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Machine learning predicts 
individual cancer patient responses 
to therapeutic drugs with high 
accuracy
Cai Huang1, Evan A. Clayton1, Lilya V. Matyunina1, L. DeEtte McDonald1, 
Benedict B. Benigno2,3, Fredrik Vannberg1,2 & John F. McDonald   1,2,3

Precision or personalized cancer medicine is a clinical approach that strives to customize therapies 
based upon the genomic profiles of individual patient tumors. Machine learning (ML) is a computational 
method particularly suited to the establishment of predictive models of drug response based on 
genomic profiles of targeted cells. We report here on the application of our previously established 
open-source support vector machine (SVM)-based algorithm to predict the responses of 175 individual 
cancer patients to a variety of standard-of-care chemotherapeutic drugs from the gene-expression 
profiles (RNA-seq or microarray) of individual patient tumors. The models were found to predict 
patient responses with >80% accuracy. The high PPV of our algorithms across multiple drugs suggests 
a potential clinical utility of our approach, particularly with respect to the identification of promising 
second-line treatments for patients failing standard-of-care first-line therapies.

A primary goal of precision cancer medicine is the accurate prediction of optimal drug therapies based upon 
the personalized molecular profiles of patient tumors1. Ideally, such predictions are based upon well-established 
molecular cause-and-effect relationships that are disrupted in cancer cells. A notable example is the targeted inhi-
bition of the Abl tyrosine kinase gene in the treatment of chronic myelogenous leukemia (CML)2. Unfortunately, 
the molecular processes underlying most cancers, and especially solid tumors, are currently not as well under-
stood as for CML3. An alternative path to accurate predictions is based simply on observed, significant correla-
tions, even when the underlying causal connections are unknown or incompletely understood.

The foundation of accurate correlative predictions is built upon extensive and reliable bodies of data, and the 
volume of cancer-relevant data being generated and computationally stored on a daily basis vastly exceeds what 
could be even imagined only a few decades ago. For example, the volume of cancer-relevant molecular data being 
generated by genomic studies alone (DNA sequencing, RNA expression, etc.) is currently doubling about every 
6-7 months and, within the next decade, is estimated to constitute up to 40 million gigabytes a year4.

The search for significant correlations in cancer-relevant datasets is a task ideally suited to computers and 
specifically to a branch of artificial intelligence called machine learning (ML). Toward that end, a number of 
ML-based approaches have been developed in recent years that input the genomic profiles of individual patient 
tumors and output predictions of optimal drug responses based upon correlations embedded within previously 
established datasets5. We recently introduced an “open source” support vector machine (SVM)-based algorithm 
that inputs gene expression profiles of cancer cells to predict the response of individual cancers to chemother-
apeutic drugs6. In addition to accurately predicting the response of a variety of cancer cell lines to 7 commonly 
prescribed chemotherapeutic drugs, we employed the algorithm to predict the sensitivities of 273 ovarian cancer 
patients to these same drugs6. These predictions were shown to correlate significantly with previously reported 
average response rates of independent groups of ovarian cancer patients to these drugs (Linear regression p 
value = 0.0031, R2 = 0.8201) lending further credibility to our approach6.
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While the importance of the initial testing of drug prediction algorithms in well-characterized cancer cell 
lines cannot be overstated, eventual adoption of this computational approach into clinical practice will require 
extensive testing in human cancer patients. Toward this end, we report here an initial series of studies designed 
to evaluate the accuracy of our SVM-based algorithms to predict the responses of individual cancer patients to 
a variety of standard-of-care chemotherapeutic drugs from gene-expression profiles (RNA-seq or microarray) 
of individual patient tumors. The accuracies of the models to predict responses to a variety of drugs across 175 
patients ranged from 81.5% to 82.6%. The potential clinical utility of our SVM-based approach, particularly with 
respect to the selection of drugs for patients resistant to first-line chemotherapies, is discussed.

