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ABSTRACT While functional gene arrays (FGAs) have greatly expanded our under-
standing of complex microbial systems, specificity, sensitivity, and quantitation chal-
lenges remain. We developed a new generation of FGA, GeoChip 5.0, using the Agi-
lent platform. Two formats were created, a smaller format (GeoChip 5.0S), primarily
covering carbon-, nitrogen-, sulfur-, and phosphorus-cycling genes and others pro-
viding ecological services, and a larger format (GeoChip 5.0M) containing the func-
tional categories involved in biogeochemical cycling of C, N, S, and P and various
metals, stress response, microbial defense, electron transport, plant growth promo-
tion, virulence, gyrB, and fungus-, protozoan-, and virus-specific genes. GeoChip 5.0M
contains 161,961 oligonucleotide probes covering �365,000 genes of 1,447 gene
families from broad, functionally divergent taxonomic groups, including bacteria
(2,721 genera), archaea (101 genera), fungi (297 genera), protists (219 genera), and
viruses (167 genera), mainly phages. Computational and experimental evaluation in-
dicated that designed probes were highly specific and could detect as little as
0.05 ng of pure culture DNAs within a background of 1 �g community DNA (equiva-
lent to 0.005% of the population). Additionally, strong quantitative linear relation-
ships were observed between signal intensity and amount of pure genomic (�99%
of probes detected; r � 0.9) or soil (�97%; r � 0.9) DNAs. Application of the
GeoChip to a contaminated groundwater microbial community indicated that envi-
ronmental contaminants (primarily heavy metals) had significant impacts on the bio-
diversity of the communities. This is the most comprehensive FGA to date, capable
of directly linking microbial genes/populations to ecosystem functions.

IMPORTANCE The rapid development of metagenomic technologies, including mi-
croarrays, over the past decade has greatly expanded our understanding of complex
microbial systems. However, because of the ever-expanding number of novel micro-
bial sequences discovered each year, developing a microarray that is representative
of real microbial communities, is specific and sensitive, and provides quantitative in-
formation remains a challenge. The newly developed GeoChip 5.0 is the most com-
prehensive microarray available to date for examining the functional capabilities of
microbial communities important to biogeochemistry, ecology, environmental sci-
ences, and human health. The GeoChip 5 is highly specific, sensitive, and quantita-
tive based on both computational and experimental assays. Use of the array on a
contaminated groundwater sample provided novel insights on the impacts of envi-
ronmental contaminants on groundwater microbial communities.
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Microorganisms are the most diverse and ubiquitous life on earth. They are integral
to ecosystem processes and functions of critical importance in global biogeo-

chemical cycling, climate change, environmental remediation, engineering, and agri-
culture (1, 2). Despite their importance, determining microbial community structure
and functions remains challenging for several reasons. First, microbial diversity is
extremely high in most environments. For example, 1 g of soil could contain 2,000 to
8.3 million species (3–5), a majority of which (�99%) have not been cultivated (6). The
number of microbial cells within environmental habitats is also extremely large. Micro-
bial cell numbers have been estimated to be 1.2 � 1029 in the open ocean (7),
2.9 � 1029 in subseafloor sediment (8), and 2.6 � 1029 in soil (7). These communities
also represent a high diversity of functional potential (9). Establishing mechanistic
linkages between microbial biodiversity and ecosystem functioning poses another
grand challenge for microbiome research.

Several types of high-throughput technologies have been developed to characterize
microbial communities, including next-generation sequencing (10–15), microarrays
(16–19), and quantitative PCR (20–22). These technologies have provided unprece-
dented insights into microbial biodiversity and allowed for the detection of novel
processes and functions (23). Among these, high-throughput sequencing and
microarrays are two of the most widely used (24), with distinct differences in
susceptibility to random sampling and nontarget DNA errors, detection of novel
and rare species, quantitation, and data analysis (24). Consequently, both have
unique advantages and disadvantages in terms of detection specificity, sensitivity,
quantification, and reproducibility (24). It is highly beneficial if both types of
technologies are used in a complementary fashion to address fundamental ques-
tions in microbial ecology (24).

Over the last few decades, a variety of DNA microarray-based technologies have
been developed for microbial detection and community analysis (25). Phylogenetic
gene arrays contain probes from phylogenetic markers such as rRNA genes, which are
useful for identifying specific taxa and studying phylogenetic relationships. Functional
gene arrays (FGAs) target genes involved in various functional processes (24) and are
valuable for assessing the functional composition and structure of microbial commu-
nities. Although various types of FGAs are available (24), GeoChip, a generic FGA
targeting hundreds of functional gene categories important to biogeochemical, eco-
logical, and environmental analyses, is the most widely used. GeoChip has been shown
to be an effective, sensitive, and quantitative tool for examining the functional structure
of microbial communities (19, 26–31) from a variety of environments (32, 33), including
soils (27–29, 31, 34–36), aquatic ecosystems (37, 38), extreme environments (26, 39),
contaminated habitats (40–47), and bioreactors (48–51).

