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ABSTRACT

Objective: Accurate electronic phenotyping is essential to support collaborative observational research. Super-

vised machine learning methods can be used to train phenotype classifiers in a high-throughput manner using

imperfectly labeled data. We developed 10 phenotype classifiers using this approach and evaluated perfor-

mance across multiple sites within the Observational Health Data Sciences and Informatics (OHDSI) network.

Materials and Methods: We constructed classifiers using the Automated PHenotype Routine for Observational

Definition, Identification, Training and Evaluation (APHRODITE) R-package, an open-source framework for

learning phenotype classifiers using datasets in the Observational Medical Outcomes Partnership Common

Data Model. We labeled training data based on the presence of multiple mentions of disease-specific codes.

Performance was evaluated on cohorts derived using rule-based definitions and real-world disease prevalence.

Classifiers were developed and evaluated across 3 medical centers, including 1 international site.

Results: Compared to the multiple mentions labeling heuristic, classifiers showed a mean recall boost of 0.43

with a mean precision loss of 0.17. Performance decreased slightly when classifiers were shared across medical

centers, with mean recall and precision decreasing by 0.08 and 0.01, respectively, at a site within the USA, and

by 0.18 and 0.10, respectively, at an international site.

Discussion and Conclusion: We demonstrate a high-throughput pipeline for constructing and sharing pheno-

type classifiers across sites within the OHDSI network using APHRODITE. Classifiers exhibit good portability be-

tween sites within the USA, however limited portability internationally, indicating that classifier generalizability

may have geographic limitations, and, consequently, sharing the classifier-building recipe, rather than the pre-

trained classifiers, may be more useful for facilitating collaborative observational research.
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INTRODUCTION

Electronic phenotyping refers to the task of identifying patients

within an electronic health record (EHR) who match a defined

clinical profile.1 Accurate phenotyping is critical to support

observational research, pragmatic clinical trials, quality improve-

ment evaluations, and clinical decision support systems.2,3 However,

issues such as missingness, accuracy, and heterogeneity in EHR data

present major challenges to effective phenotyping.4
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The traditional approach to phenotyping has been rule-based,

where a cohort is manually defined with inclusion and exclusion cri-

teria based on structured data, such as diagnosis codes, laboratory

results, and medications.5 Although several collaborative networks

exist for generating and sharing rule-based definitions, including the

Phenotype Knowledge Base (PheKB), Phenotype Execution and

Modeling Architecture (PheMA), and CALIBER,6–8 these pheno-

types are typically too labor-intensive to create and require multiple

rounds of review by domain experts.9

Recent efforts to establish common data models for EHRs, in-

cluding the Observational Health Data Sciences and Informatics

(OHDSI)10 and the Informatics for Integrating Biology and the Bed-

side initiatives,11 are enabling large-scale observational research and

algorithm deployment across sites. To make use of this infrastruc-

ture, we need the ability to generate complex, generalizable pheno-

types rapidly.3,12

Supervised machine learning has emerged as a way to generate

phenotypes in a high-throughput manner.1 By incorporating a wide

range of EHR features, statistical methods have shown robust per-

formance for complex phenotypes including chronic pain and rheu-

matoid arthritis13,14 with some evidence to indicate portability

(preserved classification accuracy) across sites.15 The major bottle-

neck for supervised machine learning is access to labeled training

data, which traditionally requires manual chart review by clinicians.

