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ABSTRACT The emergence of several new variants of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the
potential impact on ongoing vaccination programs. Data from clinical trials and real-
world evidence suggest that current vaccines remain highly effective against the
alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness
against symptomatic disease caused by the beta variant (B.1.351) and the delta vari-
ant (B.1.617.2); however, effectiveness against severe disease and hospitalization
caused by delta remains high. Although data on the effectiveness of the primary
regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vac-
cines have been shown to restore protection against infection and symptomatic dis-
ease (regardless of the vaccine used for the primary regimen) and maintain high
effectiveness against hospitalization. However, effectiveness against infection and
symptomatic disease wanes with time after the booster dose. Studies have demon-
strated reductions of varying magnitude in neutralizing activity of vaccine-elicited
antibodies against a range of SARS-CoV-2 variants, with the omicron variant in par-
ticular exhibiting partial immune escape. However, evidence suggests that T-cell
responses are preserved across vaccine platforms, regardless of variant of concern.
Nevertheless, various mitigation strategies are under investigation to address the
potential for reduced efficacy or effectiveness against current and future SARS-CoV-2
variants, including modification of vaccines for certain variants (including omicron),
multivalent vaccine formulations, and different delivery mechanisms.
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Since the first reports of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) in humans in December 2019, numerous genetically distinct lineages have

evolved (1). Recently, the emergence of several variants carrying mutations with phe-
notypic implications has raised concerns, as variants with increased transmissibility,
disease severity, or ability to escape from antibodies have potential to negatively
impact pandemic management strategies. In this article, we review the evolutionary
mechanisms underpinning alterations in the genome of SARS-CoV-2 compared with
other coronaviruses and RNA viruses; summarize current data on the impact of new
variants on authorized mRNA, vector-based, subunit, and inactivated coronavirus
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disease 2019 (COVID-19) vaccines; and discuss potential mitigation strategies in
response to current and future variants of SARS-CoV-2. The search strategy and selec-
tion criteria used to identify references for this review are summarized in Text S1 in the
supplemental material.

SARS-COV-2 EVOLUTIONARY MECHANISMS

Genetic variation in the SARS-CoV-2 genome can arise through two mechanisms: ran-
domly occurring mutations followed by selection, and recombination (2). Random nucle-
otide sequence errors (substitutions or short deletions/insertions) that occur during repli-
cation can alter the amino acid composition of viral proteins (2, 3). In general, RNA
viruses accumulate point mutations owing to the low fidelity of the RNA-dependent
RNA polymerase (3), but coronaviruses carry a 39!59 exoribonuclease that provides
proofreading ability, resulting in slower acquisition of mutations (4, 5). Nevertheless,
point mutations seem to be major contributors to SARS-CoV-2 evolution (6). The high
incidence of mutations detected in the S gene (7), particularly in the receptor-binding
domain (RBD) and N-terminal domain (NTD) (8, 9), is likely due to selection for substitu-
tions that improve viral fitness; i.e., through changes in the structure of the spike protein
that lead to improved binding to the host receptor or escape from antibody recognition
(8, 9). In addition, deletions, which cannot be corrected by the proofreading enzyme
(10), are recurrently detected at particular sites in the S gene, primarily located within
the NTD, and may contribute to the acquisition of genetic variance by SARS-CoV-2. The
increased frequency of these deletions is also likely due to selection for resistance to
neutralizing antibodies (10). Rarely, short insertions of a few nucleotides have also been
observed (1). Mutations in other genes may also be the result of selection; for example,
mutations in the N/Orf9b region have been implicated in enhanced immune escape
through suppression of the host innate immune response (11). An unusually high inci-
dence of parallel amino acid substitutions between the RBDs of the spike proteins of
SARS-CoV-2- and SARS-CoV-1-related clades suggests the occurrence of evolutionary
convergence, possibly as a mechanism of adaptation to the same host cell receptor (12).

RNA recombination occurs at a high rate in coronaviruses (13–16) and has an important
role in their evolution. Phylogenetic analyses suggest that recombination events between
SARS-CoVs and bat coronaviruses are frequent (17). Although the exact mechanisms by
which recombination occurs are unknown, the proofreading exoribonuclease from non-
structural protein 14 (nsp14-ExoN) may be required (18). During replication of coronavi-
ruses, including SARS-CoV-2, a set of subgenomic RNAs is generated, which is thought to
increase the homologous recombination rate among closely related genes from different
lineages of coronaviruses by template switching (15, 19, 20). Although recombination-
mediated changes can theoretically occur at any location, they are detected more fre-
quently in the S gene due to selection favoring changes in the spike glycoprotein (13).

Coronaviruses have the largest known genomes of RNA viruses, allowing for addi-
tional plasticity for mutation and recombination relative to viruses with smaller
genomes (15). Unlike segmented RNA viruses, such as influenza A, the nonsegmented
nature of the coronavirus genome does not allow for evolution via reassortment (3),
but conversely, influenza A viruses do not undergo homologous recombination (21).
As such, the mutation rate of coronaviruses is considered moderate to high compared
with other single-stranded RNA viruses (15). The mutation rate of SARS-CoV-2 has been
estimated at a median 1.12 � 1023 mutations per site-year (22), which is similar to
those of the related viruses SARS-CoV-1 and Middle East respiratory syndrome corona-
virus (MERS-CoV), estimated at 0.80–2.38 � 1023 and 1.12 � 1023 nucleotide substitu-
tions per site-year, respectively (23, 24).