Results
The response of individual cancer patients to gemcitabine or 5-fluorouracil therapy is predicted 
with >80% accuracy.  To assess the accuracy of our SVM-based algorithms to predict drug response on an 
individual patient basis, we first employed matched sets of gene-expression and drug-response profiles from The 
Cancer Genome Atlas (TCGA) database7. The TCGA database is comprised of 2.5 petabytes of data including the 
genomic profiles of tumor and matched normal tissues from more than 11,000 patients representing 33 types of 
human cancers. Despite the impressive size of this dataset, we were limited because we require not only gene-ex-
pression profiles of patient tissues but detailed information on each patient’s individual response to chemotherapy 
as well. Since the availability of such correlated sets of data for specific cancer types is currently limited, we com-
bined TCGA data of patients associated with a diversity of cancer types but for which the response profiles to two 
commonly employed chemotherapeutic agents, gemcitabine (GEM) and 5-fluorouracil (5-FU), have been well 
documented. In this way, we were able to establish a dataset comprised of expression profiles (RNA-seq) and drug 
response profiles of 152 patients (92 treated with gemcitabine, 60 treated with 5-fluorouracil) (Supplementary 
Table S1).

Independent predictive models were built for GEM and for 5-FU utilizing the gene expression and patient 
outcome data obtained from the TCGA database. Unlike our earlier models that were built using microarray 
gene-expression data6, the gene-expression values in the TCGA dataset are recorded as RNA-seq profiles8. Our 
model building and testing methods, however, remain essentially as previously described6. The standard normal-
ization procedures are described in the Methods section.

In the TCGA database, patient responses to drugs are grouped into 4 categories: complete response, par-
tial response, progressive disease and stable disease. Since the current configuration of our algorithms require a 
binary input with respect to drug response, we classified patients displaying either complete or partial response 
to the drug treatment as responders (R) and those displaying progressive or stable disease following treatment as 
non-responders (NR) (Supplementary Table S2).

The profiles of 75% of the patients (i.e., 69 patients for GEM; 45 patients for 5-FU) were randomly selected to 
establish the learning datasets for model building and the remaining 25% (i.e., 23 patients for GEM; 15 patients 
for 5-FU) were employed as the test datasets for initial evaluation of the models.

ML models built from large datasets typically contain uninformative features that can reduce predictive 
accuracy. For this reason, several feature selection methods have been developed to establish subsets of features 
with optimal predictive accuracy9,10. In our studies, we employ a recursive feature elimination (RFE) method6 
to select for features (i.e., gene-expression patterns) that can optimally distinguish between responders and 
non-responders. To begin, the least relevant features of the model from the sorted feature list (Supplementary 
Table S3) are discarded, as previously described6. Fig. 1 depicts the evolution of predictive accuracy using 
SVM-RFE feature selection for increased sensitivity to GEM and 5-FU. The minimum number of informative 
features associated with optimally predicted responsiveness to GEM was 81 and for 5-FU was 31. Although 
the majority of these genes remain functionally unannotated, a number have either directly or indirectly been 

Figure 1.  Evolution of accuracy of predicted response to gemcitabine (A) and 5-fluorouracil (B) using SVM-
RFE selection for gene classifiers.
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previously associated with apoptosis, which is consistent with the DNA damaging action of both of these drugs 
(Supplementary Table S4).

Employing a set of most informative features, we generated drug prediction scores for each patient. Scores 
greater than “0” indicate a predicted positive response to the drug while scores less than “0” are predictive of drug 
resistance. Fig. 2 displays the distribution of prediction scores for the 92 patients treated with gemcitabine and the 
60 patients treated with 5-FU (see also Supplementary Table S2). Patients observed to respond positively to the 
drug therapy are represented in the figures by blue dots and those observed not to respond to the therapy by red 
dots. The overall accuracies (GEM 81.5%; 5-FU 81.7%; PPV GEM 77.8%; 5-FU 83.3%; NPV GEM 83.9%; 5-FU 
79.2%), sensitivities (GEM 75.7%; 5-FU 85.7%), and specificities (GEM 85.5; 5-FU 76.0%) of the two models 
were determined by leave-one-out cross validation (LOOCV) as previously described6. The high accuracy of our 
SVM-based models to predict individual patient responses to these two chemotherapeutic drugs is comparable 
to our previously reported accuracy (>80%) to predict the collective responses of 273 ovarian cancer patients to 
seven chemotherapeutic drugs6.