To address the scarcity of labeled training data, Chen et al used

active learning to intelligently select training samples for labeling,

demonstrating that classifier performance could be preserved with

fewer samples.16 Another trend is the use of “silver standard train-

ing sets,” a semisupervised approach where training samples are la-

beled using an imperfect heuristic rather than by manual review.17–

22 The intuition is that noise-tolerant classifiers trained on imper-

fectly labeled data will abstract higher order properties of the pheno-

type beyond the original labeling heuristic (so-called “noise-tolerant

learning”23). Halpern et al have described the anchor learning

framework where the presence of “anchor” references, which are

highly predictive of a phenotype and are conditionally independent

of other features (ie, best predicted by the phenotype itself), are used

to define an imperfect training cohort for phenotype classifiers.19

Similarly, Agarwal et al developed the XPRESS (eXtraction of Phe-

notypes from Records using Silver Standards) pipeline, where noisy

training samples are defined based on highly specific keyword men-

tions in a patient’s EHR.17 This led to the development of the APH-

RODITE R-package, an open-source implementation of the

XPRESS framework with dynamic anchor learning built on the

OHDSI common data model, which has shown comparable perfor-

mance to rule-based definitions for 2 phenotypes (type 2 diabetes

and myocardial infarction).24

The current work addresses 2 questions resulting from the use of

APHRODITE. The first is about the labeling function used to gener-

ate imperfectly labeled training data. While APHRODITE uses the

mention of a single phrase, we hypothesize that a high-precision la-

beling heuristic based on multiple keyword (or phrase) mentions

may improve classifier performance in situations where phenotyping

precision is critical. In addition, APHRODITE was evaluated using

balanced cohorts of cases and controls; in real-world situations

where the number of controls far outnumbers cases, a higher-

precision labeling function may perform better. We investigate the

improvement obtained via complex labeling functions across a spec-

trum of 10 different phenotypes, and using real-world disease preva-

lence in the test data.

The second question is about APHRODITE’s ability to port both

the final classifiers and the underlying training “recipes” between

OHDSI sites. A recent study demonstrated the translation of PheKB

definitions into executable EHR queries that ported across 6 differ-

ent health systems7; however, the portability of classifier-based

approaches such as APHRODITE has yet to be rigorously assessed.

We conduct reciprocal experiments where we evaluate the perfor-

mance of phenotype classifiers trained at our academic medical cen-

ter on the EHRs of 2 other health systems and, conversely, evaluate

the performance of classifiers trained externally on our data. We

find that phenotype classifiers perform well across OHDSI sites,

though portability may be limited by underlying differences in EHR

data at various sites.

MATERIALS AND METHODS

Data sources
We used longitudinal EHR data from Stanford Hospital & Clinics

and Lucile Packard Children’s Hospital, Columbia University Medi-

cal Center, and Seoul National University Bundang Hospital

(SNUBH) to construct and evaluate phenotype classifiers. At Stan-

ford, patient data was extracted from the Stanford Medicine Re-

search Data Repository clinical data warehouse and included nearly

1.8 million patients and 53 million unique visits. The dataset used at

Columbia comprised 5.7 million patients. At SNUBH, the dataset

included over 1.8 million patients. Patient data at each institution

were composed of coded diagnoses, laboratory tests, medication

orders, and procedures. All data at the 3 institutions were mapped

to the Observational Medical Outcomes Partnership (OMOP) Com-

mon Data Model (CDM), which serves as a shared standard repre-

sentation of clinical data across multiple data sources and

institutions. We summarize site-specific differences in each dataset

via the number of concepts (eg, diagnosis, medication, procedure

codes) recorded per person for each concept type, which provides in-

sight into both the extent of data captured per patient and the avail-

ability of certain feature types in each dataset, in Supplementary

Figure 1.

This study was reviewed and approved by Institutional Review

Boards at Stanford University, Columbia University, and SNUBH.

Phenotype selection and classifier development
We selected 10 phenotypes (appendicitis, type 2 diabetes mellitus,

cataracts, heart failure, abdominal aortic aneurysm, epileptic sei-

zure, peripheral arterial disease, adult onset obesity, glaucoma, and

venous thromboembolism) for which rule-based definitions have

been created by either the Electronic Medical Records and Geno-

mics (eMERGE) or OHDSI networks. We developed classifiers for

each phenotype using the APHRODITE framework, an R-package

built for the OMOP CDM that can be used to construct phenotype

classifiers using imperfectly labeled training data. In previous work,

the labeling heuristic used with APHRODITE was based on single

mentions of relevant terms in textual data. In this study, we used

multiple mentions of disease-specific codes as our labeling function.