SARS-CoV-2 is assumed to be of zoonotic origin, although the exact zoonotic source
of the parental virus and the circumstances behind its emergence in humans in late
2019 remain unknown (25, 26). SARS-CoV-2 shares approximately 96% homology with
bat sarbecovirus RaTG13, and specific genes are highly conserved across SARS-CoV-2
and other bat coronaviruses (e.g., SARS-CoV-2 open reading frame 8 [ORF8] shares
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94% identity with ZC45 and ZXC21), which suggests a probable bat origin (27, 28). A
recent publication reported on bat sarbecoviruses with an RBD of the S protein even
more closely related to SARS-CoV-2, one of which could be isolated in human cell cul-
tures, in contrast to RaTG13, for which only a nucleotide sequence is available (29).
SARS-CoV-2 has been suggested to be derived from a viral lineage that has been circu-
lating in horseshoe bats for decades (25, 26), and recombination events may have had
a role in the origin of the virus (16, 17, 30).

As SARS-CoV-2 circulated globally, the viral genome continued to acquire new muta-
tions, some of which have become widespread. Until late 2020, the most notable was
the spike protein mutation D614G. The G614 variant was rare before March 2020, but
quickly became dominant, occurring in around three-quarters of all published sequences
by June 2020 (31, 32). This rapid spread seems to have been due to increased infectivity,
stability, and transmissibility over the ancestral D614 form (32, 33), resulting from a shift
to the open configuration of the spike protein trimer, which is required for binding to
the host angiotensin-converting enzyme 2 (ACE2) receptor (31) and host cell entry (27).

As of January 25, 2022, 11 global clades of SARS-CoV-2 according to GISAID nomen-
clature (34) and 25 according to NextStrain nomenclature (35) have been identified.
There are several possible contributing factors to the evolution of these different
clades. First, the virus is likely still adapting to the new host, as it has been circulating
in humans for about 2 years. Second, many countries are experiencing multiple waves
of COVID-19 with high infection incidence rates, increasing the probability of advanta-
geous mutations occurring through the sheer number of viral replication events. In
addition, as more people recover from SARS-CoV-2 infection or are vaccinated, and
population immunity levels increase, selection favors adaptations that evade neutrali-
zation by antibodies (36). Increased sequencing coverage in recent months may also
have affected the number of variants detected.

Multiple studies have reported long-term shedding of SARS-CoV-2 over several
months in immunocompromised individuals (37–41), promoting viral evolution within a
single host (37–39, 41). In case reports of immunocompromised patients with COVID-19,
treatments such as antivirals (including remdesivir), monoclonal antibody cocktails, or
convalescent plasma (37, 39, 41) may have exerted selection pressure, contributing to
increased prevalence of antibody escape mutants.

While it is possible that the roll-out of COVID-19 vaccination programs may contrib-
ute to viral evolution by increasing selection for immune-escape variants, the reduction
in viral circulation resulting from vaccination is expected to result in an overall reduc-
tion in the rate of viral adaptation (42).

SARS-COV-2 VARIANTS

SARS-CoV-2 variants of proven or suspected clinical or epidemiological relevance are
designated as a variant of concern (VOC) or variant of interest (VOI) based on criteria such
as increased transmissibility and ability to escape immunity (43, 44). Increased transmissi-
bility is of particular concern, as it increases infection rates and can require the introduction
of more stringent public health measures. Variant escape from antibody neutralization can
reduce the effectiveness of vaccination programs and necessitate the development of
modified vaccines or administration of booster doses. Variants with a combination of these
characteristics have a significant impact on pandemic management.

Five recently emerged SARS-COV-2 variants have been designated VOCs by the
World Health Organization (WHO), as well as other regional agencies (45–47) (Table S1).
Notably, all five VOCs exhibit two clusters of S gene mutations—one at the NTD and one
at the RBD (1, 48)—both of which are domains targeted by neutralizing antibodies.

The alpha variant (also known as B.1.1.7, VOC202012/01, or GRY) (1, 46, 49, 50) was
initially detected in the United Kingdom in September 2020 (49) and is hypothesized
to have emerged from a prolonged infection of an immunocompromised host (51).
Alpha has a large number of mutations (27 in total, excluding the now dominant muta-
tion D614G) (1). Of the 27 mutations, 20 (17 nonsynonymous substitutions and three
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deletions) are amino acid-altering. Eight of these mutations are in the S gene (1) (Table
S1), of which four have known biological effects. Mutation N501Y lies within the RBD
(49); mutations at this position have previously been shown to affect binding affinity
to the ACE2 receptor (52). The deletion at position 69–70 (69/70D) has occurred in sev-
eral other lineages of SARS-CoV-2 in association with RBD changes and may be linked
with immune evasion or with infectivity (10, 49, 53). The deletion at position 144 has
also been detected in other lineages and may affect the orientation and stability of the
spike glycoprotein (54), and confer resistance to NTD-directed neutralizing antibodies
(55). Mutation P681H is adjacent to the furin cleavage site at the junction between the
S1 and S2 domains of the spike protein and has been shown to promote entry into
human lung cells and improve transmissibility in an animal model (49, 56, 57). Recent
evidence suggests that the frequency of mutations at position 681 is increasing expo-
nentially worldwide (58).