The response of individual ovarian cancer patients to standard-of-care therapies is predicted 
with high accuracy.  The above studies generally support the potential of our SVM-RFE approach to accu-
rately predict the drug responsiveness of individual cancer patients. To further assess the accuracy and evaluate 
the potential clinical usefulness of our approach, we conducted gene-expression profiling of tumors collected 
from a randomly selected group of ovarian cancer patients and used SVM-RFE-based models to predict patient 
responsiveness to eight drugs often used in the treatment of ovarian cancer (carboplatin, cisplatin, paclitaxel, 
docetaxel, gemcitabine, doxorubicin, gefitinib, and topotecan).

Samples of primary tumors collected from 23 ovarian cancer patients (Supplementary Table S5) were snap 
frozen in liquid nitrogen within one minute of surgical removal and transferred to the lab for laser capture micro-
dissection of cancer cells and subsequent microarray gene-expression analysis (Affymetrix, U133 Plus 2.0 arrays) 
as previously described11. Nearly all (21/23) of the collected samples were serous papillary ovarian cancers with 
the remaining two classified as an adenocarcinoma and a malignant mesodermal mixed tumor (MMMT). The 
vast majority (19/23) of the samples were derived from patients with moderate to high-grade (Grade 2-3), late 
stage (Stage III/IV) disease. Four of the samples were derived from patients with high-grade early-stage disease 
(Stage I/II).

The majority of patients (17/23) were administered chemotherapy shortly after de-bulking surgery with six 
patients receiving neo-adjuvant chemotherapeutic treatment prior to surgery. Most of the patients were treated 
with standard-of-care carboplatin/paclitaxel combination therapy (18/23). One patient was treated with carbo-
platin and gemcitabine, one with carboplatin and docetaxel and one with carboplatin, cisplatin and paclitaxel 
combination therapies. Only two patients were treated with a single drug-one with topotecan and one with dox-
orubicin (Table 1).

The RNA expression profiles of significantly expressed genes were uploaded to our previously established 
SVM-algorithms12 to generate drug prediction scores for each of eight chemotherapeutic drugs. We included all 
microarray probe sets for each gene in our analysis because, as previously demonstrated6, the averaging of expres-
sion values over multiple probe sets can significantly reduce predictive accuracies. As described above, the predic-
tive algorithms generate scores for each drug. Scores greater than “0” indicate a predicted positive response to the 
drug while scores less than “0” are predictive of drug resistance (e.g., Fig. 3A and B; and Supplementary Fig. S1).

The majority of the 23 ovarian cancer patients analyzed were predicted to respond favorably to gemcitabine 
(17/23), paclitaxel (14/23) and carboplatin (13/23) (Table 1), with less than half to cisplatin (9/23) and docetaxel 
(10/23). Less than a third of the 23 patients were predicted to respond to doxorubicin (7/23), topotecan (4/23) 

Figure 2.  Individual prediction of response to chemotherapeutic drugs. The SVM algorithms output binary 
classifications for gemcitabine and 5-fluorouracil (red = observed drug non-responder; blue = observed drug 
responder) established through a decision function that numerically separates tumors predicted to respond to 
the drug (positive score) from those predicted to be non-responders (negative score).
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or gefitinib (2/23). These predicted efficacies are generally consistent with our earlier group predictions of 273 
OC patients. The slight inconsistencies may be attributable to sampling error due to the relatively few patients 
employed in the current study.

To evaluate the accuracy of our predictions, patient responses to administered chemotherapies were mon-
itored by measurement of CA-125 values prior and subsequent to treatment. Patients were considered to be 
responsive to treatments if their respective CA-125 values dropped below normal values (<35) (Fig. 3C and D; 
and Supplementary Fig. S2).

