
Qinhuan Luo is a MD candidate student at the School of Medicine, Tsinghua University, Beijing, China. He has a particular interest in bioinformatics and
developmental biology.
Yongzhen Yu is a MD candidate student at the School of Medicine, Tsinghua University, Beijing, China. He has a particular interest in neurobiology and
bioinformatics.
Xun Lan is an assistant professor at the School of Medicine,and the Tsinghua-Peking Center for Life science, MOE Key Laboratory of Bioinformatics, Tsinghua
University, Beijing, China. His expertise is in bioinformatics and tumor immunology.
Received: October 1, 2021. Revised: November 13, 2021. Accepted: November 25, 2021
© The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/license
s/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial
re-use, please contact journals.permissions@oup.com

Briefings in Bioinformatics, 2022, 23, 1–14

https://doi.org/10.1093/bib/bbab547

Problem Solving Protocol

SIGNET: single-cell RNA-seq-based gene
regulatory network prediction using
multiple-layer perceptron bagging
Qinhuan Luo†, Yongzhen Yu† and Xun Lan

Corresponding author: Xun Lan, School of Medicine and the Tsinghua-Peking Center for Life Science, MOE Key Laboratory of Bioinformatics, Tsinghua University,
Beijing, China. E-mail: xlan@tsinghua.edu.cn
†These authors contributed equally to this work.

Abstract

High-throughput single-cell RNA-seq data have provided unprecedented opportunities for deciphering the regulatory interactions
among genes. However, such interactions are complex and often nonlinear or nonmonotonic, which makes their inference using linear
models challenging. We present SIGNET, a deep learning-based framework for capturing complex regulatory relationships between
genes under the assumption that the expression levels of transcription factors participating in gene regulation are strong predictors
of the expression of their target genes. Evaluations based on a variety of real and simulated scRNA-seq datasets showed that SIGNET
is more sensitive to ChIP-seq validated regulatory interactions in different types of cells, particularly rare cells. Therefore, this process
is more effective for various downstream analyses, such as cell clustering and gene regulatory network inference. We demonstrated
that SIGNET is a useful tool for identifying important regulatory modules driving various biological processes.
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Introduction

The regulation of gene expression is crucial to the func-
tion of cellular systems [1]. Most biological processes,
such as the determination of cell fate [2, 3] and the devel-
opment and progression of a disease [4–7], are governed
by complex gene regulatory networks (GRNs). Single-
cell transcriptome profiling yields independent measure-
ments of thousands of cells and thus gives us unprece-
dented opportunities to accurately infer GRNs and hence
identify critical gene regulatory modules among different
cell types, which can help us understand the mecha-
nisms underlying various biological processes [8, 9]. Fur-
thermore, these high-throughput data provide a more
detailed characterization of samples, which makes it
possible to obtain high-resolution transcriptional states
and to dissect transitions among different cell states.

The main difficulty in identifying regulatory inter-
actions among genes using single-cell transcriptomics
lies in the following three aspects: (a) genes display
complex regulatory relationships, such as direct versus
indirect and linear versus nonlinear regulations; (b) it

is challenging to identify the transcriptional states of
rare but crucial cell types, such as progenitor cells in
tissue repair, cancer stem cells in cancer progression, and
regulatory T cells in the tumor microenvironment; and
(c) regulatory relationship predictions using canonical
mathematical models have a relatively high rate of false
positives and are difficult to verify experimentally.

Several computational methods have been widely
used to infer GRNs using single-cell RNA sequencing
(scRNA-seq) data. Such methods can be summarized
into six main categories of models: linear regression [10–
12], differential equations [13, 14], information measures
[15], Bayesian networks [16], Boolean networks [17] and
causal inference [18].

The combination of regulatory sequence analysis with
scRNA-seq data analysis can improve the identification
and characterization of cell states. SCENIC [9] combines
a random forest model used to predict transcription
factor (TF)-gene pairs with regulatory sequence analysis
to simultaneously cluster cells and infer regulatory net-
works. The published studies have demonstrated promis-
ing results, but these methods cannot easily capture the
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Figure 1. Overview of SIGNET for single-cell RNA-seq GRN construction. (A) High-level architecture of SIGNET. The expression profile of each cell is
converted to a binary matrix through the Hodges-Lehmann estimator and then fed into the multiple-layer perceptron model. Potential regulatory
interactions between TFs and target genes are selected by the generalized extreme Studentized Deviate test. RcisTarget then identifies regulons for
which the TF binding motif is significantly enriched across the promoters of target genes and creates regulons containing only direct target genes with
the TF motif in their promoters. Next, AUCell scores the activity of each regulon in each cell. (B, C) Schematic view of the downstream analysis and
visualization of the results. The transcriptional regulatory network can be constructed using selected regulons.

transcriptional regulatory modes of rare cells because
these cells are more likely to be treated as abnormal
background noise compared with other cell types with
large populations.