The beta variant (also known as B.1.351 or GH/501Y.V2) (1, 46, 59, 60) was first
detected in South Africa in October 2020 (59). Beta carries 19 mutations (excluding
D614G), including eight nonsynonymous mutations in the S gene (1), in addition to
variable changes at position L242 (deletion or another nonsynonymous substitution)
(59) (Table S1). Three of these mutations are at key sites in the RBD that are associated
with immune evasion: N501Y (shared with alpha), E484K, and K417N (59).

The gamma variant (also known as P.1 or GR/501Y.V3) was first detected in Brazil in
December 2020 (1, 46, 61). Gamma carries 31 mutations, of which 21 are amino acid-
altering (Table S1) (1). These include 20 nonsynonymous substitutions and one dele-
tion (1). Ten mutations affect the spike protein, including two shared with beta (N501Y
and E484K), as well as a different mutation at position 417 (K417T) (61).

The delta variant (also known as B.1.617.2 or G/478K.V1) was first documented in
India in October 2020 (46). Delta has 21 nonsynonymous mutations, one deletion, and
five synonymous mutations (Table S1) (1). Six point mutations affect the spike protein,
including P681R (a mutation position shared with alpha and adjacent to the furin
cleavage site), and L452R, which is in the RBD and has been linked with increased bind-
ing to ACE2 (1, 49, 62) and neutralizing antibody resistance (63). There is also a deletion
in the spike protein at position 156/157 (1).

The omicron variant (also known as B.1.1.529 or GRA) was first documented in mul-
tiple countries in November 2021 (46). Although it has some mutations in common
with the other VOCs, the overall number of mutations is significantly larger than has
been seen with any previous variant. Omicron has 45 nonsynonymous mutations,
seven deletions, one insertion, and 10 synonymous mutations, with the majority of
nonsynonymous mutations located in the S gene at the NTD and RBD (1). Key muta-
tions shared with other VOCs include the deletion at position 69–70 (shared with
alpha), K417N (shared with beta), N501Y (shared with alpha), and P681H (shared with
alpha) (1). Three subvariants of omicron exist: BA.1 currently dominates in most coun-
tries in which omicron is prevalent, but BA.2 seems to have become more common in
some countries since January 2022 (64). BA.2 is also referred to as “stealth omicron,” as
it lacks the deletion at position 69/70 in the S protein, a mutation characteristic for
alpha and BA.1 that is used in mutation-specific PCR assays to differentiate BA.1 from
delta. BA.3 is currently still rare (64).

These five VOCs have circulated globally (60, 65) and have become the dominant
variants in the geographic regions where they were first identified. As of January 14,
2022, alpha has been reported in 179 countries, beta in 120 countries, gamma in 92
countries, delta in 188 countries, and omicron in 119 countries, each spreading across
multiple continents, with omicron currently being the most prevalent VOC in many
countries, including the United Kingdom, the United States, and many European coun-
tries (65). The rapid spread of alpha, delta, and omicron in particular strongly suggests
that these variants have transmission advantages over the ancestral viruses. Based on
modeling data, alpha has been estimated to be 43–90% more transmissible than previ-
ously circulating variants (66), and delta is thought to be approximately 60% more
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transmissible than alpha (67). Omicron is highly transmissible, with early estimates sug-
gesting that it may be around 100% more transmissible than delta (68). Some prelimi-
nary studies have suggested that omicron is associated with a reduced risk of hospitali-
zation and disease severity compared with delta, although it is not known how much
of this is due to increasing population immunity over time (69, 70). Nevertheless, omi-
cron should not be considered to generally cause only mild disease, and its rapid
spread is leading to health care systems becoming overwhelmed.

Several other lineages have been classed as VOIs by the WHO, despite not having
spread as widely as the five variants described above (46). However, many of these
have been reclassified and are no longer being monitored. Currently, only lambda
(C.37; GR/452Q.V1) and mu (B1.621; GH) are classed as VOIs, with sporadic transmission
(Table S1). Mu has a high accumulation of spike protein mutations seen independently
in several other VOIs and VOCs (e.g., E484K, N501Y, and P681H) in addition to the inser-
tion of N at position 146 in the NTD (1, 71). This insertion could potentially affect the
S1 closed–open conformation and subsequent binding to ACE2, although the impact
on transmissibility and severity of disease is still unknown (71).

As shown in Fig. 1, mutations in the SARS-CoV-2 spike protein in currently circulat-
ing variants are concentrated around the NTD, RBD, and furin cleavage site, suggesting
a potential for further mutations to arise in these areas. Although the appearance of
the same or similar mutations in multiple variants suggests that they have been driven
by evolutionary pressures, the pressures exerted on the virus may change as vaccine
programs continue to roll out and new therapeutics are introduced, potentially affect-
ing the specific mutations that will arise in the future.

IMPACT OF SARS-COV-2 VARIANTS ANDMUTATIONS ON IMMUNITY
In vitro studies assessing escape from neutralizing antibodies. In light of con-

cerns about the potential of new SARS-CoV-2 variants to escape antibodies elicited by
vaccination or previous infection, and to resist antibody-based therapeutics (such as
monoclonal antibodies or convalescent plasma), numerous studies have evaluated the
impact of SARS-CoV-2 variants and mutations on neutralizing antibody activity (55, 72–
117). As neutralizing antibody titers represent only one component of the immune
response, and correlates of protection are still being established (118, 119), these stud-
ies cannot be used to draw conclusions on vaccine efficacy or effectiveness. In addi-
tion, as most COVID-19 vaccines elicit very high neutralizing antibody titers (consider-
ably greater than those found in convalescent-phase sera), dramatic fold decreases in
neutralizing activity are not necessarily meaningful given the high starting point.
Furthermore, titer is not the only indicator of a robust neutralizing antibody response;
the nature and quality of antibodies are also important. For example, clonal evolution
of SARS-CoV-2 RBD-specific memory B cells over time can result in antibodies with
greater resistance to RBD mutations and increased potency (120).