Our algorithms predict responses to individual drugs and in those few cases where patients were treated with a 
single drug, evaluation of the model’s predictive accuracy is straightforward (e.g., patients 992 and 1129; Table 1). 
However, standard-of-care chemotherapy for ovarian cancer patients typically involves treatment with multiple 
drugs, most commonly, carboplatin and paclitaxel. In those cases where patients were observed to positively 
respond to the combination therapies, the prediction was scored as “true positive” (TP) if the patient is predicted 
to respond to at least one of the administered drugs (e.g., patients 242, 367 and 588). Conversely, in cases where 
patients were observed to not respond to the combination therapy, the prediction was scored as “false positive” 
(FP) if the patient was predicted to respond to at least one of the drugs (e.g., patients 272 and 1145). Instances 
where the patient is both predicted and observed not to respond to the combination therapy are scored as “true 
negative” (TN) (e.g., patients 286 and 545) while cases where the patient responded to the combination therapy 
but is predicted not to respond to any of the administered drugs was scored as “false negative” (FN) (e.g., patient 
BJ1; Table 1).

Based on these criteria, the computational predictions resulted in 17 TP, 2 TN, 3 FP and 1 FN. This equates 
to a positive predictive value (PPV) of 85% (sensitivity 94.4%), the negative predictive value (NPV) was 66.7% 
(specificity of 40%) equating to an overall accuracy of 82.6%. The low specificity may, in part, be due to sampling 
error since only five patients were observed to be non-responders by the above criteria in this study group.

One possible clinically useful application of our models is depicted in Fig. 4. As shown (see also Supplementary 
Fig. S1), the predictive scores of an individual patient can be mapped across the distributed scores of all previously 
profiled patients providing information on those drugs most likely to be effective as treatments for an individual 
patient. Patient 545 was both predicted and observed (Table 1) not to respond to carboplatin/paclitaxel treatment. 
An estimated 20–30% of all ovarian cancer patients treated with this standard-of-care combination therapy sim-
ilarly fail to respond to treatment13 leaving physicians with the decision as to what to try next. ML-based models 
with validated high positive predictive values, such as reported here, may provide physicians with a useful alter-
native to the traditional trial-and-error strategies. For example, based on the predicted responses of patient 545 to 
the possible second-line drugs modeled in this study, gemcitabine stands out as a preferred choice.

Patient Drug Observed Response

Predicted Predicted Predicted Predicted Predicted Predicted Predicted Predicted

Carboplatin Paclitaxel Cisplatin Gemcitabine Docetaxel Doxorubicin Gefitinib Topotecan