Deep learning has been widely used in scRNA-seq
data analysis, including dropout imputations [19] and
cell clustering [20], but has rarely been applied to infer
transcriptional regulatory networks. We propose the MLP
framework SIGNET for the identification of regulatory
interactions between TFs and their target genes. In this
framework, a gene can be a target of a TF if the expres-
sion of the TF is a strong predictor of the expression
of the target. SIGNET consists of three independent and
intrinsically connected components (Figure 1A): recogni-
tion of TF-target gene pairs, identification of regulatory
interactions through direct binding and characterization
of TF activity via AUCell scoring, which is also used in

SCENIC. For the recognition of TF-target gene pairs, we
constructed a regression model using MLP and predicted
a series of potential downstream target genes for each
TF using a case-deletion method (see sections Materials
and methods and Results for a detailed description). In
the next step, motif enrichment analysis was applied
to identify putative direct-binding regulatory modules,
hereafter referred to as regulons. In the last step, SIGNET
scores the activity of regulons in each cell using the
AUCell algorithm for cell clustering.

To evaluate the performance of SIGNET, the algorithm
was applied to three scRNA-seq datasets, and SIGNET
yielded more accurate and compact cell clustering
than other widely used software programs. We also
cross-validated our computational results with pub-
licly available ChIP-seq datasets and showed that
SIGNET exhibits increased sensitivity in identifying cell
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type-specific regulons than SCENIC. Besides. regulons
in immune cells identified by SIGNET using TCGA data
are significantly associated with the survival of patients.
Moreover, our results demonstrated that SIGNET is
capable of recognizing characteristic regulons in rare
cells and thus improves the opportunity to identify
essential rare cell types in a cell population, which is
one of the main goals of using single-cell technologies.

Materials and methods
SIGNET workflow
The SIGNET method mainly consists of three different
parts (Figure 1A): (i) Multiple fully connected MLP aiming
to extract information about the relationship between
TFs and non-TFs or downstream targets, each MLP model
corresponds to the prediction of a selected feature gene;
(ii) the RcisTarget package for identifying whether the TFs
can truly combine with the motif of the target genes or
the so-called regulons based on motif enrichment scores
and (iii) AUCell for evaluating the relative activity of the
regulons in each sample of the scRNA-seq data and for
drawing conclusions based on the AUC score matrix.

First, we trained a fully connected multiple-layer per-
ceptron (MLP) [21] using the expression of all of the TFs to
predict the expression of one gene at a time. We assumed
that the expression of every gene in a cell can be modeled
as a function of the expression levels of the TFs and
if a TF exerts a strong regulatory effect on a gene, its
removal from the input features would have an obvious
impact on the accuracy of predicting the expression level
of this gene. Then, we tested the existence of a significant
regulatory effect between a TF and a gene using a case-
deletion method; during this step, the expression value
of each TF was set to 0 one at a time, and the new binary
matrix is used as the input to predict the expression of
the gene of interest using the pretrained model.

After traversing the entire transcription factor list
using the above method, we obtained an accuracy curve
for predicting a single target feature gene. By repeating
the above process for all feature genes, multiple MLPs
along with the accuracy curves as many as the number
of feature genes were generated. Next, we introduced
the generalized extreme Studentized deviate test (gESD
test) [22] for outliers screening (α = 0.05) to identify TFs
that have a strong influence on the prediction of gene
expression. By traversing the feature gene list, SIGNET
generates a series of candidate regulatory modules that
consist of a TF and its potential downstream target genes.

Secondly, we applied RcisTarget [23] to verify and filter
out the TF-target gene regulons. Using the motif dataset,
motif annotation and gene set as the inputs, RcisTarget
calculates the enrichment score of a TF motif in the
promoter regions of the target gene set and thus evalu-
ates the regulatory potential of a TF on the target genes.
Only modules with a rather high enrichment score were
retained for further analysis and we called these modules
regulons.

Finally, AUCell [24]was used to quantify the activity of
regulons in each cell sample. It uses gene sets of interest
as input and converts the expression matrix of genes in
the cells to the AUC matrix of the regulatory activities of
each TF in each cell. The AUC matrix was used to clas-
sify the cells and perform further analyses (Figure 1B).
Furthermore, the regulon list is a useful resource for the
reconstruction and exploration of GRNs (Figure 1C).

Data preprocessing
Prior to MLP training, the raw scRNA-seq data need to
be preprocessed, i.e., through gene filtering and binariza-
tion. First, to focus on the difference among cell popula-
tions, we only used highly variable feature genes for infer-
ring GRNs using the mean expression and divergence of
genes to filter 5000–7000 genes. We filtered those genes
with significantly differential expression for information
extraction using the Scanpy [25] or Seurat packages with
a common protocol to focus on the most important infor-
mation and to reduce the influence of random noise. In
general, we filtered 5000–7000 feature genes for the sub-
sequent training. Second, we used the Hodges-Lehmann
estimator (HLE) for binarization. Assuming K cells and L
filtered genes, which consist of M TF genes and N NTF
genes, i.e., L = M + N, the count matrix can be written as
follows:

C = [C1 C2] =

⎡
⎢⎢⎣

c11 · · · c1M c1,M+1 · · · c1,M+N
...

. . .
...

...
. . .