Neutralizing antibody escape studies are valuable for characterization purposes, but
comparisons across studies should be made with caution, owing to considerable varia-
tions in assay techniques, use of pseudoviruses (of varying construction) versus live vi-
rus isolates, vaccine dosing intervals/time since infection, and participant age and
immune status, among other factors. In particular, the cell line used to perform neutral-
ization assays can have a considerable effect on results; for example, some studies
have used Vero E6 cells, which lack transmembrane protease serine 2 (TMPRSS2), forc-
ing the virus to enter the host cell via the endosomal pathway (121). Antibodies to the
NTD of the spike protein are known to be particularly sensitive to pH and may detach
in the endosomal environment, leading to an apparent reduction in neutralizing activ-
ity. Therefore, findings in Vero E6 cells may be substantially different to those in cell
lines that carry TMPRSS2 and, therefore, allow entry at the cell surface.

Nevertheless, some clear patterns have emerged. Reductions in neutralizing activity
against new SARS-CoV-2 variants and mutations compared with other circulating line-
ages have been observed for both convalescent-phase sera and monoclonal antibodies
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FIG 1 (A) Location of spike protein mutations in SARS-CoV-2 variants alpha, beta, gamma, delta, lambda, mu, and omicron (1); (B) 3D structure of the spike
protein of SARS-CoV-2 variants alpha, beta, gamma, delta, and omicron in comparison with an ancestral virus created using PyMOL molecular graphic
system version 2.3.2 (https://pymol.org). C, cleavage site (residues 681–685); CD, connector domain; CH, central helix; CT, cytoplasmic domain fusion; CTD,

(Continued on next page)
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(55, 72, 76, 77, 91–95, 99–103, 105, 108), with beta, omicron, and combinations of
mutations including E484K generally resulting in greater reductions than alpha in stud-
ies that compared these variants/mutations (55, 72, 77, 92, 102, 109, 114, 115). In addi-
tion to beta, E484K may also contribute to antibody escape by gamma and mu, which
also carry this mutation (Table S2). Notably, a recent study found that the spike protein
of mu escapes neutralization to a degree similar to beta, which had shown the greatest
degree of antibody escape prior to the emergence of omicron (122).

Studies assessing neutralization of SARS-CoV-2 variants by mRNA vaccine-elicited
sera have yielded a similar pattern, although neutralizing activity has generally been
retained due to high antibody titers (Table S2). Reductions in neutralizing activity of
varying magnitude have been observed against alpha (55, 72, 75–78, 80–83, 85–88, 96,
100, 102), beta (55, 72, 74, 77–79, 84, 85, 87, 88, 96, 100, 102), gamma (72, 79, 85, 89,
90, 102), delta (96, 108), mu (122, 123), and omicron (109–117), when compared with
other lineages, with reductions against beta and omicron being notably high (Table
S2). Despite the high fold-reductions in neutralization of beta, cell entry was still inhib-
ited at low dilutions (79, 102). Reductions in neutralizing titers have also been observed
against viruses carrying the E484K mutation (74, 78, 79, 81, 100, 101, 105), which were
generally of greater magnitude than non-E484K mutation combinations (81, 100, 105),
suggesting that E484K is a key driver of neutralization escape. Of note, for the lambda
variant, which does not carry the E484K mutation, there was no reduction in neutraliza-
tion relative to that of wild-type SARS-CoV-2 in sera of individuals fully vaccinated with
BNT162b2 (124). Reductions in neutralizing titers against variants with mutations at
the E484 position (beta, gamma, and mu) were notably smaller or absent in sera from
subjects previously exposed to the E484K mutation, suggesting cross-neutralization
can occur between variants sharing some or all of the same spike mutations (124).
However, reductions in the neutralization of omicron, which carries E484A, have been
reported to be greater than with beta in sera from individuals vaccinated with a pri-
mary regimen of BNT162b2 (110, 117). A restoration of neutralizing activity against om-
icron has been reported in sera from individuals who received a booster dose of mRNA
vaccine, with even higher titers against delta demonstrated (111, 112, 114–117).
Similarly, in a clinical trial of a BNT162b2 primary regimen and booster, the booster
dose increased neutralizing antibody titers against the beta variant by 15–20 times
compared with post-dose 2, reducing the difference between neutralizing activity
against the beta variant and wild-type virus (125).