229 Carbo&GEM R (TP) NR (FN) NR R R (TP) R NR NR NR

242 Carbo&Taxol R (TP) R (TP) NR (FN) NR NR R R R NR

272 Carbo&Taxol NR (FP) NR (TN) R (FP) NR R R NR NR NR

286 Carbo&Taxol NR (TN) NR (TN) NR (TN) NR NR NR R R NR

317 Carbo&Taxol R (TP) R (TP) R (TP) R R NR R NR NR

336 Carbo&Taxol R (TP) R (TP) R (TP) R R R NR NR NR

367 Carbo&Taxol R (TP) R (TP) R (TP) NR R NR NR NR NR

413 Carbo&Taxol R (TP) R (TP) R (TP) NR R R R NR NR

489 Carbo&Taxol R (TP) R (TP) R (TP) NR NR NR NR NR R

528 Carbo&Taxol R (TP) R (TP) R (TP) NR NR R NR NR NR

542 Carbo&Taxol R (TP) R (TP) R (TP) NR R NR NR NR NR

545 Carbo&Taxol NR (TN) NR (TN) NR (TN) NR R R NR NR R

588 Carbo&Taxol R (TP) R (TP) NR (FN) R R R NR NR R

617 Carbo&Taxol R (TP) R (TP) R (TP) NR R NR NR NR NR

620 Carbo&Taxol R (TP) R (TP) R (TP) NR R NR NR NR NR

813 Carbo/Cis/Taxol R (TP) NR (FN) R (TP) R (TP) NR NR NR NR NR

992 Topotecan NR(TN) R NR NR R NR NR NR NR (TN)

1012 Carbo & docetaxel R(TP) NR (FN) NR R R R (TP) R NR NR

1122 Carbo&Taxol R (TP) NR (FN) R (TP) NR R NR NR NR NR

1129 Doxorubicin R (TP) NR R R R NR R (TP) NR NR

1145 Carbo&Taxol NR (FP) R (FP) NR (TN) NR NR NR NR NR R

BJ1 Carbo&Taxol R (FN) NR (FN) NR (FN) R R NR NR NR NR

BJ4 Carbo&Taxol R (TP) NR (FN) R (TP) R R R R NR NR

Totals: 17TP,2TN,3FP,1FN

Table 1.  Predicted and observed responses of 23 ovarian cancer patients treated with one or more of eight 
chemotherapeutic drugs.
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Discussion
Cancer is a complex disease. The fact that there are a multitude of possible molecular paths to developing even 
the same type of cancer explains, in large measure, why the response to any given chemotherapeutic drug can 
be highly variable across patients14. Our increasing ability to accurately profile individual patient tumors on the 
molecular level is widely viewed as a promising resolution to this problem. Indeed, a major goal of modern cancer 
medicine is the ability to accurately predict optimal drug therapies based upon the personalized molecular pro-
files of individual patient tumors.

Accurate predictions in cancer biology, as in all areas of science, can be based upon established cause-and-effect 
relationships or upon significant correlations detected in large sets of relevant data. While we are well on our way 
to the day when we may fully understand the molecular causes of all cancers and treat them accordingly, we are not 
there yet. One promising interim solution is the application of prediction algorithms derived from ML-detected 
correlations between the molecular profiles of large numbers of cancers and associated responses to a variety of 
therapeutic drugs15.

We recently reported on the use of our open access SVM-based algorithms to accurately (>80%) predict the 
collective response of 273 ovarian cancer patients to seven commonly prescribed chemotherapeutic drugs6. In 
this current study, we were interested in evaluating the performance of our approach to predict individual patient 
responses to drugs based on gene expression profiles of each individual’s tumor. Employing gene expression 
(RNA-seq) profiles of 152 cancer patients downloaded from the TCGA database, we were able to predict the 

Figure 3.  Comparison of the predicted and observed responses of two ovarian cancer patients to carboplatin 
and paclitaxel therapies. The predicted response scores of each patient (red line) are plotted over the distribution 
of the previously predicted scores of 273 ovarian cancer patients6. Patient 286 (A) is predicted not to respond to 
either drug (negative scores) while patient 336 (B) is predicted to respond to both. (C,D) Patients are considered 
to be responsive to treatments if their respective CA-125 values dropped below normal values (<35, dashed blue 
line; dashed red line = day of surgery). Patient 286 (C) is a non-responder while patient 336 (D) is a responder.
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response of individual patients treated with either gemcitabine or 5-FU with >81% accuracy. In a second study, 
the response of individual ovarian cancer patients to eight commonly prescribed chemotherapeutic drugs, based 
on microarray gene expression profiles of each patient’s tumor, was predicted with an overall accuracy of 83% and 
a PPV of 85%. The high PPV of our algorithms across multiple drugs suggests a potential clinical utility of our 
approach to identify promising second-line treatments for patients failing standard-of-care first-line therapies.

Figure 4.  Algorithms with high positive predictive value (PPV) may be of particular clinical benefit in the 
selection of alternative second-line chemotherapies. Patient 545 was predicted (and observed, see Table 1) not 
to respond to standard-of-care carboplatin/paclitaxel therapy. Of possible second-line therapies, gemcitabine is 
predicted to be the preferred choice.
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It should be noted that although our models have, thus far, focused on the predicted response of cancer patients 
to current standard-of-care drug therapies for which sufficient datasets are available, the approach is equally as well 
applicable to emerging immuno- and other targeted gene therapies where patient responses are also known to be 
variable and likely dependent upon the personalized genomic makeup of individual tumors e.g., 16.

Methods
TCGA data.  Clinical trial data (12,051 records) were downloaded from TCGA for 32 types of cancer. Drug 
response information for each patient was obtained by querying the TCGA clinical cases field via the Genomic 
Data Common’s (GDC) API. The clinical data needed to be assessed to determine which were the best drugs 
to investigate. We first defined a “responder” as a patient who had partial or complete response and a “non-re-
sponder” as a patient with clinically progressive or stable disease. To determine viable candidate drugs for the 
analysis, we required a sample size of at least 30 patients for the drug of interest with at least 15 for each type of 
response. The clinical trial data were then cleaned using fuzzy matching and manual curation to ensure consist-
ency of drug name and formatting, and only patients on a single candidate drug at a time were retained for evalu-
ation. From this list, gemcitabine and fluorouracil were selected as optimal drugs for our analysis.