...
cK1 · · · cKM cK,M+1 · · · cK,M+N

⎤
⎥⎥⎦

K×L

,

C1 = (1)
⎡
⎢⎢⎣

c11 · · · c1M
...

. . .
...

cK1 · · · cKM

⎤
⎥⎥⎦

K×M

, C2 =

⎡
⎢⎢⎣

c1,M+1 · · · c1,M+N
...

. . .
...

cK,M+1 · · · cK,M+N

⎤
⎥⎥⎦

K×N

.

The Hodges-Lehmann estimator for the median of the
known data is calculated as follows:

HLE = med
i,j∈{1,...n}

xi + xj

2
(2)

For any column l ∈ {
1, . . . , L

}
of the count matrix C, the

threshold is set to the HLE, i.e.,

Tl = med
i,j∈{1,...K}

cil + cjl

2
(3)

We can then turn the count matrix C into the binary
matrix B by setting all elements of the column with
values larger and lower than the threshold to 1 and 0,
respectively:

B = (
bkl

)
K×L, bkl = I {ckl ≥ Tl} . (4)
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Prediction of the relationship between genes
After obtaining the binary matrix, this matrix can be
used for MLP training and feature extraction. We used
the binarized expression of all TF genes as the input to
predict the expression of NTFs one at a time using the
MLP model. For all experiments, the three-layered fully
connected MLP with the ReLU activation function [26]
was used. Assume the number of nodes in each layer is
li
(
i = 1, 2, 3

)
and we have the following formula:

l1 = NF, l2 = min
i

{
2i|2i >

2
5

l1

}
, l3 = 1

4
l2, (5)

where NF is the number of filtered differentially
expressed transcription factors. The number of nodes
in the first layer equals to NF. The amount of nodes in
the second layer is set as the smallest power of 2, which
is not less than 0.4 times of l1. And the third layer uses
a quarter node of l2. Since the predicted result can be
either 0 or 1, we selected the cross-entropy function as
the loss function for measuring the accuracy of model
training. In addition, L1 regularization was also used for
sparse parameter estimation. Thus, the loss function has
the following shape:

l = −
∑T

i=1
pilogqi + λ ||ωi||1 , (6)

where pi is the true label, qi is the predicted label, λ is the
weight of L1 regularization, ωi is the weight of each link
between nodes and T is the size of training samples.

For the actual training process, the stochastic opti-
mization algorithm with momentum [27] was chosen for
optimal solution searching with a learning rate of 0.01.
However, during the training process, we found that the
columns of the binary matrix may possess an unbal-
anced distribution of positive and negative cases, namely,
1 and 0, which could lead to rather poor model perfor-
mance. To correct the bias and not harm the structure of
the primary data, we used bootstrapping to generate new
columns with a ratio not less than 1:5 for the positive and
negative cases. We separated the dataset into training
and testing sets based on a ratio of 7:3 for overfitting
control.

When predicting the expression of TF genes, we
changed the expression value of a specific gene to 0 and
used the expression value of all other TF genes as input,
and the other processes remained unchanged.

Screening of potential coexpression gene pairs
Once we obtained the prediction model between all genes
and one specific target gene, we questioned which TFs in
the gene pool have a strong influence on the target gene.
Thus, we introduced the case-deletion method, which
conveys the primary data to the case-deleted data, i.e.,
the expression of a TF was set to 0 one at a time, and such
data were used as the input to predict the expression
state of the specific target gene. Mathematically, we can

assume that fn : DL → D is a prediction function from all
gene spaces to the nth targeted gene space; in this equa-
tion, D = {

0, 1
}
, n ∈ {

1, . . . , N
}
. In addition, ∀m ∈ {

1 . . . , M
}
,

and the mth case-deleted matrix can be calculated as
follows:

Bm = (7)
⎡
⎢⎢⎣

b11 . . . b1,m−1 0 b1,m+1 . . . b1,M . . . b1L
...

...
...

...
...

...
bK1 . . . bK,m−1 0 bK,m+1 . . . bK,M . . . bKL

⎤
⎥⎥⎦

K×L

Subsequently, fn(Bm) is the prediction of the nth target
gene after erasing the effect of the mth TF gene. We then
define the accuracy of the prediction by running over the
whole dataset as follows:

ACCmn = 1 − 1
K

∣∣∣∣fn (Bm) − bM+n
∣∣∣∣

0, (8)

where bM+n is the
(
M + n

)
th column of matrix B, i.e., the

true label of the nth target gene and ||·||0 calculates the
number of non-zero entries of the vector. In addition,
the accuracy matrix is ACC = (

ACCmn
)

M×N. We argue
that for a specific target gene, if the predicted accuracy
exhibits an obvious oscillation once we set a TF to 0, then
it would be highly likely that this TF has some strong
influence on the target gene. To screen for such TFs with
statistical significance, we refer to the outlier analysis
and use the generalized extreme Studentized deviate test
(gESD test). Given the upper bound r, gESD performs r
separate Grubbs tests and can detect no more than r
outliers. The following hypothesis test can be considered:

H0 :
{
There are no outliers in the dataset.

}

H1 :
{
There are up to r outliers in the dataset.