Although many technical issues regarding microarray technology have been solved,
several critical bottlenecks still exist. One of the greatest challenges is that most of the
probes on previous versions of GeoChip were derived from genes/sequences in publicly
available databases and do not necessarily fully represent the diversity of the microbial
communities of interest given the rapid expansion of sequence information in these
databases. Consequently, it could be difficult to use these older versions of GeoChip to
fully address research questions in a comprehensive manner. Thus, further develop-
ments are needed to improve representativeness. In this study, we aimed to develop a
more comprehensive and representative generation of FGA, GeoChip 5.0. Previous
functional gene families were updated, and more than 1,000 new functional gene
families were added. The newly developed GeoChip 5.0 was systematically evaluated in
terms of specificity, sensitivity, and quantitative capability. It was then applied to
analyze the responses of groundwater microbial communities to high concentrations of
U(VI), nitrate, and low pH. Our results demonstrate that the developed GeoChip is
highly specific, sensitive, and quantitative for functionally profiling microbial commu-
nities.

Shi et al.

July/August 2019 Volume 4 Issue 4 e00296-19 msystems.asm.org 2

https://msystems.asm.org


RESULTS
Selection of gene families and categories for array fabrication. Functional gene

families from previous GeoChip versions (410 gene families) were updated and in-
cluded in GeoChip 5. During this update, some gene families were combined or
separated based on newly discovered gene families or increased sequence availability.
For example, 12 dioxygenase gene families were combined into three families due to
similarities in the sequences of these families; norB was split into two gene families to
differentiate a new subgroup discovered after the design of GeoChip 4. GeoChip 5.0
also greatly expanded overall gene and sequence coverage by adding more than 1,000
new gene families from broad, functionally divergent taxonomic groups of bacteria,
archaea, fungi, algae, protists, and viruses. The rationale for selecting various gene
families is detailed in the supplemental material and previous publications (16, 17,
52–54).

Probes for the GeoChip 5.0S and 5.0M cover 1,517 gene families, including those
involved in C (118 gene families), N (22 gene families), S (17 gene families), and P (7
gene families) cycling; organic contaminant degradation (157 gene families); stress
response (86 gene families); metal homeostasis (105 gene families); microbial defense
(87 gene families); plant growth promotion (31 gene families); electron transport (35
gene families); virulence (587 gene families); virus-, fungus-, and protozoan-specific
genes (115, 66, and 83 gene families, respectively); and gyrB (Table 1). GeoChip 5.0M
has substantially more probes than GeoChip 4, 19% to 597% more for most of the
functional gene categories (Table 1). However, the number of probes for N cycling and
organic contaminant degradation decreased slightly due to a greater coverage by
group-specific probes (Table 1). From a taxonomic/phylogenetic perspective, GeoChip
5.0M targets �6,500 bacterial strains (1,122 genera), 282 archaeal strains (101 genera),
625 fungi (297 genera), 362 protists (219 genera), 86 other lower eukaryotes (64
genera), 1,364 viral strains (167 genera), and uncultured/unidentified organisms (33
genera) (Table 2; see also Table S2 in the supplemental material). Phylogenetic cover-
age in GeoChip 5 is 93% to 166% greater than in GeoChip 4. Detailed comparisons of
functional gene and phylogenetic coverage in GeoChip 4 and 5 are presented in Tables
S1 and S2.

TABLE 1 Summary of probes on GeoChip 5.0M by functional gene categoriesc

Functional gene
category

No. of:
% of probe
changes compared
to GeoChip 4Subcategories

Genes or
enzymes

Sequence-specific
probes

Group-specific
probes

Total
probes

Covered
CDS

C cycling 3 118 4,354 19,261 23,615 50,040 �114
N cycling 7 22 2,397 3,600 5,997 11,654 �19
S cycling 5 17 1,969 2,317 4,286 6,823 �38
P cycling 4 7 960 2,300 3,260 6,245 �143
Metal homeostasis 24 105 5,084 37,543 42,627 91,614 �360
Organic contaminant

degradation
7 157 2,204 9,241 11,445 27,938 �33

Electron transport 3 35 612 1,348 1,960 3,351 �72.3
Stress response 18 86 2,098 23,634 25,732 79,356 �19
Plant growth

promotion
7 31 957 2,263 3,220 5,720 NAa

Microbial defense 4 87 3,284 19,954 23,238 50,019 �597
Virulence 10 587 1,264 3,596 4,860 10,863 �30
Virus specific 4 115 1,521 1,336 2,857 5,182 �167
Protozoan specific 10 84 845 615 1,460 2,146 NAa

