length is considerably
broader than that for pigmentation and independent of
Agouti genotype. Although hair-cycle timing varies along the
rostrocaudal axis, measurements of absolute hair length for
mice matched for age and rostrocaudal level are remarkably
similar (Figure 1D). Furthermore, measurements of relative
hair length for animals of different age, size, and Agouti
genotype also are very similar when normalized to body
circumference (Figure 1C). Taken together, these observa-
tions indicate that variation of hair length along the
dorsoventral axis is stereotyped and maintained through
multiple hair cycles, with a transition in hair length that is
gradual and encompasses the pigment-type transition in a'la’
mice.

Dorsal and ventral skin develop at different rates. Trans-
verse sections of skin at postnatal day 4.5 (P4.5) exhibit dorsal
hair follicles that are noticeably more developed than ventral
hair follicles, along with a gradual dorsoventral decrease in
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(A) Skin slices from animals of different age and genotype demonstrate similar patterns of hair-length variation along the dorsoventral axis

(scale bar = 1 cm).

(B) Enlarged area from (A), demonstrating the transition in hair length and color in @'la’ mice (scale bar = 0.375 cm).

(C) Proportional hair length for (A) plotted as a function of relative position along the dorsoventral axis.

(D) Hair length plotted as a function of absolute position along the dorsoventral axis for 8-wk-old BA strain mlce

(E) Proportion of zigzag hairs (* SEM) differs slightly between dorsum and ventrum of inbred mice (p < 0.0001, x? test, n = 1,958, 1,477, 1,579,

1,502).

(F) Differences in dorsal and ventral skin development at P4.5 (scale bar

= 1 mm, upper; 200 pm, lower)

(G) Differences in hair melanin content and DOPA stdlnlng for dorsum (d), flank (f), and ventrum (v) in &la’ and d'la’ mice. The upper panel also
demonstrates a cream-colored appearance of the a'la’ ventrum. The middle panel shows representative awls (scale bar = 100 pm). The lower

panel shows DOPA-stained dermis (scale bar = 200 pm).
DOI: 10.1371/journal.pbio.00020003.g001

dermal thickness (Figure 1F). However, differences in skin
thickness disappear by 3-4 wk of age (Forsthoefel et al. 1966),
and, overall, the proportion of different hair types is also
similar in dorsa and ventra of adult mice. In age-matched
inbred mice, we observed a small decrease in the ratio of
undercoat hairs (zigzags) to overcoat hairs (auchenes, awls,
and guard hairs) in dorsum compared to ventrum (Figure 1E),
but there was no consistent difference in hair-type distribu-
tion for outbred mice (data not shown).

Differences between dorsal and ventral pigmentation of a'/
a' mice are usually attributed to pigment-type differences
caused by ventral-specific expression of Agouti, but animals
homozygous for a null allele of Agouti, extreme nonagouti (a”),
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have ventral hairs that contain less melanin than dorsal hairs,
giving a slightly paler appearance to the ventral coat (Figure
1G). Using DOPA staining as an indicator of tyrosinase
activity, we observed a gradual dorsoventral transition in
isolated dermis preparations from P4.5 a‘la° mice (Figure 1G).
By contrast, skin from d'la" mice reveal an abrupt dorsoven-
tral transition of DOPA staining, which probably reflects the
additive effects of reduced melanin content (as in a’/a’ mice)
and downregulation of tyrosinase activity induced by Agout:.
Melanin content of individual hairs is likely to be influenced
both by the number of pigment cells and their follicular
environment. Regardless, dorsoventral differences in hair
pigment content of a/a’ mice persist throughout multiple
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hair cycles into adulthood, similar to hair length (but unlike
skin thickness). Thus, at least three characteristics distinguish
dorsal from ventral skin: differences in pigment-type syn-
thesis (depending on Agouti genotype), differences in hair
length, and differences in melanin content.

Ventralization of Skin Morphology by the droopy ear
Mutation

Named after its effects on craniofacial morphology, droopy
ear is a recessive mutation on mouse Chromosome 3; the
original allele described more than 40 years ago by Curry
(1959) is extinct, but a spontaneous remutation that occurred
in Harwell, de”’, is available through The Jackson Laboratory
(Bar Harbor, Maine, United States). External craniofacial
malformations are the most obvious characteristic of de’/de’
animals, including widely spaced eyes, small palpebral
fissures, a broad nasal area, and a shortened skull held in an
elevated position, which presumably causes or contributes to
the abnormal position of the ears.

We became interested in droopy ear because the original
allele was described to affect pigment pattern in a way that
suggests a possible dorsal to ventral transformation: “On a
genetic background (¢’ and A™) which causes the belly hair to
be lighter than the back hair, the belly hair comes up farther
round the sides of the body and face” (Curry 1959).

An abnormal dorsoventral pigment pattern is readily
apparent in d'la; de"de" mice, but comparison to nonmutant
animals is more accurately described in terms of ventral,
lateral, and dorsal regions (Figures 1G and 2A). The ventral
region has short hairs with a gray base and cream-colored tip
whose boundary coincides with the limb-body wall junction;
both the appearance of this region and position of the
boundary are approximately similar in d'ld' compared to a'la;
delde™ mice. The lateral region contains yellow hairs of
progressively increasing length; in d'la’ mice, the lateral
region appears as a thin yellow stripe along the flank, but
in da'la’; de"lde’” mice, the lateral region is considerably
expanded with a diffuse boundary along the dorsal flank,
and a dorsal eumelanic region whose size is correspondingly
reduced (Figure 2A and 2B). Total body size is smaller in
mutant compared to nonmutant animals, but the proportion
of body circumference occupied by the lateral region in
mutant animals is increased about 2-fold, from 11.9% to
22.2% (Figure 2C). The proportion of the ventral cream-
colored region is also expanded a small amount, 47.9% in
mutant compared to 37.8% in nonmutant animals, but
expansion of the lateral region, which occurs at all levels of
the body, including the limbs and the cranium (but not the
whisker pad), is the major feature responsible for the
ventralized appearance caused by de".