}

For the ith calculation, the R statistic is calculated as
follows:

Ri =
max

i
| xi − x |
s

(9)

where x and s are the mean and standard deviation of the
sample with deletion of the i − 1 outliers. We then have
the r test statistics R1, . . . , Rr. Corresponding to the r test
statistics, the critical values are calculated as

λi =
(
n − i

)
tp

(
n − i − 1

)
√(

n − i + 1
) (

n − i − 1 + t2
p

(
n − i − 1

)) , i = 1, . . . , r

(10)
where tp(v) is the 100p percentage point of the t distri-
bution with v degrees of freedom and p = 1 − α

2
(

n−i+1
) .

The number of outliers is the largest i such that Ri > λi.
In practice, r could change from 30 to 80, which implies
how many feature transcription factors could regulate
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the target gene, and α is usually set to 0.05 for identifying
the potential related TF-NTF copairs, which are ready
for RcisTarget trans-screening and ultimately AUCell
scoring.

Cluster validation
There are mainly two categories of clustering validation,
i.e., internal clustering validation and external clustering
validation. The main difference between the two cat-
egories is that the external indexes use the true label
for comparison and the internal indexes focus on the
dataset itself. Among the hundreds of clustering valida-
tion methods, we selected some widely used indexes that
consider both internal and external validation for ref-
erence. For internal clustering validation, compactness
and separateness are two essential qualities of cluster-
ing goodness, and we prefer to obtain clustering results
with less compactness within clusters and larger sepa-
rateness between different clusters. Thus, we used the
root-mean-square standard deviation (RMSSTD) to mea-
sure compactness and the modified Hubert � statis-
tic to measure separateness [28]. In external clustering
validation, to match the ground truth, three categories
of indexes, namely, pair-counting, information theoretic
and set-matching measures, are often used. In prac-
tice, we used the adjusted rand index (ARI), normalized
mutual information (NMI), F score, normalized Van Don-
gen (NVD) and pair sets index (PSI) [29].

Survival analysis of clinical data
We used the GEPIA2 (http://gepia2.cancer-pku.cn/#survi
val) online analysis tool for the survival analysis. By
uploading the gene list regulated by the regulon or the
single regulon gene, Kaplan–Meier curves were plotted,
and the log-rank test was used to compare the survival
curves of the high and low regulon expression groups.
Moreover, we used CD163, which is considered an impor-
tant macrophage marker, as the denominator for the nor-
malization of all the other genes to remove the influence
of the number of macrophages.

Results
Accurate single cell classification using SIGNET
To evaluate the performance of SIGNET on a clustering
analysis, we collected three scRNA-seq datasets from
GEO (https://www.ncbi.nlm.nih.gov/geo/), including data
from the cerebral cortex of mouse (GSE60361, 3005 sin-
gle cells from 33 males and 34 females [30]), human
skin cutaneous melanoma (SKCM, GSE115978, 7186 sin-
gle cells from 31 melanoma tumors [31]) and head and
neck squamous cell carcinoma (HNSCC, GSE103322, 5902
single cells from 18 patients with oral cavity tumors [32]).
In addition to SCENIC, we utilized the widely used Seurat
package [33] for cell clustering comparison.

We used the AUC matrix (SCENIC or SIGNET) and the
first n PCA components of the data matrix (Seurat) as the

input for UMAP dimension reduction and 2D visualiza-
tion. The best n PCA components used in Seurat were
selected based on the Elbow plot (Figure S1). Because
neither SCENIC nor SIGNET provided a method for cell
clustering, hierarchical clustering with average linkage
was used, and the integrated pipeline was used for Seu-
rat (see section Materials and methods). For Seurat, we
extracted various numbers of highly variable genes for
downstream clustering, including 2000, 5000, 7000 and
9000, hereafter referred to as Seurat 2 k, 5 k, 7 k and 9 k
(Figure 2A, C, E and Figure S1).

For the brain dataset, the UMAP results obtained with
SCENIC and SIGNET were more compact than those
obtained with Seurat 5 k and Seurat 7 k. Although Seurat
2 k shares similar compactness with the former two
methods, pyramidal CA1 cells were spread out in many
different clusters, similar to the results obtained with
SCENIC (Figure 2A). To measure the performance of the
clustering results, we used five different metrics, namely,
the F score, CSI, PSI, ARI and NMI (see section Materi-
als and methods for a detailed description of the met-
rics). All five metrics consistently demonstrated that
SIGNET achieved the best performance in cell clustering
(Figure 2B).

For cancer types that are less characterized or have
strong heterogeneity, an important task in dissecting
scRNA-seq data of such tumor tissues is the identifica-
tion of tumor cells in the cell population. Therefore, we
want to obtain a more compact classification of tumor
cells such that the heterogeneous tumor cell populations
can be grouped closer to each other and can be easily
identified. Thus, for the SKCM and HNSCC datasets, we
separated the tumor cells from other cells and compared
the classification results for tumor cells (Figure S2). We
assessed the results using two internal clustering valida-
tion indexes, such as RMSSTD and MHG, which are two
indexes representing the compactness and separateness
of the classification. Lower compactness and separate-
ness indexes indicate better information contraction and
less heterogeneity within the same cell types. These two
indexes indeed showed that SIGNET exhibited better per-
formance than the other methods with both the SKCM
and HNSCC datasets (Figure 2D and F).