Fungus specific 9 66 2,559 2,079 4,638 6,987 �7
GyrB 1 1 532 2,234 2,766 9,997 �18

Total 116 1,447 30,640 131,321 161,961 365,651b �97
aNA (not applicable) because this is a new category for GeoChip 5.0.
bTotal number of covered coding DNA sequences (CDS) does not equal the sum of those from individual categories due to the presence of CDS that were covered in
two or more categories.

cDetailed information on individual subcategories of functional genes is presented in Table S1.
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GeoChip 5.0 design and overall features. GeoChip 5.0 was in situ synthesized by
Agilent’s SurePrint technology. The spots are circular (30-�m diameter). Compared to
other array technologies, Agilent arrays have a wider dynamic range, higher sensitivity,
and better quantitative capability (55). GeoChip 5.0S contains �57,000 probes for
�151,000 target genes and is focused on the analysis of key ecological and geochem-
ical processes (C, N, S, and P) and other important functional gene groups such as
organic contaminant degradation genes, a subset of metal resistance genes that
transform the metal (reductases, oxidases, and transferases), and antibiotic resistance
genes that alter or degrade the target antibiotic (Table S3).

GeoChip 5.0M is a more comprehensive design and contains �162,000 probes from
�365,000 target genes, covers all the functions on the smaller array, and includes a
wider range of genes from additional functional categories, such as virulence, plant
growth promotion, and microbial defense, across different organismal groups (bacteria,
archaea, fungi, algae, protists, and viruses) (Table 1; Table S1). GeoChip 5.0M was
designed for a general survey of environmental, ecological, and biogeochemical pro-
cesses. Detailed differences in the numbers of probes across different gene families
between GeoChip 5.0S and 5.0M are listed in Table S3.

Control probes for hybridization, gridding, and data analysis are present in both
GeoChip 5.0S and 5.0M (Table S3). GeoChip 5.0M contains 5,282 probes targeting 16S
rRNA sequences as positive controls and 3,390 Agilent negative controls. To assist with
normalization of signal intensity, GeoChip 5.0M has 3,378 probes targeting six se-
quenced hyperthermophile genomes and 1,360 common oligonucleotide reference
standards (56). GeoChip 5.0S contains the same controls but with fewer probes for each
(Table S3).

Optimization of hybridization conditions. Agilent arrays typically use 60-mer
probes and are hybridized at 65°C with pure genomic DNAs (57). However, GeoChip
probes are 50-mers and are used for detecting microbial populations in complex
communities, so hybridization conditions need to be optimized. First, temperature is
one of the most important variables in determining hybridization specificity and
efficiency. In addition, our previous studies indicated that adding formamide to the
hybridization buffer is useful for achieving high specificity and low background for
environmental DNAs (16, 17, 52, 58, 59). Therefore, hybridization temperatures (60 to
75°C) and formamide concentrations (0 to 25%) were evaluated. Our results indicated
that good hybridization can be achieved at 67°C and 10% formamide as judged visually
(i.e., 16S and reference standard control probes are visible, and a reasonable number of
target probes are positive) (Fig. S1).

Template DNA concentration also has significant impacts on hybridization effi-
ciency. Thus, different amounts of microbial community DNAs were hybridized using

TABLE 2 Summary of probes in GeoChip 5.0M within broad microbial groupse

Major microbial
group

No. of:
% of probe
changes compared
to GeoChip 4Phyla Genera Species Strains Genes Probes

Covered
CDS

Bacteria 33 1,122 2,721 6,465 1,003 141,153 333,675 �93
Archaea 6 101 188 282 269 5,728 38,978 �124
Fungi 7 297 404 625 226 8,856 21,101 �130
Protists 10 219 251 362 201 2,051 5,376
Other eukaryotesa 7 64 66 86 62 509 1,170
Viruses 1 167 311 1,364 116 2,848 6,028 �166
Unclassifiedd 125 816 2,561 �116
Total 64 1,970 3,941 9,184 1,447b 161,961 365,651c �97
aOther eukaryotes include Metazoa and Viridiplantae.
bTotal number of genes does not equal the sum of those from individual taxonomic groups due to the presence of the genes shared across two or more taxonomic
groups.

cTotal number of covered CDS does not equal the sum of those from individual taxonomic groups due to the presence of the CDS covered in two or more taxonomic
groups.