In particular, we identified cases by searching patients’ clinical data

for at least 4 mentions of any relevant SNOMED code associated

with the phenotype of interest (Figure 1). We identified all relevant

codes by using vocabulary tables and existing relationships between

concepts within the OMOP CDM. Patients who did not meet this

multiple mention criteria were considered controls for training pur-
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poses, and the ratio of training cases to controls was set to 1:1. We

required 4 mentions to balance ensuring that our labeling function

was precise with finding a sufficient number of training cases for

classifier development. Increasing the mentions required to greater

than 4, though likely more precise, resulted in small (less than 500

cases) training set sizes, which we anticipated would result in poor

performance.24 When sufficient cases were not identified, we incre-

mentally lowered the number of mentions to identify more cases.

Once the training cohort was identified, we represented patient

data with the following feature types: visits, observations, lab

results, procedures and drug exposures. Frequency counts were cal-

culated for each feature capturing the entire course of patients’ EHR

records. We chose not to exclude a single mention of relevant

disease-specific codes as potential features used by classifiers, since

our labeling function was based on multiple mentions. Random for-

est classifiers were trained for each phenotype using 5-fold cross val-

idation.

Classifier validation with cohorts derived from rule-

based definitions
Development of evaluation sets

Rule-based definitions were used to identify the cohort of patients

comprising the test set for each phenotype (Figure 1). Two of the

definitions, appendicitis and cataracts, were OMOP implementa-

tions of definitions that were publicly available on PheKB, a reposi-

tory of phenotype algorithms developed by the eMERGE network.

The other 8 definitions were developed and evaluated collabora-

tively by several members of the OHDSI network with clinician

oversight. Although PheKB definitions have been shown to favor

precision and have low recall relative to manual chart review, these

rule-based definitions were the best available ground truth label for

this experiment.

Rule-based definitions were implemented using ATLAS, an open

source software tool for building patient cohorts with OMOP

CDM-mapped data. Test cases were identified by randomly sam-

pling the cohort of patients selected by the rule-based definitions.

Test controls were identified by randomly sampling from the

remaining patients. All test sets were composed of 10 000 patients,

with the proportion of cases set equal to the population prevalence

of the corresponding phenotype. Any patients used to train classi-

fiers were excluded from test sets.

Local validation of phenotype classifiers

We evaluated the performance of our classifiers by running them on

the test sets derived from our rule-based definitions. Classifiers were

evaluated locally by using our patient data extract. For reference, we

also assessed the performance of the “multiple mentions” labeling

Figure 1. Development and validation of phenotype classifiers. Training sets were constructed by applying multiple mentions-based imperfect labeling functions

to our patient data extract. Patients with multiple mentions of any SNOMED codes relevant to the phenotype of interest were considered training cases. Patients

who did not meet this criterion were labeled as training controls. Random forest classifiers were built for each phenotype using 5-fold cross validation. The test

set was constructed using OMOP implementations of rule-based phenotype definitions. Test cases were randomly sampled from the cohort of patients selected

by the rule-based definitions. Test controls were sampled from the remaining patients. For each phenotype, the imperfect labeling function used to generate the

training set and the corresponding classifier were evaluated using the rule-based phenotype-derived test sets.
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heuristic described previously. Performance was reported in terms of

recall and precision.

Performance of classifiers across multiple sites
To evaluate the portability of our phenotype classifiers, we shared

the 10 classifiers developed on our patient data extract with 2 other

institutions within the OHDSI network, Columbia University and

SNUBH. Since both these institutions have mapped their patient

datasets to meet OMOP CDM specifications, we were able to share

our classifiers without any modification. Classifier performance was

evaluated in a process identical to the one used locally at Stanford;

at both sites, rule-based definitions were used to derive the cohort of

patients comprising the test set for each phenotype.

We further assessed the portability of phenotype classifiers by

performing a reciprocal experiment in which models were built at

Columbia and SNUBH and then evaluated at both the development

site and at Stanford. Classifiers were constructed for all 10 pheno-

types using the same method that was used locally. Specifically, we

employed the same labeling approach to generate training sets for

each phenotype; patients with multiple mentions of relevant disease-

specific codes were considered training cases, while others were con-

sidered training controls. Once classifiers were developed at both

sites, we evaluated their performance using test sets that were con-

structed from rule-based definitions.