SIGNET identifies cell-specific transcription
factors and constructs a regulatory network
with functional significance
The main goal of SIGNET is to identify cell type-
specific regulons with high sensitivity and specificity,
which improves downstream analyses for discovering
new biological mechanisms. We used the head and
neck squamous cell carcinoma (HNSCC) dataset to
illustrate the performance of SIGNET in recognizing
crucial cell-specific regulons and in cell clustering
(Figures 2A, C, E and 3A).

SIGNET revealed that two regulons, GATA1 and GATA2,
have high AUCell scores exclusively in mast cells,
consistent with previous findings that GATA1 and GATA2

http://gepia2.cancer-pku.cn/#survival
http://gepia2.cancer-pku.cn/#survival
https://www.ncbi.nlm.nih.gov/geo/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab547#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab547#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab547#supplementary-data


6 | Luo et al.

Figure 2. SIGNET yields more accurate and compact cell classification results with three scRNA-seq datasets. (A) UMAP plots of the mouse brain
scRNA-seq data obtained with SIGNET, SCENIC, and Seurat 2 k. (B) Five external clustering validations (F score, CSI, PSI, ARI and NMI) were used to
indicate the performance and robustness of the three methods with the mouse brain dataset. (C, E) UMAP plots of the results obtained with SIGNET,
SCENIC, and Seurat 2 k using the SKCM and HNSCC scRNA-seq data. (D, F) Two internal clustering validations (RMSSTD and MHG) were used to
measure the performance of the methods with respect to tumor cell classification in SKCM and HNSCC datasets. RMSSTD estimates the compactness
of the classification results, whereas MHG estimates the separateness of the classification results. Smaller values of these two indexes indicate better
information contraction and less heterogeneity within the classification results. Note: ‘?’ & ‘-Fibroblast’ are labels appeared in the data files provided
by the original studies.

are important regulators in mast cells (Figure 3A). The
TFs GATA1 and GATA2 are fundamental regulators
of hematopoiesis. GATA1 represses the expression of
GATA2, and switching the GATA factors from GATA2
to GATA1 is a core mechanism underlying cell fate
transitions [34]. Our results revealed that the regulatory
networks of the GATA1 and GATA2 regulons exhibited a
high degree of overlap (Figure 3E) and that GATA2 was
regulated by GATA1, which indicates that both GATA1
and GATA2 participate in similar biological processes,
consistent with the reported functions of the two TFs
[35]. Furthermore, three known oncogenes, AP-1 (FOS
and FOSL1) and c-MYC [36, 37], were found to be
significantly more active in tumor cells than in other
cells (Figures 3A and S3).

To validate the predicted regulons, we cross-verified
our computational results with publicly available ChIP-
seq datasets [38]. For each regulon, we calculated the
number of overlaps between the target genes of the
TF predicted with SIGNET or SCENIC and the target
genes identified using ChIP-seq data (Figure 3C). The
results showed that SIGNET exhibits increased sensitiv-
ity in identifying ChIP-seq-verified target genes of a TF
compared with SCENIC. In addition to the significantly

higher sensitivity of SIGNET, its specificity (a proportion
of the predicted target genes that were verified by ChIP-
seq data) was slightly lower or comparable to that of
SCENIC (Figure 3C). We found that the proportion of
some TFs was low, which may be due to the fact that
the ChIP-seq data of these TFs was markedly lower or
that the binding site of TFs regulating gene expression
was not within 10-kb upstream or downstream of the
transcription start site (TSS) of the gene.

Our method also includes utilities to construct
and visualize transcription regulatory networks. By
constructing a network using predicted genes regulated
by FOSL1, FOS and c-MYC (Figure 3D), we found three
regulatory patterns: genes regulated by one, two and
three regulons. Many of the 24 genes regulated by three
regulators reportedly play important roles in multiple
tumor-related biological processes. For example, claudin-
4 (CLDN4) is expressed at a high level in tumor cells of
several cancer types and is also a potential treatment
target in HNSCC [39]. ARL14, IER3, LAMB3, OVOL1,
PRDX1 and PTHLH also have higher expression levels
in tumor cells and reportedly participate in tumor
invasion, epithelial-mesenchymal transition, and tumor
proliferation and metastasis [40–53].

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab547#supplementary-data
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Figure 3. SIGNET shows higher sensitivity in identifying functionally relevant regulons. (A) Heatmaps of the results obtained with the head and neck
squamous cell carcinoma (HNSC) dataset and of the activities of each regulon in each cell generated by SIGNET. The red color represents active regulons
with high AUC scores. The red box highlights that GATA1 and GATA2 are more active in mast cells than other types of cells, whereas the blue box indicates
the important regulators in tumor cells, including FOSL1, MYC and FOS. (B) In each of the UMAP plots, the cells are colored according to the regulon
activity measured by the AUCell score of the indicated TF. (C) Cross-validation with publicly available ChIP-seq datasets. The right panel shows the
absolute number of predicted target genes that can be validated using ChIP-seq data. The left panel shows the proportion of the predicted target genes
that were validated using ChIP-seq data. (D, E) Transcription regulatory network constructed using the regulons predicted by SIGNET.