dThe sequences are unclassified due to missing annotations in the data source; most of these are metagenomics sequencing contigs.
eDetailed information on the phylogenetic distribution of functional genes is in Table S2.
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the optimized hybridization conditions determined above. Although the number of
spots detected increased as DNA concentration increased, the percentage of positive
spots began to plateau at about 500 ng for GeoChip 5.0S and about 1,000 ng for 5.0M
(Fig. 1a and b). However, for both GeoChip 5.0S and 5.0M, 250 ng of DNA resulted in
approximately half the number of positive spots as with the recommended DNA
amount (Fig. 1a and b), and similar hybridization patterns were present with 250 to
1,000 ng DNA (Fig. S1). As such, smaller amounts of DNA could be used if sufficient DNA
is not available to avoid the need for amplification as long as the same amount is used
for all samples. Based on the results of these experiments, the recommended hybrid-
ization conditions for the Agilent format GeoChip are 1,000 (5.0M) or 500 (5.0S) ng DNA
and hybridization at 67°C plus 10% formamide.

Specificity of designed arrays. The specificity of the designed probes was deter-
mined computationally and experimentally. For sequence-specific probes, the maxi-
mum identity, maximum stretch length, and minimal free energy to the closest
nontarget sequences were calculated. Most of the sequence- or group-specific probes
(82.2%) had �60% maximum sequence identities to nontarget sequences in the NCBI
databases (nt and env_nt) (Fig. 2a). Less than 1% of the probes showed 86 to 90%
sequence identity with nontarget sequences, and none had �90% sequence identity
with nontarget sequences (Fig. 2a). Most of the probes (93.8%) had maximal continuous
sequence stretches of �19 bp to nontarget sequences (Fig. 2c). In addition, 99.3% of
probes had minimal free energy of ��30 kcal/mol (Fig. 2e). As previously demon-
strated experimentally, the designed probes would be highly specific if they have �90
to 92% sequence identity, �20-bp continuous sequence stretch, and ��35 kcal/mol
free energy to nontarget sequences (60).

There are potential mismatches between group-specific probes and corresponding
target sequences that could affect hybridization efficiency and hence subsequent
sensitivity and quantification. Thus, group-specific probes were further required to have
minimal sequence identity of �94%, minimal continuous stretch length of �35 bp, and
maximal free energy of ��60 kcal/mol to the corresponding targeted sequences (16,
17). More than 94% of the designed group-specific probes had a sequence identity of
�98%, continuous sequence stretches of �45 bp, and free energy of ��70 kcal/mol to
corresponding target sequences (Fig. 2b, d, and f).

Hybridization specificity was further evaluated using perfect match (PM)/mismatch
(MM) probes (61). A set of 938 PM probes and a corresponding set of 938 MM probes
for both Desulfovibrio vulgaris Hildenborough (Gram negative, GC content �63%), and
H10 (Gram-positive, GC content �37%) were added to the GeoChip 5.0S. MM probes
were generated by dividing a PM probe into 5 equal segments and randomly intro-
ducing one mismatch into each segment (61), for a total of 5 mismatches (10%

FIG 1 Relationship between detected spots and the concentration of community DNAs used. (a)
Hybridization of grassland soil community DNAs with GeoChip 5.0S (see the images in Fig. S2). (b)
Hybridization of community DNAs from a wastewater treatment plant with GeoChip 5.0M. Different
amounts of unamplified community DNAs were labeled with Cy3 in triplicate. Hybridizations were carried
out at 67°C plus 10% formamide for 24 h. Any spots with a signal-to-noise ratio (SNR) of �2 were
considered positive.
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difference). Hybridization signals from the MM probes should represent nonspecific
cross-hybridization (i.e., background noise) to the corresponding PM probes (61).
Previous studies suggested that any probes with a signal intensity ratio of PM/MM �1.3
would be considered a positive hybridization signal (19). To test specificity, equal
amounts (100 ng) of pure culture DNAs were mixed, labeled, and hybridized in tripli-
cate. Under the hybridization conditions used (67°C and 10% formamide), most probes
(96.8% for D. vulgaris Hildenborough and 95.1% for H10) had PM/MM ratios of �10
(Fig. 3). None of the PM/MM probes had a ratio of �1.3, and a very small portion (0.8%
for D. vulgaris Hildenborough and 1.2% for H10) had ratios of �5.