To investigate whether de™” affects other dorsoventral skin
characteristics besides pigment-type switching, we examined
its effects on hair length and pigmentation in an a‘la’
background. Overall, de’ causes a small but consistent
reduction in hair length in both dorsum and ventrum; when
mutant and nonmutant animals are normalized for body
circumference, reduced hair length is most apparent in the
lateral region (Figure 2E). Adult a‘la’; de”lde” animals exhibit
body-size reduction and skeletal abnormalities, but display no
coat-color phenotype (data not shown). However, a‘la’ and
a’; de"'lde™ neonates are clearly distinguishable in the first few
days after birth, when a dorsoventral gradient of melanogenic
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activity is apparent under the skin (Figure 2D). At this stage,
melanoblast migration from the neural crest is mostly
complete, but there is a dorsoventral gradient in melanocyte
differentiation and pigment synthesis. The skin of a‘la
neonates appears uniformly dark over the entire dorsum,
but in @la’ de'lde™ neonates, the area of dark skin is more
restricted, particularly above the limbs, and resembles the
pattern of dorsal eumelanin in d'la; de'lde' adult animals.

Taken together, these observations suggest that de'!
interferes with the establishment of dorsoventral patterning
during skin development by causing dorsal expansion of a
lateral region that is normally 3-5 mm in width. This same
region may serve as a boundary between dorsal and ventral
skin by inhibiting melanocyte differentiation, by promoting
pheomelanin synthesis, and by supporting a progressive
increase in hair growth from ventrum to dorsum. As
described below, the gene defective in deH, Tbx15, is normally
expressed in the dorsal region and therefore is likely to play a
role in establishing the size and dorsal extent of the lateral
region.

Positional Cloning of de”

As a visible marker, early linkage studies with the original
droopy ear allele or the de' allele identified a map position in
the middle of Chromosome 3, distal to matted and proximal to
Varitint-waddler (Carter and Falconer 1951; Curry 1959; Lane
and Eicher 1979; Holmes et al. 1981). We used an Fs intercross
with CAST/Ei mice to localize de’ to a 0.1 cM interval between
D3Mit213 and 16.MMHAP32FLF1, which was refined by
development of a bacterial artificial chromosome (BAC)
contig and additional markers to a 1.4 Mb region that
contained eight genes, including 7bxI5 (Figure 3A). We
considered 7bxI5 as an excellent candidate for the skeletal
abnormalities caused by deH, based on studies by Agulnik et al.
(1998), who described its embryonic expression in the
craniofacial region and developing limbs.

Using sequence information from Agulnik et al. (1998) and
the partially completed mouse genome sequence, we found
that portions of several Thx15 exons could not be amplified
from de'’lde"” genomic DNA. The same gene was initially
referred to as 7Tbx8 (Wattler et al. 1998) and then later
renamed 7TbxI4, but is currently referred to in several
vertebrate genomes as Thx15 (Agulnik et al. 1998; Begemann
et al. 2002). By comparing the sequence of a 1.3 kb junction
fragment amplified from de"'lde™ genomic DNA to publicly
available mouse genome sequence, we identified a 216 kb
deletion that extends from 7bxI5 intron 1 to 148 kb
downstream of the polyadenylation sequence in a region
annotated as a mannose-6-phosphate receptor pseudogene,
Mopr-ps (Figure 3B and 3C). (Ludwig et al. 1992). By Northern
blot analysis, we identified a fusion transcript produced from
the de’’ chromosome (data not shown). However, the deletion
removes 534 of the 602 amino acids encoded by TbxI5
(including the T-box DNA-binding domain), de""H+ animals are
grossly normal, and the phenotype of de"lde™ animals is
identical to that described for the original allele. In addition,
other than M6pr-ps, no other genes or transcripts have been
annotated to the 216 kb deletion.

While the positional cloning work was underway, one of us
(A. Russ) generated an independent mutation of TbxI5 by
gene targeting in embryonic stem cells. The targeted allele,
Tbxl5l‘“”z, carries an IRES-LacZ-neo c¢cDNA cassette that
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(A) 10-wk-old def/de’ and nonmutant
animals on a @’ background. A thin stripe
of yellow hair normally separates the
dorsal black hairs from the ventral cream
hairs. In de”, the yellow stripe is ex-
tended dorsally, and the boundary be-
tween the yellow and the black hairs is
fuzzier.

(B)ISkin slices taken from 1.5-mo-old de™’/
de’” and nonmutant littermates (scale bar

= 0.5 cm).
(C) Proportion of total skin area as
% ye“ow area determined by observation of pelts taken
I from the interlimb region. The propor-
L tion occupied by the yellow lateral

compartment (* SEM) differs between
mutant and nonmutant littermate flanks
(p < 0.0005, paired ¢-test, n = 6 pairs).
2 There is also (data not shown) a small
increase in the proportion of total skin
area occupied by the ventral cream-
colored compartment, 47.9 % in mutant
compared to 37.8% in nonmutant (p <

+/+or deH/deH 0.005, paired t-test, n = 6 pairs).
deHl+ (D) On an a/a’ background, the extent of

dorsal skin pigmentation is reduced in
de'"/de” neonates (P3.5).

(E) Hair length in a representative pair
of 1.5-mo-old de /de” and nonmutant
littermates, averaged over three skin
slices at different rostrocaudal levels,
and plotted as a function of the absolute
distance from middorsum or the per-
centage of total slice length.

DOI: 10.1371/journal.pbio.00020003.g002
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disrupts the open reading frame at codon 154 early in the T-
box domain (Figure 3D). Animals heterozygous for the
targeted allele are completely normal with regard to size,
skeletal morphology, and hair-color distribution, but
Thx15"““ITbx15"““ homozygotes were noted to exhibit
reduced body size and an abnormal craniofacial appearance
identical to that caused by de'’. We generated ThxI5"““Ide"
compound heterozygotes; on an A"/’ background, these
animals exhibited the same abnormal restriction of dorsal
pigmentation at P3.5 and expanded yellow flank area as
described above for delde” animals (see Figure 2). These
observations demonstrate that the pigmentary and craniofa-
cial characteristics of de'” are caused by loss of function for
Thx15.

Expression of Tbx15 and Agouti

Previous studies by Agulnik et al. (1998) using whole-mount
in situ hybridization described expression of TbxI5 as first
detectable at E9.5 in the limb buds, progressing to the
branchial arches, flanks, and craniofacial regions through
E12.5. To investigate this pattern in more detail, we
hybridized a TbxI15 mRNA probe to a series of transverse

sections at EI12.5 and observed expression in multiple
mesenchymal tissues of the head, trunk, and developing
limbs (Figure 4A), much of which is consistent with the skull,
cervical vertebrae, and limb malformations reported for mice
carrying the original droopy ear allele.