Fewer studies have assessed escape from vector-based vaccine-elicited antibodies.
Reductions in neutralizing activity of post-ChAdOx1 nCoV-19 sera against alpha (85,
86, 104), beta (73), gamma (85), delta (108), and omicron (113) have been observed,
with an undetectable neutralization response to beta in eight of 13 samples in one
study (73) and to omicron in 20 of 20 samples in another (113). Similarly, in a study of
people vaccinated with the vector-based Sputnik V Ad26/Ad5 vaccine (Gamaleya
Research Institute of Epidemiology and Microbiology, Moscow, Russian Federation),
neutralizing titers against alpha were similar to the D614G control, but 50% of samples
did not achieve the IC80 threshold for neutralization of beta (106). In a study in which a
primary regimen of mRNA vaccines or ChAdOx1 nCoV-19 exhibited reduced neutraliz-
ing activity against omicron, sera from all individuals vaccinated with a primary regi-
men of Sputnik V and all but one vaccinated with a single dose of Ad26.COV2.S had

FIG 1 Legend (Continued)
C-terminal domain; FP, fusion protein; HR, heptad repeat; SP, signal peptide; TM, transmembrane domain. †Disputed with mutation at same site. ‡Based on
BA.1 lineage, which is part of the larger group of omicron/B.1.1.529 sequences. Exact position and number of mutations may differ according to source.
Structure of spike glycoprotein in A based on Cai et al. (186). Mutations with known or proposed biological significance shown in red. Images in B are
based on protein data bank (PDB) entry 6XR8 (https://www.rcsb.org/structure/6xr8). The structure contains D614 but has better solved sequence coverage
than other entries although residue P681 is missing and not labeled where mutated in a VOC. Beta: R226I is missing and is not labeled. Gamma: T1072I (in
seq is E1072). Omicron: N679K and N969K are missing and not labeled. Domain coloring of spike subunit as follows: NTD: green; RBD: blue; all others
including entire subunits 2 and 3: cyan. Mutations are shown in color of function (red: known; black: unknown) and are shown in a single subunit for
clarity.
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reduced activity against this variant (109). Reduced neutralizing antibody titers against
beta and gamma have also been reported in Ad26.COV2.S recipients (98, 126).

One study assessed neutralization activity of sera from people vaccinated with NVX-
CoV2373 (a recombinant spike protein subunit vaccine), demonstrating that alpha was
neutralized by all samples with modestly diminished activity compared with the con-
trol virus (76). In a study assessing neutralization activity of sera from individuals vacci-
nated with the inactivated vaccine Coronavac, there was no neutralizing activity
against omicron after two doses, or after a third CoronaVac dose; however, nine of 10
samples from individuals who received a primary Coronavac regimen and a BNT162b2
booster exhibited neutralizing activity, implying that heterologous boosting with an
mRNA vaccine following a vector-based primary regimen results in a broader immune
response than a homologous vector-based regimen (112). A primary regimen of the
inactivated vaccine BBiBP-CoRV has also been shown to have no neutralizing activity
against omicron for the majority of recipients (109). Data on neutralization of other var-
iants and mutations with other vector-based or subunit vaccines are limited.

POTENTIAL IMPORTANCE OF THE T-CELL RESPONSE

Pharmaceutical research on vaccine-elicited immunity to respiratory viruses tends
to focus on the neutralizing antibody response, which is a key element of sterilizing im-
munity. Neutralizing antibody correlates of protection against symptomatic COVID-19
have been proposed, although evidence of a correlate for asymptomatic infection is
lacking (118, 119). However, antibodies represent only one aspect of the immune
response to SARS-CoV-2. The T-cell response is important for complete protective im-
munity, as demonstrated by reports of SARS-CoV-2-exposed individuals with positive
T-cell responses but no detectable antibodies (127). Variations in SARS-CoV-2-specific
T-cell responses as a function of disease severity have been observed (128, 129), with a
coordinated CD41 and CD81 T-cell response associated with milder disease, suggest-
ing a role in protective immunity against COVID-19 (130). Consistent with this, recent
studies suggest that the T-cell response may provide protection against SARS-CoV-2
variants. An analysis of T cells from individuals previously infected with SARS-CoV-2
showed that both CD41 and CD81 T cells can recognize multiple epitopes across the
SARS-CoV-2 proteome, suggesting that new variants may not easily escape T-cell rec-
ognition after natural infection (131). While SARS-CoV-2 may have the capacity to sub-
vert CD81 T-cell surveillance through escape mutations (132), neither alpha nor beta
escape CD41 T-cell-mediated vaccine-elicited immunity to the wild-type spike protein
(133). In people infected with earlier circulating lineages of SARS-CoV-2, the T-cell
response to beta was preserved, despite a loss of CD41 epitope recognition in mutated
regions of the spike protein (134).

Vaccines that induce a robust and poly-epitopic cellular response may provide
greater protection against novel variants, as a portion of the epitopes recognized by
the vaccine-induced T cell repertoire will remain conserved upon further evolution of
the virus. Moreover, owing to the highly polymorphic nature of major histocompatibil-
ity complex (MHC) class I and II molecules, virus-antigen-specific T-cell responses, in
contrast to vaccine-induced antibodies, are not likely to be subject to immune escape
on a population level (135, 136).

BNT162b2 has been shown to elicit robust CD81 and CD41 T-cell responses (137), and
data from individuals vaccinated with BNT162b2 have shown that the majority of the T-
cell response is directed against epitopes conserved across beta, alpha, and the original B
lineage (77). Similarly, ChAdOx1 nCoV-19 has been shown to cause expansion of CD41

and CD81 T cells to specific SARS-CoV-2 spike protein epitopes; of 87 epitopes identified,
75 were unaffected by beta mutations (73). A study of cross-recognition of SARS-CoV-2
variants across vaccine platforms, including mRNA-1273, BNT162b2, Ad26.CoV2.S, and
NVX-CoV2373, showed preservation of at least 83% and 85% of CD41 and CD81

responses, respectively, regardless of variant (including omicron) (138). In individuals vac-
cinated with BNT162b2 or Ad26.CoV2.S, the magnitude of T cells with cross-reactivity to
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omicron was similar to that of beta and delta, despite the significantly larger number of
mutations in the omicron variant (139).