Comparing demographics of cases across sites
While rule-based definitions offer an alternative to manual chart re-

view for the generation of test sets, development of these definitions

is ultimately labor-intensive and limits the speed with which classi-

fiers can be evaluated. To circumvent the need for rule-based defini-

tions and chart review, we propose comparing the demographics of

patients identified as cases by our classifiers across different sites as

a proxy for model validation. For this experiment, we randomly se-

lected 150 000 patients at each site and used classifiers developed at

our institution to identify cases for each phenotype. We then com-

pared the cohorts of patients labeled as cases across different sites

with respect to key demographics, such as age and sex. The purpose

of this was to evaluate whether the classifiers not only showed

comparable performance across sites, but also identified comparable

cohorts in terms of basic demographic features.

RESULTS

Local performance of classifiers
We first compared the performance of our phenotype classifiers

with the “multiple mentions” labeling heuristic used to identify

training cases for each phenotype. Table 1 shows the recall and pre-

cision of both of these phenotyping approaches. Requiring multiple

disease-specific code mentions to classify patients as cases yields a

mean precision of 0.99, as it is likely that patients with several men-

tions of a relevant code have the associated phenotype. Achieving

high precision, however, results in noticeably low recall. The mean

recall for requiring multiple mentions was 0.17.

Classifiers built with training data labeled using the multiple

code mentions heuristic showed markedly improved recall with

relatively small losses in precision. The mean recall boost observed

was 0.43 while the mean precision loss was 0.17. Seven classifiers

showed precision losses that were less than 0.10. Classifiers for 2

phenotypes, heart failure and venous thromboembolism, had more

considerable losses in precision (�0.38 and �0.78, respectively).

Performance of classifiers across sites
We evaluated the portability of our classifiers by assessing their

performance at Columbia and SNUBH. Table 2 summarizes

performance at these 2 sites. When classifiers were tested at Colum-

bia, mean recall and precision decreased marginally by 0.08 and

0.01, respectively, compared to local performance. Classifiers tested

at SNUBH had more significant losses in performance. Mean recall

and precision decreased by 0.18 and 0.10, respectively.

We also assessed classifier portability by constructing models at

Columbia and SNUBH, and evaluating their performance at Stan-

ford. Classifiers built at Columbia performed comparably to those

developed at Stanford, with these classifiers having mean recall and

precision values of 0.54 and 0.73, respectively. In contrast, classi-

fiers developed at SNUBH did not perform well at Stanford. For

these classifiers, we observed mean recall and precision values

of 0.46 and 0.24, respectively. Notably, these classifiers performed

Table 1. Test set performance of labeling heuristic requiring multiple disease-specific code mentions compared to phenotype classifiers

trained with data labeled using this multiple mentions approach

Phenotype Prevalence

of cases in

test set

Multiple mentions of SNOMED code APHRODITE classifier Recall boost

using classifier

Precision

loss using

classifierNo. of mentions Recall Precision Recall Precision

Appendicitis 0.05 2 0.31 1.00 0.97 0.99 0.66 0.01

T2DM 0.14 4 0.24 0.99 0.60 0.91 0.36 0.08

Cataracts 0.17 4 0.07 0.97 0.63 0.93 0.56 0.04

HF 0.02 4 0.33 0.94 0.99 0.56 0.66 0.38

AAA 0.04 4 0.22 0.99 0.53 0.97 0.31 0.02

Epileptic seizure 0.02 4 0.06 1.00 0.22 0.94 0.17 0.06

PAD 0.05 4 0.18 0.98 0.91 0.91 0.72 0.07

Adult onset obesity 0.36 4 0.20 1.00 0.29 0.91 0.09 0.09

Glaucoma 0.01 4 0.08 1.00 0.22 0.88 0.14 0.12

VTE 0.01 4 0.03 1.00 0.69 0.22 0.66 0.78

Abbreviations: AAA, abdominal aortic aneurysm; HF, heart failure; T2DM, type 2 diabetes mellitus; PAD, peripheral arterial disease; VTE, venous thrombo-

embolism.
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better when tested locally at SNUBH (mean recall and precision val-

ues of 0.41 and 0.73, respectively), indicating that performance

dropped when classifiers were ported to Stanford.