Sensitivity of the designed arrays. The sensitivity of the arrays was evaluated with
genomic DNAs from D. vulgaris Hildenborough and H10. Pure culture DNAs (0.05, 0.1,
0.5, 1, 5, 10, 50, and 100 ng) were mixed with grassland soil DNAs so that the total
amount of DNAs used for hybridization was 1,000 ng. The mixed DNAs were hybridized
in triplicate with the GeoChip 5.0S containing the PM/MM probes.

As shown in Fig. 4, �90% (�932) of the pure culture probes were detected at a
genomic DNA concentration of 0.5 ng (0.05% of the total community DNA) for D.
vulgaris Hildenborough and 5 ng (0.5% of the total) for H10. Over 50% of the probes

FIG 2 Computational evaluation of the specificity of the designed probes based on sequence identity,
length of continuous sequence stretch, and free energy. Three parameters were evaluated by comparing
the designed probes to sequences in the databases. (a) Maximal sequence identity (%) of a probe
(sequence or group specific) to its closest nontarget sequences. (b) Minimal sequence identity (%) of a
group-specific probe to its targeted group sequences. (c) Maximal sequence stretch length (bp) of a
probe to its closest nontarget sequences. (d) Minimal sequence stretch length (bp) of a group-specific
probe to its targeted group sequences. (e) Minimal free energy (kcal/mol) of a probe to its closest
nontarget sequence. (f) Maximal free energy (kcal/mol) of a group-specific probe to its targeted group
sequences.
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showed positive hybridization at a genomic DNA concentration of 0.1 ng (0.01% of the
total) for D. vulgaris Hildenborough and 0.5 ng (0.05% of the total) for H10. A small
percentage of probes (13.6% D. vulgaris Hildenborough, 2.1% H10) were detected even
at 0.05 ng DNA (0.005% of the total). The low-GC-content organism (H10) had a
hybridization sensitivity roughly 10 times lower than the high-GC organism (D. vulgaris
Hildenborough), likely due to the weaker bond between the A and T bases compared
to that between G and C.

Quantitation of the designed arrays. The quantitative capability of the arrays was
first evaluated with D. vulgaris Hildenborough and H10 in the presence of soil DNAs as
background (Fig. 4). Both signal intensity and DNA concentration were log transformed.
The total signal intensity for all genes was highly correlated with the total amount of
DNAs used for both D. vulgaris Hildenborough (Pearson correlation coefficient,
r � 0.982) and H10 (r � 0.961) (Fig. 5a). Also, all detected genes showed significant
correlations (r � 0.824 to 0.999; P � 0.05) with DNA concentration over more than 3
orders of magnitude. Extremely strong correlations between signal intensity and DNA
concentration were observed for some representative genes (Fig. 5b). In addition, 937

FIG 3 Experimental evaluation on the specificity of designed arrays with perfect match (PM)/mismatch
(MM) probes. One hundred nanograms of genomic DNAs was labeled with Cy3 and hybridized with a
modified GeoChip 5.0S in triplicate. For each PM or MM pair, the net signal intensity was obtained by
subtracting the signal intensity from the Agilent negative controls within a subarray from the raw signal
intensity. The ratio of PM to MM probe pairs was estimated. DvH, D. vulgaris Hildenborough.

FIG 4 Sensitivity evaluation of the designed arrays with pure genomic DNAs. Genomic DNAs from D.
vulgaris Hildenborough and H10 (0.05 ng to 100 ng) were mixed with grassland soil community DNAs as
a background to equal 1,000 ng. The mixed DNAs were labeled with Cy3 and hybridized in triplicate to
a GeoChip 5.0S containing 938 probes each from D. vulgaris Hildenborough (DvH) and H10.
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D. vulgaris Hildenborough and 877 H10 genes were detected in at least 6 of the
concentrations tested and about 99% had r � 0.9 (Fig. 5c).

The quantitative nature of the arrays was also assessed with soil DNAs. Soil DNAs
from a grassland (1, 5, 10, 50, 100, 250, 500, and 1,000 ng) were mixed with salmon
sperm DNAs as a background to equal 1,000 ng DNA. The mixed DNAs were hybridized
with GeoChip 5.0S. As with pure culture DNAs, strong correlations were observed
between the total signal intensity of all detected probes and DNA concentrations used
(Fig. 5d). A total of 2,496 genes were detected in the two highest concentrations and
across at least 4 of the other concentrations, all of which showed significant correlations
(P � 0.05) between the signal intensity and DNA concentrations across at least 3 orders
of magnitude. Some genes had correlations of �0.99 (Fig. 5e). About 97% of the genes
had r of �0.9 (Fig. 5f).