VACCINE EFFICACY AGAINST SARS-COV-2 VARIANTS: EVIDENCE FROM CLINICAL
TRIALS

Clinical trials in regions where SARS-CoV-2 variants are prevalent have provided
data on COVID-19 vaccine efficacy against those variants (Table S3). A phase 2/3 trial
indicated that the efficacy of the ChAdOx1 nCoV-19 vaccine against symptomatic
alpha infection is similar to that against previously circulating nonalpha lineages, de-
spite the 9-fold reduction in neutralization activity observed in vitro (104). Similarly, the
protein-based NVX-CoV2373 vaccine (Novavax) has been shown to have high efficacy
(86.3%) against confirmed symptomatic COVID-19 caused by alpha in a clinical trial in
the United Kingdom, compared with 95.6% against nonalpha disease (140).

In a phase 1b/2 clinical trial in a limited number of participants without human im-
munodeficiency virus (HIV) infection in South Africa, the ChAdOx1 nCoV-19 vaccine
only provided minimal protection against mild-to-moderate COVID-19 infection from
beta (39 cases, vaccine efficacy 10.4%) (73). However, efficacy against severe disease
could not be assessed, as the population was low risk (median age 30 years) and the
trial was relatively small (73). Efficacy of NVX-CoV2373 in a phase 2 trial in South Africa
was 60% in participants without HIV; of 41 COVID-19 events with available sequencing
data, 92.7% (38 events) were due to beta (141). Similarly, in the phase 3 ENSEMBLE
study, efficacy of a single dose of the Ad26.COV2.S vaccine (Janssen Vaccines &
Prevention) against moderate-to-severe COVID-19 was 57% in South Africa, where 95%
of COVID-19 events were due to beta (142). Notably, these efficacy values remain
above the 50% threshold established by the U.S. Food and Drug Administration (FDA)
for COVID-19 vaccine approval (143). In the South African cohort of the phase 3 trial of
BNT162b2, in which eight of the nine events were caused by beta and one was of
undetermined lineage, efficacy against symptomatic disease was 100% (144).

Efficacy data against the delta variant are limited, as this variant emerged after the
primary clinical trials were complete. However, a randomized clinical trial assessing the
efficacy of a primary regimen and booster dose of BNT162b2 compared with a primary
BNT162b2 regimen and placebo booster has demonstrated vaccine efficacy of 95.6%
during a period when delta was the dominant strain (145).

Efficacy data are limited to short duration and early variants, owing to the nature
and timing of the clinical trials. Real-world data from ongoing vaccination programs
provide further insights into effectiveness against later variants, duration of protection,
and need for booster doses.

VACCINE EFFECTIVENESS AGAINST SARS-COV-2 VARIANTS: EVIDENCE FROM
ONGOING VACCINATION PROGRAMS

Ongoing vaccination programs have provided data on COVID-19 vaccine effective-
ness against several SARS-CoV-2 variants in a “real-life” setting (Table 1). Data from the
mass vaccination campaign in Israel suggest that, consistent with in vitro studies, effec-
tiveness of the BNT162b2 mRNA vaccine against alpha is high, with studies carried out
during the alpha-dominant period demonstrating vaccine effectiveness after the pri-
mary regimen of BNT162b2 up to 94.5% against SARS-CoV-2 infection (146, 147).
Similarly, results obtained during the mass vaccination campaign in Scotland also indi-
cate effectiveness against confirmed alpha infections of 92% for BNT162b2 and 73%
for ChAdOx1 nCoV-19 after the primary regimen (148). In England, effectiveness of the
primary regimen of BNT162b2 or ChAdOx1 nCoV-19 was 93.7% and 74.5%, respec-
tively, against symptomatic COVID-19 (149). Similarly, during the vaccine roll-out in
Qatar, the primary regimen of BNT162b2 provided 89.5% protection against confirmed
alpha infections and 100% protection against severe, critical, or fatal disease caused by
alpha (150). A Canadian study showed that a primary regimen of BNT162b2, mRNA-
1273, or ChAdOx1 nCoV-19 was 89%, 91%, and 75% effective against symptomatic
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infection from alpha (151). Together, these data demonstrate that vaccine effective-
ness against alpha after a primary regimen of mRNA- or vector-based vaccines remains
high, suggesting that immune escape is unlikely with alpha.

Data on the effectiveness of COVID-19 vaccines against beta and gamma are lim-
ited. In Qatar, effectiveness of BNT162b2 against any documented infection with beta
was 75%, and effectiveness against severe, critical, or fatal disease caused by beta was
100% (150). In a Canadian study, beta and gamma specimens obtained from patients
vaccinated with BNT162b2, mRNA-1273, or ChAdOx1 nCoV-19 were grouped together
to evaluate vaccine effectiveness, due to the low number of patients with either vari-
ant, as both variants carry N501Y and E484K mutations (151). The primary regimen of
BNT162b2 was found to be 85% effective against symptomatic infection and 98%
effective against hospitalization or death for this beta/gamma group (151).

