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Increasing evidence has demonstrated that RING finger (RNF) proteins played a vital role in
cellular and physiological processes and various diseases. However, the function of RNF
proteins in low-grade glioma (LGG) remains unknown. In this study, 138 RNF family
members revealed their role in LGG. The TCGA database was used as the training cohort;
two CGGA databases and GSE108474 were selected as external validation cohorts.
Patients were grouped into cluster 1 and cluster 2, both in the training and validation
cohorts, using consensus clustering analysis. The prognosis of patients in cluster 1 is
significantly better than that in cluster 2. Meanwhile, biofunction prediction was further
introduced to explore the potential mechanisms that led to differences in survival
outcomes. Patients in Cluster 2 showed more complicated immunocytes infiltration
and highly immunosuppressive features than cluster 1. Enrichment pathways such as
negative regulation of mast cell activation, DNA replication, mismatch repair, Th17 cell
differentiation, antigen processing and presentation, dendritic cell antigen processing and
presentation, dendritic cell differentiation were also enriched in cluster 2 patients. For the
last, the main contributors were distinguished by employing a machine learning algorithm.
A lot of targeted and small molecule drugs that are sensitive to patients in cluster 2 were
predicted. Importantly, we discovered TRIM8, DTX2, and TRAF5 as the most vital
contributors from the RNF family, which were related to immune infiltration in LGG
tumor immune landscape. In this study, we demonstrated the predicted role of RNF
proteins in LGG. In addition, we found out three markers among RNF proteins that are
closely related to the immune aspects of LGG, which might serve as novel therapeutic
targets for immunotherapy in the future.
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INTRODUCTION

Diffuse gliomas, including LGG and glioblastomas (GBM), are the most common malignant tumors
among adults in the central nervous system (CNS) (Miller et al., 2019). To data, maximum safe
surgical resection, radiotherapy, and chemotherapy remain the mainstay of therapeutic methods for
gliomas (Zhang et al., 2019; Funakoshi et al., 2021). However, the prognosis of malignant and
invasive gliomas is still far from satisfactory, even with recent improvements in diagnosis and
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treatment methods (Tan et al., 2020; McKinnon et al., 2021). For
example, the median overall survival (OS) of LGG patients is less
than 2 years, whereas 5-year survival rate of GBM patients is only
about 5% (Alexander and Cloughesy, 2017; An et al., 2020; Zhang
et al., 2021a). In addition, several clinicopathological and
molecular features determine the outcome of patients with
gliomas, such as WHO grade, isocitrate dehydrogenase 1/2
(IDH1/2) mutations, 1p/19q co-deletion, MGMT promoter
methylation, subtype (Reifenberger et al., 2017; Molinaro et al.,
2019). Nowadays, increasing evidence indicates that tumor
immunotherapy focusing on blocking immune checkpoints has
achieved remarkable benefits, providing a promising direction for
glioma patients (Hodges et al., 2017; Aslan et al., 2020).

The tumor microenvironment (TME) is a highly dynamic and
complex ecosystem consisting of tumor cells, stromal cells,
extracellular matrix, and various cellular molecules (Giraldo et al.,
2019; Baghban et al., 2020). Tumors exhibit immunosuppression and
immune evasion through immune checkpoints secreted from stromal
cells or tumor cells in the TME, resulting in tumor growth and
metastasis. Inhibitors and vaccines targeting classical immune
checkpoint molecules in the TME, such as programmed cell death-
1 (PD-1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4),
have achieved remarkable progress in several types of cancers (Wang
et al., 2019; Andrews et al., 2021). Our previous study showed that
upregulated CTLA-4 expression was associated with a worse
prognosis in glioma (Liu et al., 2020; Zhang et al., 2021b).
Meanwhile, the infiltrated immune cells such as tumor-associated
macrophages (TAMs), dendritic cells (DCS), natural killer cells (NK),
and regulatory T cells (Tregs) in the TME also participate in every step
of tumor immune progression (Galli et al., 2020; Li et al., 2021). The
glioma tumor microenvironment has proved to play a significant role
in promoting angiogenesis, immunosuppression, migration, tumor
metastasis, and drug resistance (De Vleeschouwer et al., 2017; Simon
et al., 2020; Liu et al., 2021).