We were particularly interested in determining the exact
nature of the embryonic flank expression relative to the
ventralized phenotype of adult de"'lde” mice. Transverse
abdominal sections from different times during development
reveal a dorsolateral band of expression in the superficial
mesenchyme at E11.5 that broadens both dorsally and ventrally
over the next several days (Figure 4B). By E13.5, the developing
dermis has become separated from the loose mesenchyme by a
subcutaneous muscle layer; Tbx15 is expressed in all of these
layers as well as the underlying abdominal muscles. In P3.5 skin,
Tbxl5 is expressed in both dorsal and ventral skin, most
strongly in the condensed upper dermis and developing
dermal sheaths of hair follicles; faint expression can also be
detected in rare dermal papillae cells (Figure 4B).

Although the effects of Agouti on pigment-type switching
occur during postnatal hair growth, the ventral-specific
isoform of Agouti is expressed in developing skin beginning
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Figure 3. Molecular Genetics of de' and Tbx15

(A) Genetic and physical map, as described in the text. Markers M1 to
M3 are SSCP markers generated from a BAC contig of the region;
marker M4 is STS 16. MMHAP32FLF1 and was also used as an SSCP
marker. M2 and M3, which flank the Tbx15 and M6pr-ps on the UCSC
genome browser map and lie 634 kb apart, were nonrecombinant
with de” in 2340 meioses.

(B) The de'” mutation is a deletion that starts in ThxI5 intron 1 and
ends in the M6pr-ps.

(C) Sequence of deletion breakpoints.

(D) Diagram of Tbx15"“” allele constructed by gene targeting. As
described in the text, this allele is predicted to give rise to a protein
truncated after approximately 154 codons and is lacking critical
residues of the T box. Heterozygotes for the targeted allele exhibit
normal size, morphology, and hair-color patterns, but homozygotes
and Tbx15“Ide"” compound heterozygotes are identical to de
homozygotes.

DOI: 10.1371/journal.pbio.00020003.g003

at E11.5. We compared adjacent sections hybridized with
probes for Tbx15 and Agouti and observed complementary
patterns at E12.5, with expression of Agouti in ventral skin and
expression of Thx15 in dorsal skin (Figure 5A and 5B). The
junction between expression domains is indistinct, and by
E14.5, Tbx15 expression extends ventrally and overlaps
extensively with Agouti expression (Figure 5C and 5D).

We also examined the effect of de'’ on expression of Agouti
and found no difference between mutant and nonmutant at
E12.5 or E13.5 (data not shown). However, at E14.5, the
normal ventral-to-dorsal gradient of Agouti expression ap-
peared to extend more dorsally in de”’lde"” embryos (Figure
6A). In P4.5 skin, expression of Agouti is also extended dorsally
in de!ld¢” animals and is most apparent in the midflank
region within the upper dermis and dermal papillae cells
(Figure 6B). Thus, while the pigmentation phenotype of de|
de"’ mice can be explained, not surprisingly, by dorsal
extension of Agouti expression after birth, patterned expres-
sion of Tbxl5 and Agouti are apparent some 10 days earlier,
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Figure 4. Developmental Expression of Tbx15

(A) At E12.5, transverse sections at different levels show expression in
head mesenchyme (a and b); myotome, occipital, and periocular
mesenchyme (b); palatal shelf, cervical sclerotome, and nasal cartilage
(c); maxillary and mandibular processes (d); limbs (e); and myotome
and lateral mesenchyme (e and f) (scale bars = 500 pm).

(B) Transverse sections through the flank at different times show
expression in lateral mesenchyme (E11.5), expanding dorsally at
E12.5, and both ventrally and dorsally at E13.5, detectable in loose
mesenchyme underlying the dermis and the abdominal and subcuta-
neous muscles (scale bar = 500 um). At P3.5, Thx15 is expressed in the
entire dermis and is most strongly expressed in dermal sheaths (scale
bar = 200 pm).

DOTI: 10.1371/journal.pbio.00020003.g004

between E12.5 and E13.5, and the effects of Tbx15 deficiency
on expression of Agouti can be detected by E14.5.

Relationship of Embryonic Tbx15 Expression to Dorsal and
Ventral Pigmentation Domains

The observations described above are consistent with a
model in which transient expression of TbxI5 in the
embryonic dorsal flank is required to establish positional
identity of the future dermis, at least with respect to pigment-
type synthesis caused by the ventral-specific Agouti isoform.
To further investigate this hypothesis, we carried out trans-
plantation experiments in which pieces of embryonic skin
were isolated from different dorsoventral positions. We
evaluated the embryonic skin fragments for their potential
to give rise to different hair colors and for their expression of
Tbx15 and Agouti.

Previous studies by Silvers and colleagues (Poole and
Silvers 1976) showed that dorsal and ventral skin isolated
from a'la’ embryos gives rise to black and yellow hair,
respectively, when transplanted into testis and allowed to
develop for several weeks. Furthermore, dermal-epidermal
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Figure 5. Embryonic Expression of Tbx15 Compared to Agouti in a'/a"
Mice

(A and C) Tbx15. (B and D) Agouti. At E12.5, expression of Thx15 in
dorsal skin is approximately complementary to that of Agouti in
ventral skin. At E14.5, the levels of expression for both genes are
lower, but TbxI5 expression has expanded ventrally and overlaps
extensively with that of Agouti. In all four panels, arrows mark the
approximate ventral limit of 7bx15 and the approximate dorsal limit
of Agouti (scale bars = 500 pm).

DOI: 10.1371/journal.pbio.00020003.g005

recombination experiments carried out at E14.5 demonstrat-
ed that positional identity is carried by the embryonic dermis.
In a variation on this experiment, we divided embryonic skin
from d'la embryos into dorsal, flank, and ventral pieces and
analyzed the different pieces for their ability to give rise to
black or yellow hair after testis transplantation, and, in
parallel, for gene expression using in situ hybridization. For
the purposes of a reproducible morphologic boundary, we
divided flank from ventral skin based on a change in skin
thickness and divided dorsal from flank skin at the level of an
ectodermal notch that lies at the same level as the ventral
extent of the myotome (Figure 7) (Huang and Christ 2000;
Olivera-Martinez et al. 2000; Sudo et al. 2001; Burke and
Nowicki 2003; Nowicki et al. 2003).