Classifier evaluation by comparing demographic

features of cases across sites
We further examined classifier performance by evaluating the demo-

graphics of patients classified as cases for each phenotype at all 3

sites. We used the classifiers built at Stanford to select cases at all

sites. The aim of this is to assess both the overall performance and

portability of classifiers by determining whether classifiers identify

comparable cohorts of patients across sites. Overall, age and pro-

portion of each sex were similar among all patients at the 3 sites;

mean age was 39.3, 39.9, and 40.4, and the proportion of males

was 0.45, 0.45, and 0.48 at Stanford, Columbia, and SNUBH, re-

spectively. There was considerable variability in demographics of

patients selected as cases by classifiers at each site. For instance, for

7 of the 10 phenotypes, there was a statistically significant difference

in the proportion of males identified as cases. Similar variation

existed with regards to mean age of cases at the 3 sites (Supplemen-

tary Table 1).

DISCUSSION

This study outlines a method for generating high-precision pheno-

typing classifiers in a semisupervised manner. We demonstrate that

classifiers trained using a high-precision labeling heuristic (ie, multi-

ple mentions of disease-specific codes) are able to preserve precision

while boosting recall relative to the original labeling function. While

it may be difficult to predict a priori which phenotypes would bene-

fit most from classifier generation, we believe that conditions likely

to benefit most are those like peripheral arterial disease, appendici-

tis, and cataracts that have common medications, procedures, and

lab values that can help identify additional patients who might be

missed by simply requiring multiple mentions of disease-specific

SNOMED codes. This recall boost may be particularly important in

situations of low disease prevalence, in which identifying additional

cases is necessary for building sufficiently large cohorts for observa-

tional studies. Furthermore, these classifiers are significantly faster

to generate than rule-based phenotype definitions and do not rely on

expert clinical input. This may be a template for high-throughput

creation of phenotyping classifiers in a way that optimizes precision

and recall which would greatly facilitate observational research.3

An important advantage of building phenotype classifiers with

the APHRODITE framework is the ability to easily exchange mod-

els across sites,24 however this has not been previously assessed. We

evaluated model portability in this study by sharing phenotype clas-

sifiers developed at Stanford with Columbia and SNUBH. Perfor-

mance at both of these sites was generally good, with minimal losses

in recall and precision at Columbia (0.08 and 0.01, respectively) and

a larger performance drop at SNUBH (0.18 and 0.10, respectively).

We suspect that the larger drop in performance at SNUBH, which is

an international site, is likely related to regional differences in EHR

data and how clinical concepts are coded across sites even within

the same common data model. We observed larger differences in the

availability of concept types (eg, diagnosis, medication, procedure

codes) between Stanford and SNUBH than Stanford and Columbia

which likely impacts classifier portability between these sites.

In a reciprocal experiment, Columbia and SNUBH both con-

structed classifiers and shared them for evaluation at Stanford. Clas-

sifiers built at Columbia performed well when tested at Stanford,

with these classifiers showing similar performance to those devel-

oped natively at Stanford; both mean recall and precision were

within 0.1 points of Stanford classifiers. In comparison, we observed

a considerable performance drop when classifiers were built at

SNUBH and ported to Stanford. Although SNUBH classifiers dem-

onstrated a mean precision value of 0.73 when evaluated at SNUBH,

this dropped to 0.24 when tested at Stanford.

The poor portability of classifiers developed at SNUBH suggests

that sharing the classifier-building recipe may prove more useful

than sharing the pretrained classifiers themselves since site-specific

differences in EHR data appear to substantially impact perfor-

mance. Notably, in the majority of comparisons, classifiers trained

Table 2. Classifier performance at 3 sites within OHDSI network. Phenotype classifiers constructed at Stanford were shared with Columbia

and SNUBH, and evaluated using test sets derived locally at each site using rule-based definitions. Furthermore, classifiers built at Colum-

bia and SNUBH were shared with Stanford and evaluated using similarly constructed test sets. Blue denotes values equal to 1, white

denotes values equal to 0

Development

site

Stanford Columbia SNUBH Stanford Columbia SNUBH

Validation site Stanford Columbia SNUBH Stanford Columbia Stanford SNUBH Stanford Columbia SNUBH Stanford Columbia Stanford SNUBH