The RNF proteins are a group of transmembrane proteins
containing a unique three-dimensional domain which is consists
of C3HC4 amino acid residues with eight conserved cysteine and
histidine residues that combine two zinc cations (Cham et al., 2017;
Cham et al., 2018; Kuhns et al., 2020). Most RNF proteins act as E3
ubiquitin ligases and regulate the ubiquitination of membrane
proteins under physiological conditions (Campbell et al., 2012). In
addition, studies revealed that transmembrane RNF proteins play
an essential role inmany organelles and cellular progress, including
protein transportation, cell proliferation, differentiation, apoptosis,
immunomodulatory and mitochondrial dynamics (Amal et al.,
2019; Wei et al., 2019). However, in recent years, more and more
studies have started to explore the function of RNF proteins in
oncogenesis and tumor metastasis (Wang et al., 2016; Liu et al.,
2018). For example, Rong Geng et al. (Geng et al., 2017) found that
the elevated RNF183 protein in tumor samples promotes the
migration and metastasis of colorectal cancer cells through
activating the NF-κB-IL-8 axis. Moreover, the overexpressed
RNF38 was found to inhibit the expression of neuroblast
differentiation-associated protein (AHNAK) and activate the
transforming growth factor-β (TGF-β) signaling pathway
through ubiquitinating, which is associated with the poor
outcome and high recurrence rate of hepatocellular carcinoma

patients (Peng et al., 2019). However, the role of RNF proteins in
LGG remains largely unclear.

Therefore, we analyzed the clinical and RNA-sequencing data
of LGG patients from three different datasets to clarify the whole
aspects of RNF proteins in the LGG tumor microenvironment.

MATERIALS AND METHODS

Data Collection
We collected the clinical and transcriptomic data of LGGs from
the TCGA (http://cancergenome.nih.gov/), the CGGA-array
(Fang et al., 2017) (mRNA microarray database), the CGGA-
sequence (Zhao et al., 2017) (mRNA sequencing database)
(http://www.cgga.org.cn) and Rembrandt datasets (also known
as GSE108474) (Gusev et al., 2018). The Gliovis data portal
predicted the (Bowman et al., 2017) subtype of LGG. RNF
family members are downloaded from the HGNC database
(https://www.genenames.org/).

Consensus Clustering Analysis
The intersection between RNF family members and gene lists from
the TCGA and CGGA databases is performed. Then consensus
cluster analysis is introduced with the R package
“ConsensusClusterPlus” (Wilkerson and Hayes, 2010) based on
data from the TCGAdataset. Parameters of clustermodel are set as,
distance � “Pearson,” maxK � 10, reps � 1000, pItem � 0.8,
pFeature� 1, clusterAlg� “kmdist,” corUse� “complete.obs.”PCA
diagram shows the classification of the cluster model.

Immunogenicity Evaluation
ESTIMATE (Yoshihara et al., 2013) algorithm is applied to
calculate the immune score, stromal score, and tumor purity.
CIBERSORT (Newman et al., 2019) and xCell (Aran et al., 2017)
algorithms are used to show the infiltration ratio of immunocytes.
The expression profile of immune escape-associated genes from
previous work is mapped with a boxplot. Two types of
immunogram (Karasaki et al., 2017; Kobayashi et al., 2020)
from previous works are reconstructed based on the “ssgsea”
algorithm and shown with radar diagram, boxplot, and heatmap.

Bio Function Analysis
The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) based on Gene Set Enrichment Analysis (GSEA)
and Gene Set Variation Analysis (GSVA) were used to exploring
enrichment signaling pathways between clusters or groups.