We found that E12.5 is the earliest time at which embryonic
ventral skin is able to produce hair when transplanted to the
testis. Of the grafts that produced hair, ventral skin gave rise
to yellow hair (» = 3), and dorsal skin gave rise to black hair
(n = 4). Transplantation of flank skin gave rise to a patch of
yellow hair juxtaposed against a patch of black hair in 85% of
the successful grafts (n = 13); the remaining two flank grafts
produced solely black or yellow hair. In no case did we
observe intermingling of black and yellow hairs. As predicted
from the experiments using tissue sections (see Figures 5 and
6), dorsal pieces expressed TbxI5 but not Agouti, while flank
pieces expressed both genes (see Figure 7). Thus, dorsoventral
identity for adult pigmentation is established by the time
when patterned expression becomes apparent for 7bx15 and
Agouti (E11.5-E12.5); furthermore, positional identity is
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Figure 6. Effect of de'’ on Agouti Expression

Comparable sections from a'la'; deIde’ and a'la’; +4+ littermates.

(A) At E14.5, de”Ide” embryos have a smaller body cavity and loose
skin within which Agouti expression appears to be shifted dorsally, as
marked by arrows (scale bars = 500 pm).

(B) At P4.5, Agouti expression in both dorsal and ventral skin is similar
in de''lde"” compared to nonmutant, but in the midflank region, there
is increased Agouti expression in deH/dEH, especially in the upper
dermis (scale bars = 200 um). Sections shown are representative of
two mutant and two nonmutant samples examined at each time.
DOI: 10.1371/journal.pbio.00020003.g006

E12.5 Tbx15 Flank

Agouti A

Figure 7. Embryonic Establishment of Dorsoventral Skin Patterning

Pieces of skin from dorsal, flank, and ventral regions of a'fa E12.5
embryos were transplanted into the testes of congenic animals as
described in the text. Hair color of the grafts was examined 3 wk later.
Grafts of ventral embryonic skin (n = 3) produced yellow hairs,
dorsal embryonic skin (n = 4) produced black hairs, and flank
embryonic skin produced mostly (13 out of 15) black and yellow hairs
in distinct regions as shown. In parallel, in situ hybridization studies
revealed that the embryonic flank contains the boundary of
expression between Agouti and TbxI15 (scale bars = 1 mm for hairs
and 200 pm for in situ hybridization results).

DOI: 10.1371/journal.pbio.00020003.g007
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maintained throughout later stages of skin development, even
though expression of Tbhx15 broadens to include ventral as
well as dorsal skin.

Relationship of the Dorsoventral Pigment Boundary to
Lineage Compartments and the Lateral Somitic Frontier

The ectodermal notch that we used to mark the boundary
between embryonic dorsum and embryonic flank is a
characteristic feature in vertebrate embryos. In cell lineage
studies carried out in the chick system, the notch serves as a
landmark for the boundary between dermis derived from
somitic mesoderm and dermis derived from lateral plate
mesoderm and has been termed the “lateral somitic frontier”
(Olivera-Martinez et al. 2000; Sudo et al. 2001; Burke and
Nowicki 2003; Nowicki et al. 2003). Although fate-mapping
studies have not been carried out in mammalian embryos,
somite- and lateral plate-derived mesoderm could give rise to
precursors for dermis dorsal and ventral to the limb-body
wall junction, respectively. However, this notion conflicts
with our observation that the future pigmentation boundary
lies ventral to the ectodermal notch (see Figure 7).

To examine directly the relationship between the pigmen-
tation boundary and dermis derived from lateral plate
mesoderm, we made use of a Cre transgene driven by the
Hoxb6 promoter that was developed by Kuehn and colleagues
(Lowe et al. 2000). As described by Lowe et al. (2000),
midgestation embryos carrying both the Hoxb6-Cre transgene
and the R26R lacZ reporter gene (Soriano 1999) exhibit X-Gal
staining in lateral plate mesoderm but not somite-derived
mesoderm of the trunk. In whole-mount skin preparations
from P1.5b or P4.5 neonatal animals, we observed a ventral
band of dark X-Gal staining corresponding to lateral plate-
derived dermis, which represents 63% of the total circum-
ference (Figure 8A). However, in parallel preparations from
a'la’ mice, the ventral pheomelanin domain represents 47% of
the total skin circumference; therefore, the proportions of
total skin circumference occupied by dorsal eumelanin and
somite-derived dermis are 53% and 37%, respectively (Figure
8B). These results indicate that the pigmentation boundary is
clearly distinct from, and more ventral to, the boundary
between lateral plate- and somite-derived dermis.

Because the pigmentation boundary lies in register with the
limb-body wall junction (see Figure 2), we wondered whether
mechanisms used for dorsoventral limb patterning might be
related to those used to establish the pigmentation boundary.
In the developing limb, Engrailedl (Enl), Wnt7a, and Lmx1b are
part of a network whose restricted domains of expression
help to establish dorsoventral identity (reviewed in Nis-
wander 2003). Enl is transiently expressed in the developing
flank; at E11.5, transverse abdominal sections reveal domains
in the neural tube, somite-derived mesenchyme, and the
ventral body wall (Figure 8C). An adjacent section hybridized
with TbxI5 reveals a complementary pattern in the flank,
which provides additional evidence for developmental
mechanisms that establish a pigmentation boundary entirely
within lateral plate mesoderm and independent of lineage
restrictions imposed by the lateral somitic frontier.

Discussion

Several mutations and genes have been identified that
affect the pattern of hair follicle development, but TbxI5 is
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Figure 8. Comparison of the Dorsoventral a'/a' Pigmentation Boundary
to the Lateral Somitic Frontier

(A) Dorsoventral slices of skin from at the midtrunk region prepared
such that the dorsal midline lies in the center of the slice. Sections
were taken at P1.5 (a) or P4.5 (b—e) from a’/a’ or R26RH-; Tg.Hoxb6-Crel
+ mice (the latter were stained with X-Gal), as described in Materials
and Methods. For purposes of comparison, images were proportion-
ally scaled. The boundary of X-Gal staining marks dermis derived
from lateral plate versus dermis derived from mesoderm (the lateral
somitic frontier) and lies more dorsal than the a’/a' pigmentation
boundary.

(B) Quantitation of mean (= SEM) dorsal pigmentation area (n = 5)
and somite-derived dermis area (n = 3) shows a significant difference
(p < 0.005, t-test).