The rapid spread of delta has allowed analysis of effectiveness against this variant,
with vaccine effectiveness against delta generally remaining high following a primary
regimen. In England, vaccine effectiveness against delta was 88.0% with BNT162b2 and
67.0% with ChAdOx1 nCoV-19, with similar findings reported in Scotland (BNT162b2,
79%; ChAdOx1 nCoV-19, 60%) and the United Kingdom as a whole (BNT162b2, 80%;
ChAdOx1 nCoV-19, 67%) (148, 149, 152). Similarly, a Canadian study showed that
BNT162b2 was 85% effective against symptomatic infection from delta (151). Two doses
of BNT162b2 or mRNA-1273 were 74% effective against confirmed infections during a
delta-dominant period in the United States, while the one-dose Ad26.COV2.S was 51%
effective (153). An interim report from the VISION Network in the United States reported
overall effectiveness of 86% for BNT162b2, mRNA-1273, or Ad26.COV2.S against COVID-19-
associated hospitalizations during a period when delta accounted for.50% of cases; effec-
tiveness was higher with mRNA-1273 (95%) than with BNT162b2 (80%) and Ad26.COV2.S
(60%) (154). However, this interim analysis did not assess effectiveness by time since vacci-
nation; thus, the impact of possible waning of antibody levels is not known. A report from
Israel suggested decreased effectiveness of BNT162b2 against COVID-19 infection and
symptomatic disease during a period of spread of delta (155); however, this may be an
effect of longer intervals post-dose 2 leading to waning antibody levels over time, as a
large proportion of the population of Israel was vaccinated in early 2021. The VISION
Network observed a significantly lower overall effectiveness of BNT162b2, mRNA-1273,
or Ad26.COV2.S against hospitalizations among adults $75 years of age compared with
adults 18–74 years of age, which may also be a result of waning antibody levels, as
adults $75 years of age were vaccinated earlier in the United States (154). Similarly, a
decline in effectiveness over time since second dose in adults 18–64 years of age was
reported in the United Kingdom (152). Furthermore, a study from Southern California
found that effectiveness of BNT162b2 against delta infections declined from 93% in the
first month after full vaccination to 53% at $4 months (156). Similar findings were
observed with other SARS-CoV-2 variants, suggesting that reductions in vaccine effec-
tiveness against delta and other variants are likely associated with increased time interval
since the primary regimen, rather than vaccine escape (156). Effectiveness of BNT162b2
against severe COVID-19 disease and hospitalization in Israel and in the Southern
California study remained high (155, 156). Studies from countries that used wider inter-
vals between the first and second dose of BNT162b2, such as the United Kingdom and
Canada, have reported higher vaccine effectiveness against delta infection, although the
duration of follow-up has been insufficient to assess the effect of waning (148, 151, 156,
157). This may be due to increased time for proliferation of memory T cells and B cells
(120, 158). In more recent studies, in countries where a booster vaccination program has
been implemented, vaccine effectiveness of mRNA vaccines and ChAdOx1 nCoV-19 pri-
mary regimen with an mRNA booster against delta infection or symptomatic disease has
been around 90% or more (159, 160).

Initial data on COVID-19 vaccine effectiveness against the omicron variant suggest
that a primary mRNA vaccination regimen provides limited protection against infec-
tion. Studies from the United Kingdom, United States, and Denmark have shown that
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mRNA vaccines have limited-to-moderate effectiveness versus omicron during the first
1–2 months after the second dose (159–162), but with a steep decline in effectiveness
thereafter (159, 160). In a study that predicted vaccine effectiveness against omicron
relative to delta, controlling for age, region, and ethnic group, effectiveness of two
doses of BNT162b2 against omicron was significantly lower than against delta (162).
However, in line with neutralizing antibody studies, a booster dose of mRNA vaccine
has been shown to partially restore protection (159–162). In England, effectiveness of a
primary regimen and booster dose of BNT162b2 against symptomatic omicron disease
was 76% (159), and in a test-negative study in the United States, effectiveness of a pri-
mary regimen and booster of mRNA-1273 against omicron infection was 63% (160).
Reported effectiveness against omicron infection for a primary regimen and booster of
BNT162b2 in Denmark was 55% 1 to 30 days after the booster dose (161). Data from
the United Kingdom from adults $65 years of age who received a primary regimen of
BNT162b2 have demonstrated effectiveness against symptomatic omicron of 65% 2 to
4 weeks post-BNT162b2 booster and 70% 2 to 4 weeks post-mRNA-1273 booster (163).

Primary regimens of vector-based vaccines are not effective against omicron (159).
In England, effectiveness of two doses of ChAdOx1 nCoV-19 ranged from 255% to 6%
from 15 weeks after the second dose (159). However, 2 weeks after a BNT162b2
booster, effectiveness increased to 71% (159).

Despite lower effectiveness against omicron infection, combined vaccine effective-
ness against severe disease and hospitalization caused by omicron remains high, with
initial data from the United Kingdom reporting effectiveness against hospitalization
close to 90% (163, 164). However, preliminary evidence suggests that effectiveness
against infection and symptomatic disease wanes with time after the booster dose,
with effectiveness of a BNT162b2 primary regimen and booster dropping from 65% at
2–4 weeks post-booster to 49% at 5–9 weeks and 31% at 10 weeks (163, 164). Similar
waning was observed with a primary BNT162b2 regimen and mRNA-1273 booster, and
a primary ChAdOx1 nCoV-19 regimen with mRNA vaccine booster (163).