Main Contributor Identification
Main contributors of the cluster model from RNF family
members are identified by employing multiple machine
learning methods. First, univariate Cox regression analysis and
LASSO regression analysis, as previously described, are
performed to determine LGG prognosis-associated markers.
Then, the xgboost algorithm is performed with the R package
“xgboost.” For the last, the Boruta algorithm is introduced to label
family members with “Confirmed” or “Rejected” based on the
cluster model, and “Confirmed” markers are filtered out. Finally,
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the Venn diagram shows the intersection of results, which are also
selected as leading contributors, from those three methods.

Potential Compounds Prediction
Drug sensitivity from PRISM and CTRP database and cell line
expression profile from CCLE database is integrated to predict
potential sensitivity compounds based on the cluster model.
Preparation of drug sensitivity matrix and cell line expression
matrix is performed as previous work stated. R package
“pRRophetic” is used for potential compounds prediction.
Similar strategies are also applied to identify compounds from
the CellMiner database.

Statistical Analysis
TheWilcox test was used to compare two groups. In addition, the
Kaplan-Meier analysis was applied to analyze the survival
prognosis between two groups, and log-rank was used for

examination. The ROC curve and corresponding AUC were
generated by using the R package “timeROC.” * p-value <
0.05, ** p-value < 0.01, *** p-value < 0.001, and p-value < 0.05
is significantly statistical. All analyses were performed with R
(version 3.6.1).

RESULTS

Clustering Model Based on RNF Genes
Identified Two Clusters with Distinct
Outcomes and Clinicopathological
Features
First, to clarify the prognostic role of RNF proteins in LGG, a total
of 138 RNF family members were selected from the public
database-GENECARDS (Supplementary Table S1). The flow

FIGURE 1 | The flow chart of the entire study.
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chart of the entire study is shown inFigure 1, we used the TCGAas the
training set, and two CGGA and the Rembrandt (GSE108474) datasets
were treated as validation sets. The clinicopathological characteristics of
four public databases are shown in Supplementary Table S2. Based on
the clustering analysis, the optimal number of clusters was 2
(Supplementary Figure S1A). Then, patients in the TCGA
database were divided into two subgroups through the consensus
clusteringmethod (Figures 2A,B). Kaplan-Meier analysis in theTCGA
database between two clusters showed that patients in cluster 1 had a
better prognosis than cluster 2 during the overall survival time (p <
0.0001; Figure 2C). Meanwhile, in the CGGA sequence (p < 0.001;
Figure 2D) and CGGA array (p < 0.01; Figure 2E) database, the
patients in cluster 1 also had better results than cluster 2 during the
overall survival time. Moreover, the patients in cluster 1 also had a
better outcome than cluster 2 during the overall survival time in the
GSE108474 dataset (Supplementary Figure S1B). We then calculated
the AUC of the cluster model in the TCGA dataset (Supplementary
Figure S1C), which is 0.74. However, the AUC in three validation sets
is 0.61 (CGGAseq; Supplementary Figure S1D), 0.65 (CGGAarray;
Supplementary Figure S1E), 0.64 (GSE108474; Supplementary

Figure S1F). We thought that the AUC in these validation datasets
was lower than 0.7 resulting from the number of samples in validation
sets being less than that in the training set. In addition, the Sankey
diagram in theTCGAdatabase showed that patients in cluster 1 tend to
exhibit favorable clinicopathologic features: IDH mutation and IDH
mut-codel subtype (Figure 2F), which were also verified in CCGA-
sequence (Figure 2G) and CCGA-array (Figure 2H) databases. These
results indicated that the expression of RNF genes is associated with
patient’s prognosis in low-grade gliomas and might have a close
relationship with the IDH status.