(C) RNA in situ hybridization showing that Tbhx15 expression at E11.5
is complementary to Enl expression on the flank (scale bars = 200
um). The arrow indicates the boundary between the expression
domains of the two genes.

DOTI: 10.1371/journal.pbio.00020003.g008

the only gene of which we are aware that affects the pattern
of hair pigmentation in different body regions. Ventral areas
that normally produce yellow hair in the trunk, limbs, and
craniofacial regions are expanded in delde’ mice and, in the
trunk at least, represent inappropriate dorsal expression of
an Agouti mRNA isoform that is normally restricted to ventral
skin. The de' allele is caused by a large deletion that removes
most of the Tbxl5 coding sequence, but the pleiotropic
phenotype is caused by a simple loss of function for Tbx15
rather than a dominant-negative or contiguous gene effect. In
particular, there is no heterozygous phenotype, no other
genes lie within or close to the deletion breakpoints, and the
expression pattern of Thx15 is consistent with the spectrum of
phenotypic abnormalities in both the original de allele and
the de'’ allele. Finally, a Thx15 targeted allele has the same
phenotype as de'.

Our results suggest that patterned expression of TbxI5
provides an instructional cue required to establish the future
identity of dorsal dermis with regard to pigmentary and hair
length patterning. The ventral edge of Thxl5 expression in
the developing flank does not correspond to a known lineage
compartment, but, like limb development, occurs within
lateral plate mesoderm. These findings represent a novel role
for T-box gene action in embryonic development and
provide evidence for a previously unappreciated complexity
to acquisition of dorsoventral positional identity in mamma-
lian skin.
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Distinct Morphologic Regions Represent the Sum of
Different Gradients

The visual boundary between dorsal and ventral skin in a'la’
mice is reminiscent of other systems in which adjacent
compartments enforce a binary choice between alternative
patterns of gene expression and cell fate (reviewed in
Dahmann and Basler 1999). However, Agouti mRNA in both
embryonic and postnatal skin is distributed along a gradient
whose dorsal boundary is indistinct and overlaps with two
additional gradients recognized by their effects on hair length
and histochemical staining for melanocytes. The three
gradients are close but not congruent, and it is their
proximity that gives rise to the superficial distinction
between dorsal and ventral skin of a'la’ mice. Indeed, slight
differences between the regions of transition for pigment-
type switching and pigment content give rise to a subtle
yellow stripe along the flank (see Figures 1, 2, and 9A). Levels
of Agouti mRNA remain high throughout the entire ventrum,
but hair pigment content is reduced, giving rise to a cream-
colored region in the ventrum that, depending on age and
genetic backgrounds, may appear more or less distinct from
the yellow flank stripe.

Loss of TbxI5 affects dorsoventral transitions of hair
length, pigment content, and expression of the ventral-
specific Agouti isoform; however, the former two effects are
subtle and contribute little, if at all, to the abnormal
pigmentation of adult delde™  mice. Thus, despite the
abnormal pattern of dark skin in neonatal delde” mice
(e.g., Figure 2D), the most obvious feature in adults is dorsal
displacement of the “boundary” between black and yellow
hair (Figure 9A).

Genetics of Tbx15

Named for the presence of a DNA-binding domain first
identified in the mouse Brachyury gene (haploinsufficiency
causes a short tail), T box-containing genes have been
identified as developmental regulators in a wide spectrum
of tissues and multicellular organisms (reviewed in Papaioan-
nou 2001). The Tbx15 subfamily, which also includes 7bxI18
and Tbx22, is likely to have arisen during early chordate
evolution since there is a single gene in amphioxus but no
obvious homolog in the fly genome (Ruvinsky et al. 2000).
Consistent with this relationship, the three genes are ex-
pressed in partially overlapping patterns that include
anterior somites (TbxI8 and Tbx22), limb mesenchyme
(Thx15 and Tbx18), and craniofacial mesenchyme (all three
genes, Tbx15 more broadly than Tbx18 or Thx22) (Agulnik et
al. 1998; Kraus et al. 2001; Braybrook et al. 2002; Bush et al.
2002; Herr et al. 2003). These observations suggest that an
ancestral gene for TbxI5, Tbx18, and Tbx22 may have been
important for craniofacial development in cephalochordates,
with acquisition of additional expression patterns and
developmental functions in the limb and the trunk during
early vertebrate evolution. Expression of Thx18 and Tbx22 has
not been reported in embryonic flank mesenchyme, which
suggests that TbxI5 is the only family member involved in
establishing the dorsoventral identity of the trunk. However,
it would not be surprising to find some degree of functional
redundancy in animals mutated for two or three of the
subfamily members in other body regions, particularly the
limbs and the head. For example, mutations in Tbx22 cause
the human syndrome X-linked cleft palate and ankyloglossia
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Figure 9. Model for Acquisition of Dorsoventral Patterning in the Trunk
and the Role of Tbx15

(A) A tricolor pigmentation pattern is generated by the combination
of distinct mechanisms that affect distribution of Agouti mRNA and
histochemical staining for melanocytes; effects of the latter mecha-
nism by itself are evident in «‘la’ mice (see Figure 1). In a'/a’ mice,
reduced hair melanocyte activity and high levels of Agouti mRNA in
the ventrum lead to a cream color; as melanocyte activity gradually
increases towards the dorsum, a lateral stripe is apparent on the
flank. The distributions of Agouti mRNA and histochemical staining
for melanocytes are both affected by Tbx15 and are externally evident
by a widening of the lateral stripe and an increased proportion of
total skin occupied by the cream-colored area.

(B) The lateral yellow stripe in a'/a’ mice lies at the same level as the
limb dorsoventral boundary. As described in the text, we propose
that distinct dorsoventral compartments in ectoderm of the trunk
provide an instructional cue to the mesoderm, leading to expression
of Thxl5 in dorsal trunk mesenchyme and acquisition of dorsal
dermis character. In the absence of TbxI5, dorsal mesenchyme
assumes ventral characteristics instead.

DOI: 10.1371/journal.pbio.00020003.g009

(Braybrook et al. 2001). Despite high levels of Tbx22
expression in periocular embryonic mesenchyme (Braybrook
et al. 2002; Bush et al. 2002; Herr et al. 2003), the condition
does not affect the eye, perhaps because residual activity is
provided by Tbx15 in the same region.