Application of GeoChip 5.0 to analysis of contaminated groundwater microbial
communities. To demonstrate the usefulness of the developed GeoChip, we examined
the impacts of heavy metal contamination on groundwater microbial communities at
the Oak Ridge Integrated Field Research Center (OR-FRC). Twelve wells, representing a
range of contamination levels [no (L0), low (L1), intermediate (L2), and high (L3)
contamination] were selected. A number of physical, chemical, and biological variables
were measured for each sample, including heavy metals, pH, nitrate, and sulfide

FIG 5 Quantitative evaluation of the designed arrays with pure culture and soil community DNAs. (a)
Relationship of total signal intensity of all detected spots to the amount of pure culture DNAs used. (b)
Relationship of the signal intensity of selected representative probes to the amount of pure culture DNAs
used. (c) Distribution of Pearson correlation coefficients (r) based on individual spots for pure culture
DNAs. (d) Relationship of total signal intensity of all detected spots to the amount of soil community
DNAs used. (e) Relationship of signal intensity of selected representative probes to the amount of soil
community DNAs used. (f) Distribution of Pearson correlation coefficients (r) based on individual spots
for soil community DNAs.

Shi et al.

July/August 2019 Volume 4 Issue 4 e00296-19 msystems.asm.org 8

https://msystems.asm.org


(Table S4) (47, 62). Detrended correspondence analysis (DCA) of the environmental
variables showed that, overall, each group of wells (i.e., L0, L1, etc.) was distinctly
different from the other groups, but the individual samples within a group were highly
similar (Fig. S2a), indicating that the geochemical environments are quite different
among these wells.

A total of 20,295 genes were detected across all samples, varying significantly across
samples. As expected, both functional gene richness and Shannon-Weaver diversity
decreased significantly as contamination increased, but there was no influence on
evenness (data not shown). Microbial community functional structure was also quite
different among these sample groups as shown in the DCA ordination plots (Fig. S2b)
with more obvious separation among the groups and tighter clustering within groups
than with the environmental variables (Fig. S2b).

A total of 114 gene families involved in metal homeostasis were detected across all
samples. Significant (P � 0.05) differences in the relative abundances of many gene
families (32% to 55%) were observed among the contaminated group samples (L1 to
L3) and the control (L0) (Fig. S3). Compared with L0, the relative abundances of 37 gene
families were significantly different in L1, with 18 (e.g., arxA and arsAF for As homeo-
stasis) having a higher relative abundance in L1; 47 gene families in L2 were signifi-
cantly different, 25 of which (e.g., merH and merG for Hg homeostasis) were higher; and
63 gene families were significantly different in L3, with 31 (e.g., chrA and chrR for Cr
homeostasis) that were higher. Significantly higher relative abundances of gene fam-
ilies involved in metal resistance (e.g., chrA and chrR for Cr; corC for Co; metC, merB,
merG, and merH for Hg; zitB for Zn; and silA for Ag) were observed in L2 and L3
compared to L0, but not L1. The above results suggest that the composition of
functional genes in the contaminated samples, especially L2 and L3, had altered
compared to L0, with an enhanced capability for resistance to relevant metal contam-
inants (e.g., Cr, Co, Ni, Hg, Zn, and Ag).

Canonical correspondence analysis (CCA) was also performed to further understand
which environmental variables controlled the groundwater microbial community struc-
ture at this site. Among the 41 environmental variables, many were highly correlated
with each other (Fig. S4a) and 7 major clusters were identified based on hierarchical
clustering analysis (Fig. S4b). We selected one variable from each cluster (U, pH, redox,
Se, O2, dissolved inorganic C [DIC], dissolved organic C [DOC] [boxed in Fig. S4b]) to
represent the variables in that cluster for subsequent CCA. The CCA results showed that
differences in the functional gene composition of the groundwater microbial commu-
nities were significantly (P � 0.001) correlated with changes in the selected variables
(Fig. 6a). The forward selection procedure identified pH, U, and DOC as variables
constraining the most variation; thus, they were further used in partial CCA and
variation partitioning analysis (VPA). Results from these assays showed that all three
variables combined could constrain 90.1% of the total variation in the microbial
community and that pH and U alone were significantly correlated with the observed
variations and explained 17% and 11% of the total variation, respectively (Fig. 6b). A
relatively large fraction of the variation was also assigned to the interactive effects of
pH and U (16.8%) and of pH, U, and DOC (14.4%) (Fig. 6b).