Functional Enrichment Analysis Between
Two Clusters
Next, we analyzed the related enrichment signaling pathways
between clusters 1 and 2 using GO and KEGG-based GSEA and
GSVA. GO analysis in the TCGA database showed that several
signaling pathways related to immune response were enriched in
cluster 2, including positive regulation of natural killer cell-
mediated immune response to the tumor cell, negative

FIGURE 2 | Consensus clustering of samples into cluster 1 and cluster 2 from the training and validation cohorts. Consensus clustering patients into two clusters
using principal component (A) and support vector machine analysis (B) from the TCGA database. Kaplan–Meier overall survival curve between two clusters from the
TCGA (C), CGGA-sequence (D), and CGGA-array (E) databases. Sankey diagram shows LGG clinicopathologic features between two clusters from the TCGA (F),
CGGA-sequence (G), and CGGA-array (H) databases.
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regulation of IL-6 and mast cell activation, regulation of antigen
processing, and presentation, inflammasome and MHC class Ⅱ
protein complex, cyclin A2/CDK2 complex, negative regulation
of regulatory T cell differentiation (Figure 3A and
Supplementary Figure S2A). Meanwhile, the pathways of
positive regulation of immature T cell proliferation, B cell
differentiation, and regulation of response to the drug were
enriched in cluster 1. Furthermore, GO analysis in the CGGA-
sequence database showed that the pathways of susceptibility to
natural killer cell-mediated cytotoxicity, negative regulation of IL-
6, negative regulation of T cell differentiation and macrophage
apoptotic process, positive regulation of MHC class Ⅰ biosynthetic
process were enriched in cluster 2 (Figure 3B and
Supplementary Figure S2B). In addition, GO analysis in the
CGGA-array showed that several immune-related pathways,
such as positive regulation of CD8+αβT cell activation and
differentiation, antigen processing, and presentation of peptide
antigen via MHC classⅠbiosynthetic process (Figure 3C and
Supplementary Figure S2C). Furthermore, KEGG analysis
indicated that the pathways such as antigen processing and
presentation, DNA replication, drug metabolism, other
enzymes, cell adhesion molecules CAMs were enriched in
cluster 2 in the training and validation databases (Figures
3D–F and Supplementary Figures S2D–F).

Immune Infiltration Analysis Between Two
Clusters
Therefore, we examined the immune aspects in the LGG TME
between cluster 1 and cluster 2. The results from the TCGA

database demonstrated that the expression of TME immune cells
in cluster 1 was significantly different from that in cluster 2,
including M1 macrophages, monocytes, plasma cells, CD4
memory T cells, and Tregs (p < 0.05; Figures 4A,D and
Supplementary Figures S3A,D). The immune cell types
infiltrated in cluster 1 and cluster 2 from the CGGA sequence
database were also significantly different, such as eosinophils,
macrophages, and NK cells (p < 0.05; Figures 4B,E and
Supplementary Figures S3B,E). Results from the CGGA-array
database showed that large amounts of immune cells in the TME
were different from cluster 1 and cluster 2, including memory
B cells, dendritic cells, M1 macrophages, activated CD4 memory
T cells, and follicular helper T cells (p < 0.05; Figures 4C,F and
Supplementary Figures S3C,F). Moreover, the tumor purify was
higher in cluster 1, whereas the estimated score, stromal score,
and immune score were lower in cluster 1, both in the TCGA (p <
0.001; Supplementary Figure S4A), CGGA-sequence (p < 0.05;
Supplementary Figure S4B) and CGGA-array (p < 0.05;
Supplementary Figure S4C) databases.

Immunosuppressive Aspects Analysis
Between Two Clusters
Then, we analyzed the patient-specific landscapes of the tumor
microenvironment in the LGG using two types of immunogram
(2017, 2010). Results showed that several immunosuppressive
progresses, including the absence of checkpoint expression,
trafficking, and infiltration, absence of inhibitory molecules,
T cell immunity, priming, and activation, were significantly
enriched in cluster 2 from the TCGA (p < 0.001; Figures