In an initial description of the expression and map location
of mouse Thx15, Agulnik et al. (1998) suggested human Tbx15
that lies on Chromosome 1pll.1 as a candidate for
acromegaloid facial appearance (AFA) syndrome, for which
there is a weak positive LOD score to Chromosome 1p
(Hughes et al. 1985). Originally described as a rare autosomal-
dominant syndrome with progressive facial coarsening,
overgrowth of the intraoral mucosa, and large, doughy hands,
more recent case reports describe macrosomia, macro-
cephaly, or both and generalized hypertrichosis with pro-
gressive coarsening (Dallapiccola et al. 1992; Irvine et al. 1996;
da Silva et al. 1998; Zelante et al. 2000). The de’’ phenotype
exhibits little overlap with these features; instead, we suggest
a more likely candidate for mutations of human TBX15 would
be frontofacionasal syndrome, an unmapped autosomal
recessive condition characterized by brachycephaly, blephar-
ophimosis, and midface hypoplasia (Reardon et al. 1994).

Two of us (S. Kuijper and F. Meijlink) became interested in
the de” mutation because of its effects on skeletal develop-
ment (Curry 1959) and the possibility that the aristaless-
related gene Alx3 might be allelic with droopy ear (ten Berge et
al. 1998). In spite of similarities between skeletal phenotypes
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of def and Alx3 or Alx4 mutants, subsequent experiments
(unpublished data) excluded allelism of Alx3 and de”, and a
full description of the 7TbxI5 skeletal phenotype will be
published elsewhere.

Developmental Mechanism of Tbx15 Expression and
Action in the Skin

Our attention to the role of TbxI5 in pigment patterning
was motivated by the effects of Agouti in postnatal animals.
However, Agouti is also expressed in the embryo, where it
provides a convenient marker of ventral dermis identity.
Because an expanded domain of embryonic Agouti expression
in de'lde™ animals is detectable by E14.5, the effects of TbxI15
on dorsoventral patterning must occur prior to this time.
Among other T-box genes whose developmental actions are
at least partially understood, two general themes have
emerged, one focused on the ability to specify alternative
fates for an undifferentiated group of precursor cells and
another focused on the ability to support proliferative
expansion of a cell population whose fate is already
determined (reviewed in Tada and Smith 2001). Either
mechanism may apply to the apparent dorsal-to-ventral
transformation in de”lde” mice. For example, while the
expanded domain of Agouti expression in postnatal de"'lde"”
animals can be traced to events that occur between E11.5 and
E13.5, the underlying cause may be that embryonic cells in
dorsolateral mesenchyme acquire a ventral rather than dorsal
identity or that those cells fail to proliferate normally,
followed by compensatory expansion of ventral cells. Cell
lineage studies should provide a definitive answer, but we
favor the latter hypothesis, because measurements of dorso-
ventral regions according to hair color in de”lde” mice
revealed a small increase of the cream-colored ventral region
in addition to the approximate doubling of the yellow flank
region (see Figure 2).

In embryonic mesenchyme, expression of Tbx15 and Agout:
are complementary, and it is possible that Tbx15 acts directly
to inhibit Agouti transcription in dorsolateral mesenchyme.
However, the ability of ThxI5 to suppress expression of the
ventral-specific Agouti isoform in postnatal mice is likely to be
indirect, since postnatal expression of TbxI5 occurs broadly
along the dorsoventral axis and overlaps extensively with that
of Agouti. In either case, the targets of ThxI15 action in the skin
include genes in addition to Agouti, since hair length and
melanocyte distribution exhibit a demonstrable, albeit subtle,
alteration in animals that carry a null Agouti allele. One
potential target is Alx4, which, like Agouti, is expressed in
ventral embryonic mesenchyme, and, when mutated, affects
hair-follicle as well as limb and craniofacial development (Qu
et al. 1997, 1998; Wu et al. 2000; Wuyts et al. 2000;
Mavrogiannis et al. 2001). However, expression of ventral
markers such as Alx4, as well as Alx3 and Msx2, appears to be
unaffected at E11.5 in de'lde"” embryos (data not shown).

Differences and Similarities to Dorsoventral Limb
Patterning

Loss of Thx15 also affects regional distribution of hair color
in the limbs, with areas that would normally produce black
hair giving rise to yellow hair instead. However, neither
normal patterns of pigment-type synthesis in the limb nor
their disruption in de"lde"™ mice correspond to obvious
developmental compartments. Furthermore, losses of func-
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tion for Enl or Wnt7a, which cause a partial transformation
of the distal limb from dorsum to ventrum (Loomis et al.
1996) or ventrum to dorsum (Parr and McMahon 1995),
respectively, have no effect on regional patterns of Agouti
expression or distribution of hair-color regions (Y. Chen,
unpublished data). (Ectopic pigmentation of the ventral
footpads that develops in Enl mutant mice is unrelated to
pigment-type synthesis and instead likely reflects a require-
ment for Enl, independent of Wnt7a, to repress migration or
proliferation (or both) of pigment cells in ventral epidermis
[Cygan et al. 1997; Loomis et al. 1998].)

These considerations notwithstanding, control of dorso-
ventral trunk pattern by TbxI5 shares certain features with
control of dorsoventral limb patterning by LmxIb, a LIM
domain transcription factor that acts downstream of Wnt7a
and Enl (Riddle et al. 1995; Vogel et al. 1995; Cygan et al.
1997; Logan et al. 1997; Loomis et al. 1998; Chen and Johnson
2002). Both Tbx15 and LmxIb act autonomously in mesen-
chymal cells to promote a dorsal identity, yet have expression
domains that do not correspond to cell lineage compartments
in the flank (TbxI5) or the limb (Lmx1b) (Altabef et al. 1997;
Michaud et al. 1997). In the case of Lmx1b, its expression in
the distal limb depends on Wnt7a produced in the overlying
dorsal ectoderm (Riddle et al. 1995; Cygan et al. 1997; Loomis
et al. 1998). Wnt7a, in turn, is restricted to dorsal ectoderm by
Enl in the ventral ectoderm (Loomis et al. 1996; Cygan et al.
1997; Logan et al. 1997), whose expression marks a lineage
boundary coincident with the dorsoventral midline of the
apical ectodermal ridge (Altabef et al. 1997; Michaud et al.
1997; Kimmel et al. 2000). As described above, Enl or Wnt7a
mutations have not been reported to affect patterns of hair-
color distribution (C. Loomis, personal communication; Parr
and McMahon 1995; Loomis et al. 1996). However, the
essential theme that ectodermal lineage compartments
control the fate of underlying mesenchyme in developing
limbs may apply to the trunk as well as the limb. The
mammary glands also develop at a stereotyped dorsoventral
position and depend on epithelial-mesenchymal interactions.
However, the number and apparent position of the mammary
glands are normal in de”’/de” animals, indicating the existence
of additional mechanisms that control dorsoventral pattern-
ing in the trunk as well as in the limbs.