SIGNET reveals that regulon activities in
macrophages are associated with patient
survival
Based on a single-cell RNA-seq dataset from
human skin cutaneous melanoma (SKCM), many of

the regulons specifically activated in macrophages
reportedly have important functions in macrophages
(Figure 4A). For example, IRF4 is known to control the M2
polarization of macrophages and thus contributes to the
IL-4-dependent induction of a set of M2-specific marker
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genes [54]. Tumor-associated macrophages (TAMs)
infiltrate tumor tissues and are major regulators of the
tumor immune microenvironment [55]. We speculate
that these active regulons in macrophages may have a
significant impact on the tumor microenvironment and
may thus affect the survival of cancer patients.

To test this hypothesis, we split the clinical samples in
the TCGA melanoma cohort according to the expression
levels of genes in a regulon and performed a survival
analysis of the two groups of patients with distinct reg-
ulon activity [56] (see section Materials and methods).
We used the expression level of CD163, a well-known
marker for macrophages [57, 58], as an internal control
for the variations in the proportions of macrophages in
different samples. The survival analyses showed that the
expression levels of both the TF and its target genes were
significantly associated with patient survival (Figure 4B).
Meanwhile, we also used several macrophage markers
provided in other article [59] as an internal control for
the macrophage, the result is consistent with the above
(Figure S5). Cross-validation of the regulons identified by
SCENIC and SIGNET using publicly available ChIP-seq
data was performed as in Part III (Figure 4C). SIGNET
showed higher sensitivity for identifying the target genes
of TFs in each regulon than SCENIC, which indicates that
SIGNET can capture more regulatory information from
the same dataset than SCENIC.

Moreover, the transcription regulatory network con-
structed using the identified regulons exhibited several
interesting features. MYB and GOLGA7B are both
regulated by the largest number of TFs (three regulators
shown in Figure 4D), and both of these genes exerted
a significant prognostic effect in the SKCM cohort from
TCGA (Figures 4d and S4). MYB is expressed in immature
hematopoietic cells at key stages during hematopoiesis
and plays a dual role by simultaneously stimulating
the proliferation and differentiation of monocytes [60].
Furthermore, SIGNET identified 31 genes regulated by
two TFs (shown in Figure 4D). Among these genes,
colony-stimulating factor 1 receptor (CSF1R) is known
as an M2 macrophage marker and controls the pro-
liferation, differentiation and survival of macrophages
[61]. cAMP-responsive element modulator (CREM) is
expressed at higher levels in M2 macrophages than in M1
macrophages [62]. Mitochondrial glycerol 3-phosphate
dehydrogenase (GPD2) regulates glucose oxidation to
drive inflammatory responses in macrophages [63],
and tumor necrosis factor receptor-associated factor
1 (TRAF1) is involved in the regulation of macrophage
polarization, as demonstrated by a TMT-labeled quan-
titative proteomics analysis [64]. In conclusion, our
method shows increased sensitivity in identifying
regulons that are functionally important based on single-
cell RNA-seq data, and genes that appear in multiple
regulons can be prioritized for subsequent mechanistic
study.

SIGNET is sensitive to clusters with small
cell counts
The study of rare cells is crucial for improving the under-
standing of various biological processes as well as for
the advancement of medical diagnostics and therapeu-
tics [65], for example, circulating tumor cells in early
tumor detection [66, 67], circulating endothelial cells
and their precursors in immune disease diagnosis [68]
and invariant natural killer T cells recognizing self and
foreign lipids [69, 70]. Therefore, we sought to examine
whether our method can identify rare cell clusters and
capture the characteristic regulons of such cells. We
showed that SIGNET accurately clustered 19 myocytes
among the 5902 cells in the HNSCC dataset as a separate
group and identified three active regulons in myocytes,
namely, MYF6, MYF5 and MYOG (Figure S3). MYF5 and
MYF6 belong to the MYOD family of myogenic TFs [71],
which are essential in myogenic lineage determination
and muscle differentiation [72, 73]. MYOG is another cru-
cial myogenic regulatory factor that regulates the level
and duration of skeletal muscle development [74, 75].
In contrast, SCENIC clustered myocytes and fibroblasts
together as one group and identified one regulon in this
group (MYF5, Figure 5B).

To further verify the robustness of our method in
identifying regulons in rare cells, we downsampled the
number of microglial cells to 20 in mouse brain single-
cell data without changing the other cells. Although
the downsampling of the input deteriorated the perfor-
mances of both SIGNET and SCENIC, the cell clustering
results obtained with our method were relatively supe-
rior to those obtained with SCENIC (Figure 5C). SIGNET
also captured several microglia-specific TF regulons,
such as Irf1, Irf5, Irf8 and Maff (Figures 5D and S6). Irf1,
Irf5 and Irf8 are central transcriptional regulators of type
I interferon production and are important for both innate
and adaptive immune responses [76]. These TFs are also
reportedly involved in the development, maturation and
polarization of macrophages [77]. We note that different
parameter choices are available in SCENIC. Here, we
chose the parameters with the best performance, and
the results obtained using suboptimal parameters are
included in the supplementary figure (Figure S6).