FIGURE 3 | RNF proteins-related biological functions in cluster 1 and cluster 2 from the training and validation cohorts. Gene set variation analysis in cluster 1 and
cluster 2 based on GO database from the TCGA (A), CGGA-sequence (B), and CGGA-array (C) databases. Gene set variation analysis in cluster 1 and cluster 2 based
on the KEGG database from the TCGA (D), CGGA-sequence (E), and CGGA-array (F) databases.
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5A,C), CGGA-sequence (p < 0.01; Figures 5E,G) and CGGA-
array (p < 0.05; Figures 5I,K) databases. Meanwhile, other
immunological progress, including inhibitory cells Tregs,
innate immunity, T cells, glycolysis, inhibitory molecules,
priming activation, and IFNG response was also significantly
enriched in cluster 2 from the TCGA (p < 0.01; Figures 5B,D),
CGGA-sequence (p < 0.05; Figures 5F,H) and CGGA-array (p <
0.05; Figures 5J,L) databases.

Furthermore, we explored the expression profiles of immune
escape-associated genes between cluster 1 and cluster 2 from
the training and validation databases. Results indicated that
antigen genes such as HLA-B, HLA-DPA1, HLA-DPB1, HLA-
DQB2, HLA-DRA, HLA-DRB1, and MICB were upregulated
in cluster 2 compared to cluster 1 from the three public
databases (p < 0.05; Figures 6A–C). The expression of the
co-inhibitory gene-SLAMF7 was higher in cluster 2 (p < 0.05;
Figures 6D–F). The levels of ligand genes, including CD40LG,
CD70, CXCL10, CXCL9, IL-10, TGFB1, and CEGFA, were
higher in cluster 2, whereas the expression of CX3CL1 was
lower in cluster 2 (p < 0.05; Figures 6G–I). The levels of

receptor genes, including CD40, ICOS, IL2RA, LAG3, PDCD1,
TNFRSF14, TNFRSF4, and TNFRSF9, were increased in
cluster 2, whereas the expression of EDNRB and TLR-4 was
lower in cluster 2 (p < 0.05; Figures 6J–L). In addition, the
levels of cell adhesion genes, including ICAM-1 and ITGB2,
were elevated in cluster 2 (p < 0.05; Supplementary Figures
S5A–C). The expression of costimulatory genes, including
CD28 and CD80, were higher in cluster 2 (p < 0.05;
Supplementary Figures S5D–F). The expression of other
genes, such as GZMA and PRF1, were overexpressed in
cluster 2 (p < 0.05; Supplementary Figures S5G–I). These
results demonstrated that the TNF genes played an essential
role in the immune infiltration and were related to the
immunosuppressive progress in the LGG TME.

Prediction of Sensitive Drugs
Next, we predicted the sensitive drugs between cluster 1 and
cluster 2 from the public databases. The top 50 sensitive drugs
between clusters 1 and 2 were exported from the CELLMINIER
database (Supplementary Table S3). Data from the CTRP1

FIGURE 4 | Infiltrated immune cells in cluster 1 and cluster 2 from the training and validation cohorts. Immune infiltrates in two clusters based on the CIBERSORT
algorithm from the TCGA (A), CGGA-sequence (B), and CGGA-array (C) databases. Immune infiltrates in two clusters based on the xCELL algorithm from the TCGA (D),
CGGA-sequence (E), and CGGA-array (F) databases. *p < 0.05, **p < 0.01, ***p < 0.001, NS, no significant differences.
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database showed that cluster 2 exhibited significantly more
sensitivity to bortezomib, dasatinib, JW-7-52-1, phenformin,
and THZ-2-49 than cluster 1 (p < 0.001; Figures 7A,D). In
addition, the CTRP2 database showed that cluster 2 exhibited

significant sensitivity to AZD5582 comparing with cluster 1 (p <
0.001; Figures 7B,E). In addition, the PRISM database showed
that cluster 2 exhibited significant sensitivity to many drugs
compared to cluster 1 (p < 0.001; Figures 7C,F).