Comparison of GeoChip to shotgun metagenomic sequencing. Shotgun metag-

enomic sequencing is frequently used to assess the functional diversity and poten-
tial of microbial communities. To compare the performance of these two methods,
the same 9 wells examined above were sequenced using shotgun metagenomic
sequencing. GeoChip detected a much higher average functional diversity than did
shotgun sequencing for the genes of interest (GeoChip, 58,929 	 10,400; shotgun
sequencing, 5,725 	 496) (Table 3). In addition, when comparing communities from
L0, GeoChip detected a higher number of significantly different genes in L1
(GeoChip, 1,987; shotgun, 782) and L2 (1,501; 221), while similar results were
obtained for L3 (832; 971).
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DISCUSSION

Although development and application of high-throughput metagenomics technol-
ogies have revolutionized the capability of microbiologists to analyze microbial com-
munities in the environment, experimental and computational challenges still exist (24).
Thus, in this study, we have developed a new generation of FGA (GeoChip 5.0) which
contains 161,961 probes covering functional groups involved in microbial C, N, S, and
P cycling, organic contaminant degradation, stress response, metal homeostasis, mi-
crobial defense, plant growth promotion, electron transport, virulence, and virus-,
fungus-, and protozoan-specific genes and gyrB. To the best of our knowledge, this is
the most comprehensive FGA currently available for studying microbial communities
important to biogeochemistry, ecology, and environmental sciences.

Compared with previous generations, GeoChip 5.0 has several improved features.
First, new functional categories (e.g., microbial defense, plant growth promotion, and
protozoa) and subcategories (e.g., antimicrobial biosynthesis and environmental toxins)
were added. Second, gene coverage of functional gene families and targeted genes
more than tripled. Last, GeoChip 5.0 is synthesized using a different chemistry. Agilent’s

FIG 6 Associating variations in microbial functional gene structure with environmental variables. (a) CCA
based on selected environmental variables. A total of 7 environmental factors (U, pH, redox, Se, O2, DIC,
and DOC) were selected from 41 measured variables. The top two axes (CCA1 and CCA2) were included
and accounted for 50.7% and 13.8% microbial functional gene structure variation, respectively. (b) Partial
CCA-based VPA assigning variance to U, pH, and DOC. The value inside each colored circle indicates the
fraction of variance assigned to that variable alone. Asterisks show level of significance of test in partial
CCA: *, P � 0.05; **, P � 0.01. The value by the solid black line indicates the variance assigned to the
interactive effect of the two connected variables. The value inside the dashed triangle indicates the
variance assigned to the interactive effect of all three variables.

TABLE 3 Comparison of GeoChip and shotgun metagenomics sequencing

Contamination level and sequencing method Functional gene richness (no. of genes)a No. of significantly different genesb

L0
Shotgun 6,166 	 415
GeoChip 63,739 	 3,663

L1
Shotgun 5,462 	 396 782
GeoChip 66,225 	 12,710 1,987

L2
Shotgun 6,040 	 180 221
GeoChip 53,999 	 7,848 1,501

L3
Shotgun 5,231 	 285 971
GeoChip 53,357 	 11,180 832

aStandard deviation of triplicate samples.
bCompared to gene abundance in L0, t test.
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novel inkjet printing technology increases the sequence fidelity of probes compared to
that achieved by conventional printing methods, and the hydrophobic array substrate
reduces background signal from nonspecific binding to the array surface (63). These
features make GeoChip 5.0 a more comprehensive tool for analyzing microbial com-
munities and linking community structure with environmental factors and ecosystem
functioning.

Specificity is critical for microbial detection, particularly for analyzing complex
environmental samples such as soils because there are numerous homologous se-
quences for each gene present. Multiple criteria were used to achieve appropriate
specificity. First, seed sequences for a given gene were carefully selected by manual
examination to confirm that the identity of these sequences was correct and to exclude
irrelevant sequences. Second, experimentally determined criteria based on sequence
identity, continuous stretch length, and free energy were simultaneously applied for
selecting both sequence- and group-specific probes (60, 64, 65). Last, the specificity of
the selected probes was verified against NCBI databases. The above quality control
protocols resulted in a highly specific final probe set as demonstrated by computational
evaluation showing that most (95%) of the designed probes were far from the criterion
thresholds, consistent with previous GeoChip versions (16, 17, 52, 64). Experimental
evaluation using PM/MM probes showed considerable differences of signal intensity
between PM and MM probes for both high- and low-GC DNAs. Collectively, these
results suggest that this probe design strategy is extremely robust and capable of
consistently producing highly specific probes regardless of the microarray platform (16,
17, 52, 64).