Corresponding upper-quartile normalized, fragments per kilobase of transcript per million mapped reads 
(UQ-FPKMs) from patient primary tumor samples were downloaded using the GDC API. GDC provides 
UQ-FPKMs to facilitate cross-sample comparison and differential expression analysis. This RNA-seq based 
expression normalization method can be defined as:

= ∗ ∗FPKM [RM 10 ]/[RM L]g
9

75

•	 RMg: The number of reads mapped to the gene.
•	 RM75: The number of reads mapped to the 75th percentile gene in the alignment.
•	 L: The length of the gene in base pairs.

Each UQ-FPKM value is analyzed as a separate feature for each sample. Genes were removed from the dataset 
if >25% of the samples displayed a zero expression value. We applied SVM on training data to get weights for each 
feature, and sorted the features based on the weights (Supplementary Table S3).

Linear support vector machine (SVM) is employed recursively as a classification model to separate samples 
into two classes (drug sensitive and drug resistant) as described previously6. Briefly, the samples are represented 
as a vector x, and the two classes are divided in the dataspace by a hyperplane wx′ + b = 0 that maximizes the 
margins between the learning samples of the two classes. This margin is defined such that:

′ + ≥ =wx b c1, 1

′ + ≤ − = −wx b c1, 1

The test prediction is a binary classification and the prediction scores for test samples are generated using the 
decision function:

∑= −





+





=
prediction score x w x b_ 1

f

i

f f
1

where w and b are respectively the weight vector and bias parameters from the SVM model. The normalized test 
sample gene-expression data are the input x with RFE selected i number of features. We call a sample drug sensi-
tive if the computed score is higher than 0, and drug resistant if the score is lower than 0.

Recursive feature elimination (RFE) is employed to determine the minimum set of features that maximize 
accuracy on the test dataset. The approach starts by removing the 100 features with the lowest ranked weights in 
the sorted feature list. An SVM model is subsequently built using the remaining features and this process pro-
ceeds recursively until the number of remaining features reaches 100. Thereafter, features are removed one at a 
time until the most informative set of features is obtained. If multiple highest accuracy models are generated, the 
model with the fewest number of features is adopted. The final predictive model for each drug is the one with the 
most informative set of features. Leave one out cross-validation (LOOCV) is subsequently used to evaluate the 
performance of each of the models as previously described6.

Ovarian cancer data.  Informed patient consents were obtained under appropriate Georgia Institute of 
Technology Institutional Review Board protocol (H14337). Samples of primary tumors collected from 23 ovarian 
cancer patients (Supplementary Table S5) at Northside Hospital (Atlanta) were snap frozen in liquid nitrogen 
within one minute of surgical removal and transferred to the lab for laser capture microdissection of cancer cells 
and subsequent microarray gene-expression analysis (Affymetrix, U133Plus 2.0 arrays, ThermoFisher Scientific) 
as previously described11. Individual gene expression microarray (.CEL) files were normalized one by one against 
the original NCI 60 gene expression microarray data specific to each array (both Affymetrix U133 Plus 2 and 
Human Exon Array) using standard quantile normalization and using the mean of each probe. This approach 
creates distributions for each array that are as similar as possible in terms of statistical properties.

Patient responses to administered chemotherapies were monitored by measurement of CA-125 values prior 
and subsequent to treatment. Patients were considered to be responsive to treatments if their respective CA-125 
values dropped below normal values (<35) (Fig. 3C and D; and Supplementary Fig. S2).
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Microarray gene expression and patient drug response data were uploaded to our predictive algorithms8 and 
predictions were generated as previously described6.

Data Availability
The ovarian microarray datasets analyzed during the current study are available in the Gene Expression Omnibus 
(GSE38666, GSE GSE112798); data used from TCGA Research Network are available: https://docs.gdc.cancer.
gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/.
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