FIGURE 5 | The patient-specific landscape of the LGG tumor microenvironment in cluster 1 and cluster 2 from the training and validation cohorts. Heatmap shows
the expression of immune landscapes in two clusters based on 2017 (left) and 2020 (right) immunogram algorithm from the TCGA (A,B), CGGA-sequence (E,F), and
CGGA-array (I,J) databases. The radar chart shows the expression of the immune landscape in two clusters based on the 2017 (left) and 2020 (right) immunogram
algorithm from the TCGA (C,D), CGGA-sequence (G,H), and CGGA-array (K,L) databases. *p < 0.05, **p < 0.01, ***p < 0.001, NS, no significant differences.

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 9 | Article 7548737

Zhang et al. The RNF Family in Gliomas

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Main Contributor Identification, Immune
Infiltration, and Enrichment Pathway
Analysis
Finally, we used three machine-learning methods-LASSO,
XGBOOST, and BORUTA algorithms to identify the main
contributors of the cluster model from RNF family members
(Figures 8A–E). The result showed that TRIM8, TRAF5, and
DTX2 are the top three contributors. Then, the association of
those genes with clinical features was also mapped with heatmap
(Figure 8F). The heatmap showed that cluster 2 has higher DTX2
and TRAF5 and a lower expression of TRIM8. Meanwhile, the
results showed that the overexpressed DTX2 and TRAF5 were
associated with IDH WT status, whereas the overexpressed
TRIM8 were associated with IDH mutant status.

Patients in the high expression group of TRIM8 have a better
outcome than the low expression group (p < 0.001; Figure 9A).
On the contrary, patients in the high expression group of DTX2
(p < 0.001; Figure 9C) and TRAF5 (p < 0.001; Figure 9E) have a
worse outcome than the low expression group. These data
indicated that the high expression of TRIM8 in the LGGs
TME might play a protective role, while the increased
expression of DTX2 and TRAF5 in the LGG TME may act as
a detrimental role. In addition, the CIBERSORT analysis showed
that the most positively correlated cell with TRIM8 is monocyte,
and the most negatively correlated cell is M1 macrophage
(Figure 9B). The most positively correlated cell with DTX2 is
the M2 macrophage, and the most negatively correlated cell is the
memory B cell (Figure 9D). The most positively correlated cell
with TRAF5 is the M1 macrophage, and the most negatively

FIGURE 6 | The immune escape-associated gene expression in cluster 1 and cluster 2 from the training and validation cohorts. The expression of antigen genes in
cluster 1 and cluster 2 from the TCGA (A), CGGA-sequence (B), and CGGA-array (C) databases. The expression of co-inhibitory genes in cluster 1 and cluster 2 from the
TCGA (D), CGGA-sequence (E), and CGGA-array (F) databases. The expression of ligand genes in cluster 1 and cluster 2 from the TCGA (G), CGGA-sequence (H), and
CGGA-array (I) databases. The expression of receptor genes in cluster 1 and cluster 2 from the TCGA (J), CGGA-sequence (K), and CGGA-array (L) databases.
*p < 0.05, **p < 0.01, ***p < 0.001, NS, no significant differences.
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correlated cell is the monocyte (Figure 9F). These results
indicated that the monocyte and memory B cells in the TME
might inhibit the LGG progress and contribute to a good
outcome. At the same time, the macrophages in the TME may
promote the LGG progress and lead to a worse outcome. In

addition, we also used xCELL analysis to show the infiltrated
immune cells related to the three genes in LGG TME
(Supplementary Figure S6). Moreover, the enriched signaling
pathways related to the three genes were also displayed by GO-
based GSVA analysis (Supplementary Figure S7).

FIGURE 7 | Predicted potential sensitivity compounds based on the cluster model using public databases. The box plot shows sensitivity compounds between
cluster 1 and cluster 2 based on the CTRP1 (A), CTRP2 (B), and PRISM (C) databases. The volcano plots shows sensitivity compounds between cluster 1 and cluster 2
based on the CTRP1 (D), CTRP2 (E), and PRISM (F) databases. ***p < 0.001.