To focus on the differentially activated TFs, SIGNET
used highly variable feature genes and TFs to infer
GRNs, whereas SCENIC used all genes as input. The total
number of regulons identified by SIGNET was lower than
that identified by SCENIC due to the decreased number
of TFs being tested; however, as shown in the previous
sections, SIGNET detected more ChIP-seq validated TF-
target gene pairs for each regulon (Figures 3C and 4C).
Moreover, when using the highly variable feature genes
utilized in SIGNET as input for SCENIC, the total numbers
of regulons detected by SCENIC in all cell types included
in the mouse brain data decreased from 286 to 39
(Figure 5E). Additionally, the use of only the feature genes

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab547#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab547#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab547#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab547#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab547#supplementary-data
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Figure 4. SIGNET identifies macrophage-specific regulons associated with patient survival. (A) Heatmap obtained with the human skin cutaneous
melanoma (SKCM) dataset. The mean activity of each regulon for each cell type was generated from the SIGNET AUC distribution and plotted as a heat
map, and red blocks represent cells that are ‘active’. (B) Survival analysis based on the transcription factors and their target genes in each regulon using
the SKCM cohort in TCGA. (C) Cross-validation with publicly available ChIP-seq data (ref). The top bar graph shows the absolute predicted gene number
calculated by SIGNET/SCENIC, and the bottom bar graph shows the ratio of the number of genes predicted by SIGNET/SCENIC methods and recorded
in public ChIP-seq to the number of predicted genes. (D) Transcription regulatory network constructed based on the results predicted by SIGNET using
regulons with high activity in macrophages.

as input significantly deteriorated the classification
results obtained with SCENIC (Figure 5E). Furthermore,
the number of regulons identified by SCENIC using
all the genes and downsampled data decreased to
43 from 286 regulons detected with the original data

without downsampling, and the number of microglial
cells decreased to 20. In addition, 37 regulons were
detected using downsampled cells and highly variable
genes as the input (Figure 5F). The number of regulons
predicted by SIGNET slightly decreased from 85 with
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Figure 5. SIGNET identifies characteristic regulons for rare cell types. (A) SIGNET UMAP plot obtained with the HNSC dataset. The cells are colored
according to the regulon activity of MYOG and MYF6. (B) In both the SIGNET and SCENIC UMAP plots obtained with the HNSC dataset, myocytes are
marked in black, and the other cells are shown in gray. (C) In the SIGNET and SCENIC UMAP plots obtained using the mouse brain dataset with only
20 microglia, the cells are colored according to their true labels. (D) In each SIGNET UMAP plot obtained using the mouse brain dataset with only 20
microglia, the cells are colored according to the regulon activity of Irf1, Irf5, Irf8, and Maff, which are well-known transcription factors in macrophages.
(E) The left panel shows the SCENIC UMAP plot of the mouse brain dataset. The highly variable genes used by SIGNET served as the input features, and
the cells are colored according to their true labels. The right panel shows the number of regulons identified by the indicated methods and inputs. (F)
The left panel shows a SCENIC UMAP plot obtained with the mouse brain dataset after the number of microglia was downsampled to 20. The highly
variable genes used by SIGNET served as the input features for SCENIC, and the cells are colored according to their true labels. The right panel shows
the number of regulons identified using the indicated methods and inputs. (G) Five external clustering validations (F score, CSI, PSI, ARI and NMI) were
used to indicate the performance and robustness of the SIGNET and SCENIC with the mouse brain data and downsampled data. The ‘full’ means using
all genes as input while ‘var’ means only using variable feature genes as input. When only using variable feature genes as input, the performances of
SCENIC under two different parameters (‘top5perTarget’ or ‘top10perTarget’) are relatively close, so we show both the result, while we only show the
better one result from SCENIC using all gene as input here.

the original data to 83 with the downsampled data
(Figure 5E). The deterioration of the performance of
SCENIC may have been obtained because the few
microglial cells in the downsampled cluster that were
regarded as noise affected the computation of the entire
dataset. These results demonstrate that our method
is more robust to background noise because the gene
regulatory information captured from downsampled
data was roughly equivalent to that obtained with the
original data, and better classification was also obtained.

The resampling process during the first step in our
method (Figure 1A) makes the number of negative cases
less than five times that of positive cases, which ensures
not only that our method is not only more sensitive to

these cell clusters with small numbers and thus that our
method can capture the characteristics of clusters with
small numbers but also that these small data clusters
will not have a greater impact on the data computation
of other clusters.