These ideas are summarized in the model shown in Figure
9B. We speculate that a diffusible signal from dorsal trunk
ectoderm, at or prior to E11.5, promotes expression of Thx15
in dorsal trunk mesenchyme, which then establishes dorsal
positional identity of those cells as manifested by differences
in Agouti expression, pigment-cell development, and hair
growth. Because the ventral limit of TbxI5 expression
corresponds to the dorsal limit of Enl expression and
because the normal position of the pigmentation boundary
lies approximately in register with the limb-bud outgrowths,
we depict the position of a putative dorsoventral boundary in
trunk ectoderm as coincident with the limb dorsoventral
boundary. This model is consistent with studies in the chick,
where distinct dorsal and ventral lineage compartments exist
for ectoderm in both the limb (Altabef et al. 1997, 2000;
Michaud et al. 1997; Kimmel et al. 2000) and interlimb
regions (Altabef et al. 1997, 2000), but not for limb mesoderm
(Altabef et al. 1997; Michaud et al. 1997). In fact, the same
mechanism that determines dorsoventral position of the
limbs and the apical ectodermal ridge may also act on
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expression of Tbx15 in the trunk, since ectopic limbs induced
in the interlimb region by application of FGF beads develop
along a single line that is coincident with normal limb buds
(and the future pigmentation boundary) (Cohn et al. 1995;
Crossley et al. 1996; Vogel et al. 1996; Altabef et al. 1997,
2000).

Our model predicts that ectopic expression of Tbx15 in
ventral mesenchyme should give rise to a dorsalized
pigmentation phenotype and could be tested with gain-of-
function approaches. However, Tbxl5 expression is very
dynamic and is restricted to dorsal mesoderm only from
E11.5 to EI13.5. It is possible that TbxI5 influences skin
patterning in a very narrow window of development;
alternatively, establishment of dorsal identity by Tbx15 may
require another as-yet-unidentified factor that is only present
in the mesenchyme underlying dorsal ectoderm.

Pigmentation Patterns and Tbx75 in Other Mammals

The lateral somitic frontier, defined as the lineage
boundary between somite-derived versus lateral plate-derived
mesoderm, is established during somitogenesis early in
development (Mauger 1972; Christ et al. 1983; Olivera-
Martinez et al. 2000; Nowicki et al. 2003), but remains distinct
in postnatal animals despite the potential for extensive cell
mixing (see Figure 8). However, our transplantation and fate-
mapping studies demonstrate that the lateral somitic frontier
lies dorsal to the pigmentation boundary and does not
obviously correlate with a difference in skin morphology. An
additional dorsoventral domain that is not externally
apparent has emerged from studies of MsxI, whose expres-
sion marks a subgroup of somite-derived mesenchymal cells
that contribute to dermis in a narrow stripe along the
paraspinal region (Houzelstein et al. 2000). Thus, there exist
at least three distinct boundaries in postnatal mammalian
skin that are parallel to the sagittal plane, marked by
differences in pigment-type synthesis, differences in cell
lineage, and differences in expression of Msx1.

In rodents, only the pigmentation boundary is evident
externally, but many mammals have more complicated
patterns of hair type, length, and/or color that vary along
the dorsoventral axis. Raccoons, squirrels, skunks, and many
different ungulates exhibit lateral stripes whose developmen-
tal origins have not been investigated, but may correspond to
the lateral somitic frontier, the paraspinal Msx/ compart-
ment, or an interaction between these domains.

The effect of Tbhx15 on pigmentation in laboratory mice is
reminiscent of coat-color patterns in both selected and
natural populations of other mammals. Saddle markings are
common in some dog breeds, such as German shepherds, and
in certain populations of Peromyscus polionotus, in which a
dorsal extension of ventral depigmentation provides an
adaptive advantage to subspecies that live on white sand
reefs (Blair 1951; Kaufman 1974; Belk and Smith 1996).
Neither German shepherds nor deer mice have craniofacial
characteristics similar to the de” mutation, but the pigmen-
tation patterns in these animals could represent alterations in
the regulation or action of Thx15 activity. From the opposite
perspective, the effects of TbxI5 on coat color are only
apparent in certain genetic backgrounds and may not be
evident at all in mammals that lack dorsoventral pigmenta-
tion patterns. Studying the sequence and expression of TbxI15
in other vertebrates may provide additional insight into
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patterns that affect the skeleton as well as the pigmentary
system.

Materials and Methods

Mice. All mice were obtained originally from The Jackson
Laboratory (Bar Harbor, Maine, United States), except the BA strain
(Stanford Veterinary Services Center, Stanford, California, United
States), Hoxb6-Cre transgenic mice (kindly provided by M. Kuehn of
the National Institutes of Health, Bethesda, Maryland, United States),
mice carrying the R26R lacZ reporter allele (kindly provided by P.
Soriano, Fred Hutchinson Cancer Research Center, Seattle, Wash-
ington, United States), and C57BL/6] (B6) a/a” mice (kindly provided
by L. Siracusa, ]effers()n Medical College, Phllddelphld Pennsylvanld
United States). The de¢”’ mutation arose in the 1960s in Harwell,
probably on the BN strain background (C. Beechey, personal
L()mmunlcatl()n) We obtained de”” on a B6/EiC3H background,
introduced the a allele from the BTBR strain, and have maintained
the line as a mixed deé’’H- X de’’lt intercross stock with periodic
outcrossing to BTBR or B6. For timed matings, the morning of the
plug was considered E0.5. Postnatally, the day of birth was considered
to be P0.5.

Phenotypic analysis. For measurements of hair length and color,
the entire interlimb region of skin was first dissected with a single
incision at the dorsal midline and preserved with powdered sodium
bicarbonate. Slices 2-2.5 mm in width were then prepared parallel to
the dorsoventral axis, hair length boundaries determined from
electronic images with Adobe Photoshop (San Jose, California,
United States), and measurements obtained using Image] (National
Institutes of Health). This approach samples awls and auchenes,
because they are much thicker and therefore visually more predom-
inant than zigzag underhairs. To assess dorsoventral variation in hair-
type distribution, several hundred hairs were plucked from the
middorsum or midventrum of 8-wk-old male BA strain animals, then
sorted and categorized using a dissection microscope. No attempt was
made to distinguish between awls and auchenes.