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 9 | Article 7548739

Zhang et al. The RNF Family in Gliomas

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


DISCUSSION

Low-grade glioma is a group of heterogeneous neoplasms
originating from the glial cells nearby neurons and accounts
for more than 6% of all primary central nervous system (CNS)
tumors in adults (Ostrom et al., 2019). With the rapid
development of high-throughput sequencing technology,
more and more novel biomarkers related to the prognosis of
LGG have been discovered in recent years (Aquilanti et al., 2018;
Hsu et al., 2019; Zhang et al., 2020; Zhang et al., 2021c). Recent
research focuses on the predictive value, and pathogenic
mechanism of RNF proteins have been conducted in several
cancer types. For example, the expression level of RNF6 was
upregulated in both tumor samples and cell lines of gastric

cancer. Furthermore, knockdown of RNF6 significantly
increased the cleavage of PARP and promoted cell apoptosis
through the SHP-1/STAT3 signaling pathway, which eventually
inhibits gastric cancer cell growth (Huang et al., 2018). In
another study, RNF121 levels were found decreased in renal
cell carcinoma samples than adjacent normal tissues (Zhao et al.,
2014). Further research revealed that overexpressed RNF121
inhibited the growth and invasion of human renal cell
carcinoma cells by activating NF-κB signaling pathways.
However, the relevance between RNF proteins and LGG
development remains poorly understood.

In this study, we explore the landscape of RNF proteins in the
tumor microenvironment of LGG both from the TCGA and
CGGA databases. We established a clustering model based on

FIGURE 8 | Identification of main contributors of the cluster model from RNF family members. Identify main contributors of the cluster model from RNF family
members by Boruta algorithm (A), LASSO regression analysis (B–D), and Xgboost algorithm (E). Heatmap shows the expression of three main contributors in two
clusters (F).
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the expression of RNF proteins and found a significant
difference in prognosis between the two clusters. Molecular
mutations, especially IDH enzyme mutation status, were
associated with the outcome of LGG and GBM. Generally,
IDH-mutant gliomas have a longer overall survival time than
the IDH wide-type (WT) counterparts (Olar et al., 2015; Youssef
and Miller, 2020). In the current study, we found that the status
of IDH was different between the two clusters. This result means
that RNF proteins might have a close relationship with the IDH
mutant status of LGG. These data provide new insight into the
mechanisms underlying the RNF proteins upon LGG
progression.

Infiltrated immune cells and stromal cells in the TME
influenced the tumor’s response to the immune system. For
example, upregulated tumor infiltrated CD3+ and CD8+ were
associated with longer survival time with an integrated
immunosuppressive system in the tumor microenvironment
(Kmiecik et al., 2013). Tumor-associated M1-type
macrophages are considered to exbibit pro-inflammatory and
anti-tumoral effects, while tumor-associated M2-type
macrophages are associated with anti-inflammatory and pro-

tumoral functions (Madeddu et al., 2018; Macciò et al.,
2020). It is well known that myeloid-derived suppressor
cells (MDSCs) can act as the primary mediators of
immune responses in many cancers and other pathological
progress. Tregs can regulate immune suppression of anti-
tumor immune response in the tumor microenvironment
(Bronte et al., 2016; Li et al., 2020; Pokhrel et al., 2021).
DCS identified and processed tumor-associated antigens in
the tumor microenvironment and promoted anti-tumor
immunity by modulating other immune cells’ functions
(Wculek et al., 2020). In this study, the GO and KEGG
analysis indicated that the expression levels of RNF
proteins were significantly accompanied by immune cells
infiltration and checkpoint expression related signaling
pathways in LGG, among which T cell and mast cell
activation, DCs antigen processing and differentiation,
Th17 cell differentiation, absence of checkpoint expression,
inhibitory Tregs and MDSCs were most significant. In
addition, the RNF proteins expression was significantly
associated with tumor purity, immune score, and stromal
score in the LGG TME based on the ESTIMATE algorithm.