Discussion
Inspired by the great success achieved with deep learning
in cell clustering and dropout imputation of scRNA-seq
data, we applied deep learning to the inference of GRNs
using scRNA-seq. Single-cell RNA-seq-based Gene Reg-
ulatory Network Prediction using a Multiple-Layer Per-
ceptron Bagging (SIGNET) converts the expression matrix
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of single-cell RNA-seq data to a binary matrix of gene
activity and feeds it to the MLP, and the trained MLP
identifies the regulatory effect of a TF on its target gene
by deleting the TF from the input features when predict-
ing the expression of a gene. If removal of a TF leads
to an obvious fluctuation in the prediction accuracy of
the expression of a gene, the gene is identified as a
regulatory target of the TF. A TF with all its identified
target genes was called a regulon. The identified reg-
ulons were subsequently filtered by motif enrichment
analysis. We assessed the performance of SIGNET in the
clustering of cells using three publicly available scRNA-
seq datasets and verified the biological significance of
the regulon identification results through survival anal-
ysis of TCGA datasets and cross-validations with ChIP-
seq data. We provide compelling evidence showing that
SIGNET exhibits increased sensitivity in identifying func-
tional regulons and in clustering rare cell types. In addi-
tion, SIGNET also provides utilities for the construction
and visualization of GRNs to facilitate downstream anal-
ysis.

We mainly attribute the information extracting ability
and high sensitivity of SIGNET to three aspects: the use
of the MLP model, application of the bootstrap process
before model training and the pruning step using Rcis-
Target.

First, the MLP can capture complex regulatory rela-
tionships and is therefore capable of detecting more TF-
target interactions. For each regulon, SIGNET identified
more ChIP-seq-validated target genes, which suggests
that our method exhibits increased sensitivity in identi-
fying regulatory interactions between a TF and its target
genes than SCENIC.

Second, the bootstrap step adjusts the ratio between
positive and negative cases, that is, adjusts the ratio
of samples with expression values of 1 to those with
values of 0, prior to training the MLP model to ensure
that our method is sensitive to the sparse and under-
represented cell populations in scRNA-seq data. A large
number of primary samples contain far more negative
cases than positive cases, which can introduce severe
biases on model prediction, particularly if the predicted
gene is expressed in a low number of cells. Thus, by giving
the positive samples a larger weight, we reduced the
sampling bias and captured the characteristic regulons
of rare cells.

Finally, by adjusting the threshold of motif enrichment
score, we can further filter the background noise in the
potential regulons. For small dataset, we tend to increase
the threshold to ensure that the predicted relationships
between transcription factors and downstream genes are
reliable. However, for large or heterogeneous dataset, the
threshold should be reduced, since transcription factors
usually are cell-specific and regulate by various motifs in
different cell populations.

To test the performance of SIGNET on large dataset, we
ran SIGNET on single cell data of 20 organs and tissues
from mice (GSE109774, 53 760 cells from four male and

three female mice [78]) and we obtained 84 regulons.
Though there are more than 80 cell types in this dataset,
the UMAP result based on the AUC matrix of the selected
regulons still shows clear clusters (Figure S7A). Consid-
ering this dataset contains cells from multiple mice and
is quite heterogeneous, this result demonstrates that the
ability of SIGNET to extract regulatory information from
noisy background and the algorithm is robust.

Higher sensitivity almost always leads to reduced
specificity. Setting appropriate parameters for filtering
the regulons can make the downstream analyses more
accurate. There is still room for improving SIGNET. Using
time series data, several methods, such as RNA velocity
[79], can predict the expression of a target gene at the
next moment based on the expression of a TF at the
previous moment. In addition, other methods integrate
scRNA-seq data with ChIP-seq or ATAC-seq data for
GRN inference recently. DeepSEM [80] combines deep
learning with SEM algorithm and construct the GRN
using both scRNA-seq and ChIP-seq data. LISA [81]
mainly focus on using ChIP-seq data to filter important
regulons for various cell populations. MAESTRO [82]
processes RNA-seq and ATAC-seq data and shows
promising performance. Future work to integrate multi-
omics information to our model would improve the
performance of the model and provide further insights
into biological processes of interest.

Key Points

• SIGNET is among the first methods to infer gene
regulatory networks from single-cell transcrip-
tomic data using a deep learning-based frame-
work.

• SIGNET achieved more compact and accurate
cell classification than widely used methods,
such as SCENIC and Seurat.

• SIGNET is sensitive to important regulatory mod-
ules during various biological processes, espe-
cially in rare cells, where new biology is more
likely to be discovered with single-cell data.

Supplementary data
Supplementary data are available online at https://acade
mic.oup.com/bib.

Data availability
The scRNA-seq datasets used in the current study can
be found in NCBI’s Gene Expression Omnibus and are
accessible through the following GEO accession number:
GSE60361, GSE115978, GSE103322 and GSE109774. The
full TF list used in the model training can be found on the
GitHub of pySCENIC (https://github.com/aertslab/pySCE
NIC/tree/master/resources). The ChIP-seq datasets can
be accessible through link http://chip-atlas.org/. The

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab547#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab547#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://github.com/aertslab/pySCENIC/tree/master/resources
https://github.com/aertslab/pySCENIC/tree/master/resources
http://chip-atlas.org/
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online survival analysis toolbox of tumor cells can be
found on http://gepia2.cancer-pku.cn/#index.

Code availability
Source codes implemented can be found at https://githu
b.com/Lan-lab/SIGNET.
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