For skin histology, 12 um sections from paraffin-embedded tissue
were stained with hematoxylin and eosin. For DOPA staining, the
dermis and epidermis were split after 3 h of incubation in 2 M sodium
bromide at 37°C (this preparation causes most hair follicles to remain
with the dermis), individually fixed for 1 h, then rinsed and stained
with 0.1% L-DOPA (Sigma, St. Louis, Missouri, United States), 0.1 M
sodium phosphate buffer (pH 6.8) for 5 h at 37°C in the dark,
changing the staining solution after 1 h. The samples were then fixed
overnight, dehydrated, and mounted. This method is sufficient to
stain interfollicular melanocytes without creating a high background.
The fixative used was always 4% paraformaldehyde.

Positional cloning. A high-resolution map for deH was generated
from an intersubspecific 1ntercross between de”'lde™ and CASTIEi
mice. We initially localized de' to a 1 cM interval between D3Mit233
and D3Mitll. Fy animals carrying recombinant chromosomes
between these markers whose genotype at de was mdetermmate
(de"H or +H) were progeny-tested by crossing to de”'lde” animals.
Further genetic mapping established a mm1ma1 region of 0.1 ctM
between D3Mit213 and 16.MMHAP32FLF1; these markers were used
to initiate construction of a physical map with BAC genomic clones
(Research Genetics, Huntsville, Alabama, United States, and Genome
Systems, St. Louis, Missouri, United States). End sequence from those
BACs was used to develop SSCP markers M1 to M3, as depicted in
Figure 3, and to establish a minimal physical interval of 1.4 Mb.
Primer pairs used were TTCCCTCCAATAAGTTCTGGGTACC and
AAGCTTGCTGCTCTGGATTCCATTTGTAG for M1,
CCTTCATTTTTTTTTCAAGTAAAA and AAGCTTGGCTTAGTCC-
CAGTGGC for M2, CCTCCAGGAAGATCTACTAGGCAC and ATG-
GAAAAAAAAAAGTAAGATTGAAAG for M3, and
TGGTTATCGATCTGTGGACCATTC and AAGTGAGAGAGCAG-
GATGGACCAC for M4 (the M4 marker represents STS
16 MMHAP32FLF1). Genomic sequence and annotations were ob-
tained from the UCSC Genome Browser February 2003 assembly
version mm3 (http://genome.ucsc.edu); the 1.4 Mb interval between
M1 and M4 contains eight genes: four hydroxysteroid dehydrogenase
isomerases, Hsd3b3, Hsd3b2, Hsd306, and Hsd3bl; an hydroacid
oxidase, Hao3; a tryptophanyl-tRNA synthetase, Wars2; a T-box gene,
Tbx15; and a novel gene, 4931427F14Rik. In the genome sequence, M1
primers correspond to AGGCCTCCAATAAGTTCTGGGTACC and
AAGCTTGCTCTCTGGATTCCATTTGTAG, the M2 reverse primer
corresponds to AAGCTTGGCTTTAGTCCCAGTGGGC, and the M3
primers correspond to CCTCCAGGAAGAATCTACTAGGCAC and
AATGAAAAAAAAAAAAGTAAGATTGAAAG. Minor differences
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among the sequences of the primers we obtained from the BAC ends
and the public genome sequence may represent strain differences or
sequencing errors on the BAC DNA.

A multiplex genotyping assay was developed to genotype for the
dé" deletion using primers GGAGCAGATCCAATTGCTTT, TCCA-
TAGCCCATCTTCACAA, and CATGTCCACTTCTGCTTCCA. This
PCR assay produces a 392 bp product from the de"” chromosome and
a 595 bp product from the nonmutant chromosome.

Gene targeting. A targeted allele of TbxI5 was constructed using
the same approach described in Russ et al. (2000). In brief, an IRES-
LacZ-neo cassette with 5" and 3’ homology arms of 3.5 kb and 1.8 kb
was inserted into a unique BamHI site that lies 479 nucleotides
downstream of the transcriptional initiation site (relative to the
mRNA sequence) in exon 3. Positive ES clones were injected into B6
blastocysts, and chimeric founders crossed to either B6 mice or to
de"'I+- animals.

In situ hybridization. In situ hybridization was carried out on 12-
um paraffin sections using digoxigenin-labeled RNA probes (Roche
Diagnostics, Indianapolis, Indiana, United States) according to
standard protocols (Wilkinson and Nieto 1993). Embryos and
postnatal skin samples were obtained from intercrosses of de’’H-
mice. Embryos E13.5 or younger were fixed for 24 h; those older than
E13.5 and postnatal skin were fixed for 36-48 h prior to embedding.
The Tbxl5 probe was generated by RT-PCR using primers
GGCGGCTAAAATGAGTGAAC and TGCCTGCTTTGGTGATGAT
(corresponds to exons 1 and 2), and the Enl probe was generated
by PCR from genomic DNA using primers ACGCACCAGGAAGC-
TAAAGA and AGCAACGAAAACGAAACTGG (located in the last
exon). The Agouti probe corresponds to the Pr()tein-coding sequence.

Embryonic skin transplantation. (BTBR-a'la’ X B6-ala)F; embryos at
E12.5 were dissected in sterile Tyrode’s solution, and embryonic skin
was divided into dorsal, flank, and ventral pieces, each 1-2 mm? in
size, as shown in Figure 7. Skin fragments were grafted to the testes of
congenic animals as follows. After anesthetization with 2.5% Avertin,
a 1.5-cm incision in the skin and body wall was made at a point level
with the top of the limbs. The fat pads were pulled out and laid on the
outside of the body, exposing the testes. Forceps were used to
introduce a small hole in the testis capsule through which a piece of
dissected embryonic skin was inserted, the testes were then replaced
into the abdominal cavity, and the wound was closed in both the body
wall and the skin. After 21 days, mice that received grafts were
sacrificed and the resulting hair was dissected from the testes and
examined.

Fate-mapping the lateral somitic frontier. The Hoxb6-Cre transgene
described by Kuehn and colleagues (Lowe et al. 2000) is expressed in
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