MITIGATION STRATEGIES TO ADDRESS SARS-COV-2 VARIANTS

As described above, data from vaccination programs have highlighted a need for
booster doses to increase vaccine effectiveness against certain variants. Therefore, sev-
eral clinical trials have been conducted to evaluate the safety and immunogenicity of
homologous (165–168) and heterologous boosters (169, 170). The randomized trial of
a primary regimen and booster of BNT162b2 remains the only booster trial to report ef-
ficacy data (145).

In parallel to evaluating booster doses with the original vaccines, the emergence of
VOCs led some manufacturers to begin development of variant-specific vaccines in
2021 (165, 171). Since the omicron outbreak, the majority of manufacturers have
announced development of omicron-specific vaccines. Currently, BioNTech/Pfizer are
exploring beta-, delta-, and omicron-specific BNT162b2 vaccines, as well as a multiva-
lent alpha and delta candidate (172). Initial data suggest that alpha- and delta-specific
vaccines, and the multivalent candidate, elicit higher neutralizing activity against omi-
cron than the original vaccine when administered as boosters (173). Moderna is also
evaluating delta- and omicron-specific mRNA-1273 vaccines, and is focusing on a mul-
tivalent candidate (174). Preliminary analyses show that boosters of modified mRNA-
1273 can increase neutralizing antibody titers against beta and gamma (165).
AstraZeneca/University of Oxford are reportedly developing modified versions of
ChAdOx1 nCoV-19 to target beta and omicron (175, 176), and omicron-specific ver-
sions of the Sputnik V Ad26/Ad5 and NVX-CoV2373 vaccines are also in development
(177, 178).

Regulatory bodies have issued guidance to vaccine manufacturers on data require-
ments and processes for approval of modified vaccines (179–182). The WHO Technical
Advisory Group on COVID-19 Vaccine Composition (TAG-CO-VAC) has encouraged vac-
cine developers to gather small-scale data on the breadth and magnitude of immune
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responses to modified and multivalent vaccines against VOCs (182). Informed by expe-
rience with other continuously evolving infectious diseases, such as influenza, approval
of modified vaccines will be primarily based on immunogenicity bridging studies to
expedite development and review (179–181). Important considerations will include im-
munogenicity in vaccine-naive and vaccine-experienced individuals, optimal booster
dosing, and potential value of multivalent candidates, including both original and
modified sequences. An alternative approach to the modification of existing vaccines
is the development of new vaccines targeting combinations of viral proteins (e.g.,
spike, nucleocapsid, and envelope proteins), or with different delivery mechanisms,
such as oral or intranasal, to improve the mucosal immune response (183). The TAG-
CO-VAC also notes that a pan SARS-CoV-2 vaccine would be a more sustainable long-
term option that would effectively be variant-proof (182).

It is worth noting the importance of transmissibility in addition to immune escape
features. Beta and omicron both exhibit immune escape, but while the prevalence of
beta has remained relatively stable in most regions in recent months, limiting its
impact, omicron, which is highly transmissible, has become highly prevalent (65). A risk
remains of future emergence of SARS-CoV-2 variants with both increased immune
escape and greater replicative and transmission fitness. However, there are no estab-
lished criteria to indicate whether vaccine adaptation will be required for new variants.
Furthermore, this may be dependent on the specific vaccine. For variants without
immune escape capability, a vaccine with high efficacy may only require a booster
dose to protect against a new variant, while a lower-efficacy vaccine may require adap-
tation; however, variants with significant immune escape ability are likely to require ad-
aptation for all vaccines. Monitoring of viral mutations by the WHO and international
experts, in combination with early warning systems combining structural and compu-
tational modeling, will continue to have an essential role in the early identification of
high-risk variants as the pandemic continues (46, 184). It is possible that variant-spe-
cific vaccines, such as those adapted to beta, delta, or omicron, may elicit cross-reactive
neutralizing antibody responses that protect against several different variants (172,
185). T-cell responses induced by each vaccine are also likely to have a role.

CONCLUSIONS

Current evidence on COVID-19 vaccine performance against SARS-CoV-2 variants is
reassuring, demonstrating that alpha has a limited impact on effectiveness and that
some vaccine platforms may have the potential to provide at least partial protection
against beta and delta infection, likely due to the high levels of neutralizing antibodies
elicited and the robust and broad nature of the T-cell response elicited by several of
the vaccines. Data from booster vaccination programs suggest that mRNA vaccine
boosters can provide some protection against omicron. In addition, vaccine effective-
ness against severe disease and hospitalization remains high, suggesting that vaccina-
tion has weakened the link between infection and severity of disease. Although vac-
cine adaptation for existing variants may be unnecessary, strategies are in place to
modify vaccines, including different delivery mechanisms, should future emerging var-
iants result in reduced effectiveness. The lower vaccine effectiveness reported against
the omicron variant may also be a result of waning immunity over time, underscoring
the importance of continuing preventative measures to reduce transmission regardless
of vaccination status, as currently recommended by several countries (particularly in
the light of the high transmissibility rate of omicron).

Several data gaps remain to be addressed to fully understand the impact of novel
variants of SARS-CoV-2 on vaccines. For example, correlates of protective efficacy other
than neutralizing antibodies need to be established, the role of other immune effector
functions mediated by antibody binding, and the contributions of T-cell responses to
protective immunity from vaccination over longer periods of time should be ascer-
tained, to better elucidate the potential risks posed by both existing and future
variants.
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