Phenotype Recall Precision

Appendicitis 0.97 0.9 0.09 0.82 0.75 0.52 0.1 0.99 0.9 0.56 0.83 0.48 0.13 0.98

T2DM 0.6 0.63 0.77 0.58 0.69 0.67 0.75 0.91 0.86 0.75 0.75 0.83 0.51 0.89

Cataracts 0.63 0.45 0.84 0.8 0.6 0.35 0.84 0.93 0.79 0.85 0.74 0.74 0.42 0.74

HF 0.99 0.97 0.8 0.99 0.97 0.71 0.82 0.56 0.67 0.75 0.47 0.4 0.11 0.66

AAA 0.53 0.24 0.54 0.59 0.78 0.33 0.57 0.97 0.75 0.87 0.96 0.97 0.13 0.47

Epileptic

seizure

0.22 0.3 0.28 0.41 0.79 0.46 0.11 0.94 0.87 0.55 0.79 0.57 0.08 0.68

PAD 0.91 0.89 0.57 0.48 0.85 0.46 0.55 0.91 0.87 0.68 0.69 0.57 0.24 0.59

Adult onset

obesity

0.29 0.33 0.07 0.14 0.59 0.39 0.07 0.91 0.93 0.73 0.85 0.89 0.68 0.8

Glaucoma 0.22 0.18 0.11 0.34 0.4 0.22 0.12 0.88 0.78 0.65 0.69 0.8 0.06 0.75

VTE 0.69 0.34 0.2 0.21 0.71 0.46 0.19 0.2 0.71 0.83 0.51 0.21 0.05 0.78

Abbreviations: AAA, abdominal aortic aneurysm; HF, heart failure; T2DM, type 2 diabetes mellitus; PAD, peripheral arterial disease; VTE, venous thromboembolism.
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locally at the site of evaluation, using the labeling function to gener-

ate training data, performed at least as well or better than classifiers

trained elsewhere. The APHRODITE framework specifically offers

the ability to exchange classifier-building recipes. Unlike traditional

supervised learning approaches for phenotyping which require man-

ually searching for patients to construct the training set, sharing a

high-precision labeling function for developing a large imperfectly

labeled training set and rebuilding classifiers at any given site is effi-

cient and feasible. Given that constructing a phenotype classifier

with APHRODITE requires minimal work and that differences in

EHR data (ie, the availability of concept types) across sites affect

performance, we propose that sharing the classifier-building recipe

is favorable to sharing the classifiers themselves in the majority of

situations.

This study was limited by the use of PheKB definitions as the

gold standard for classifier evaluation. Although these definitions

have been reviewed by clinical experts, they are still rule-based defi-

nitions with imperfect classification accuracy. While the use of these

definitions provided a standardized way to assign “ground-truth”

labels across multiple international sites, in future our classifier pipe-

line could be assessed using clinician-labeled test sets or phenotype

algorithm evaluation tools that have been recently developed, such

as PheValuator.25 Additionally, the feature engineering scheme used

in training classifiers is relatively rudimentary—simply a frequency

count of all structured data elements. The performance of our classi-

fiers may therefore be seen as a conservative estimate of such semi-

supervised learning. More sophisticated feature engineering

regimens such as EHR embeddings, incorporating temporal trends

in lab values, or some extracts from the unstructured data, would

likely improve performance. Finally, use of this APHRODITE-based

pipeline relies on sites mapping their EHR data to the OMOP

CDM.

CONCLUSION

We demonstrate a high-throughput pipeline for developing and

sharing phenotype classifiers using APHRODITE with a high-

precision labeling heuristic. These classifiers are easier to create than

rule-based definitions and can be shared across sites within the

OHDSI network. We establish good portability between Stanford

and Columbia in both directions but limited performance when

sharing classifiers with SNUBH, indicating that the generalizability

of phenotype classifiers may have geographic limitations due to dif-

ferences in EHR data. In this situation, sharing the classifier training

recipe (ie, providing the labeling function for generating a large im-

perfectly labeled training set and training a local classifier) rather

than the pretrained models may be more useful for generating classi-

fiers and thus facilitating collaborative observational research.
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