FIGURE 9 | The survival analysis and immune infiltrate are based on the expression of three main contributors. Kaplan–Meier overall survival curve between low-risk
and high-risk groups based on the expression of TRIM8 (A), DTX2 (C), and TRAF5 (E). CIBERSORT algorithm shows the relationship between the immune infiltrates and
the expression of TRIM8 (B), DTX2 (D), and TRAF5 (F).
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Various immune cells in the LGG TME were related to the
expression of RNF proteins, including macrophages,
monocytes, plasma cells, CD4 memory T cells, Tregs,
neutrophils, and mast cells. Meanwhile, large amounts of
immune checkpoints were found to be different expressed
between the two clusters. Taken together, we proposed that
RNF proteins may be involved in the regulation of immune
response in the LGG TME by recruiting immune cells and
regulating the expression of immune checkpoints.

Furthermore, we identified three main contributors among
RNF proteins: TRIM8, DTX2, and TRAF5. Results showed that
the upregulated expression of DTX2 and TRAF5 were associated
with IDHWT status and a poor outcome in LGG. In contrast, the
elevated expression of TRIM8 was associated with IDH mutant
status and a better prognosis in LGG. Furthermore, CIBERSORT
and xCELL algorithms demonstrated that these three genes are
essential in recruiting immune cells, such as monocytes,
macrophages, T cells follicular helper, CD4 naïve T cells,
Tregs, CD8 T cells.

Until right now, effective drugs for IDHWT LGG treatment
are still limited. Finally, we discovered various small
molecular drugs that exhibited sensitivity to cluster 2, such
as bortezomib, dasatinib and phenformin, which have been
proved to inhibit the growth of human glioma cells in previous
studies (Jantas et al., 2018; Wang et al., 2018; Miklja et al.,
2020). At the same time, we also discovered many new drugs
sensitive to IDH WT glioma that has not been reported before,
including AMG−208, JW−7−52−1, THZ−2−49, AZD5582, and
so on. These small molecular drugs might help to improve the
treatment effect of IDH WT LGG in the future.

To sum up, we established a clustering model based on the
expression of RNF proteins, which can be applied to predict
the outcome of LGG patients. In addition, we explored the
relationship between the immune aspects in the LGG tumor
microenvironment and RNF proteins. Moreover, we found
three main contributors among RNF proteins that were
closely associated with LGG progress. Importantly, we
explored lots of sensitive drugs, which might help to
improve the treatment effect of patients with LGG in the
future. However, there are some limitations to this study. First
of all, only public data was used for analysis in this study,
which has not been verified with our data. Meanwhile, the
fundamental function of RNF genes in regulating immune
cells infiltration and checkpoints expression in the LGG TME
was not explored through in vivo and in vitro studies.
Secondly, we identified three key markers, but these three
genes’ role in LGG is still far from discovered in this paper.
The specific mechanisms of RNF genes involved in LGG
immunity need further exploration.
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Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 9 | Article 75487312

Zhang et al. The RNF Family in Gliomas

https://www.frontiersin.org/articles/10.3389/fcell.2021.754873/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2021.754873/full#supplementary-material
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


and CGGA-array (C) databases. The expression of costimulatory genes in cluster 1
and cluster 2 from the TCGA (D), CGGA-sequence (E), and CGGA-array (F)
databases. The expression of other genes in cluster 1 and cluster 2 from the
TCGA (G), CGGA-sequence (H), and CGGA-array (I) databases. *p < 0.05, **p <
0.01, ***p < 0.001, NS: no significant differences.

Supplementary Figure S6 | Infiltrated immune cells are based on the expression of
three main contributors. XCELL algorithm shows the relationship between the
immune infiltrates and the expression of TRIM8 (A), DTX2 (B), and TRAF5 (C).

Supplementary Figure S7 | Enrichment of signaling pathways based on the
expression of three main contributors. GO enrichment analysis based on GSVA
analysis of TRIM8 (A), DTX2 (B), and TRAF5 (C).

Supplementary Table S1 | Total RNF family gene list from HGNC database.
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