Reproducibility is another essential attribute of microarrays and other high-
throughput technology. Several features of the GeoChip 5 reduce variation in signal,
thus improving reproducibility. The high specificity and sensitivity of the GeoChip 5.0
reduce variation from false-positive or -negative signals, and the use of CORS probes
reduces the variation from hybridization (56). The close clustering of replicate samples
in the CCA and DCA plots (Fig. 6 and Fig. S2b) demonstrates a high reproducibility
among samples. Further, the reproducibility of the GeoChip array has been systemat-
ically evaluated and has been found to be highly reproducible (J. D. Van Nostrand, J.
Shi, H. Yin, D. Ning, L. Wu, and J. Zhou, unpublished data). A 90 to 95% overlap in
detected probe overlap was observed among technical replicates in that study.

Array sensitivity is important for detecting lower-abundance community members.
This GeoChip version appears to be more sensitive than previous versions using other
formats (17, 58, 59, 66, 67). Our studies showed a detection limit as low as 0.005% of
DNA from a complex soil community, indicating the GeoChip 5 can detect low-
abundance populations. Previous versions were able to detect 5% of the microbial
population (59). As little as 0.2 �g community genomic DNA is enough for hybridization
without amplification. Shotgun sequencing is less sensitive than GeoChip as demon-
strated by the lower functional diversity detected by shotgun sequencing. This lack of
sensitivity in shotgun sequencing has been observed previously (68). If very little DNA
is available, whole-community-genome amplification (67) can be used. Although this
likely introduces additional variation, the experimental results are still meaningful as
demonstrated by application of the GeoChip 5.0 to analyze contaminated groundwater
microbial communities having low biomass in this study.

Effective and meaningful ecological comparisons across different ecosystems re-
quire an accurate quantitation of taxon and gene abundances. This is particularly true
for ecosystem modeling. Previous studies of conventional PCR amplification in
amplicon-based target sequencing demonstrated that target gene sequencing has little
to no quantitative ability in complex communities (69–71) as is the consensus (72, 73).
It is generally believed that shotgun sequencing should be quantitative since conven-
tional PCR is not involved (71, 74). However, due to the high inherent variation among
experimental protocols and the uncertainty in selecting bioinformatics tools for analysis
(74–76), it may be impossible to obtain absolute abundance estimations based on
shotgun sequencing data alone (74). While sequencing does not provide reliable
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quantitative data, qPCR can be used in conjunction with sequencing to provide
abundance data. However, qPCR and other gene amplification assays (e.g., functional
gene amplicon sequencing) require the use of conserved PCR primers. Designing
primers for many functional genes can be difficult due to lack of available sequences
in public databases or difficulty in finding conserved (present in all gene family
members) or specific (present in only that gene family) regions of the gene sequence.
So, gene-specific amplification can be performed on only some functional genes. In
contrast, GeoChip probes were designed to be specific to a single or similar group of
sequences, so probes can be designed for any functional gene present in the database.
Theoretically, the signal intensity from array hybridization reflects the absolute abun-
dance of DNAs used for hybridization (24). Highly quantitative results were obtained in
the current study with both complex soil DNAs (r � 0.985) and pure culture DNAs
(r � 0.995). Similar quantitative abilities have been observed with other Agilent-based
arrays (55, 77). A comparison of GeoChip and qPCR results on the same samples
demonstrated a high correlation between gene copy number and signal intensity for
GeoChip 2 and 3 (r � 0.530 and 0.724, respectively) (27), consistent with previous
experimental evaluations with both DNAs and RNAs (16, 59, 66, 67, 78).

The GeoChip 5.0 was applied to investigate microbial communities in contaminated
groundwater. The observed shift in functional gene composition as contamination
increased was expected as the contaminants at this site (e.g., NO3

�, metals, and pH)
may stimulate specific functional processes (e.g., denitrification, sulfate reduction, and
metal homeostasis) that utilize or are induced by the contaminants. Changes in the
relative abundance of metal homeostasis genes were observed in this study, and similar
results have been observed in other studies of ecosystems contaminated by heavy
metals (79–82). Contaminants can also inhibit the growth of the microbial species,
which could in turn affect general functional processes such as C cycling and drive
further functional gene changes by decreasing the abundances of related genes.
Decreases in functional gene diversity were another major impact brought about by
the presence of contaminants. Only a few microbial species with strong tolerance or
degradation ability are likely to be enhanced in this environment, while most species
are likely to be reduced due to their higher sensitivity to the toxicity of the contami-
nants (81, 83, 84). A recent study of this same site reported that emulsified vegetable
oil addition led to the dominance of several sulfate-reducing bacterial species that may
be responsible for U(IV) reduction and suggested that U(IV) was one of the key factors
controlling the local microbial diversity (85). These findings were further supported by
results from this study demonstrating significant correlations between several microbial
functional genes and environmental factors, particularly U(IV) concentration. Similar
conclusions have been drawn from other studies at this contaminated site using
GeoChip versions 2 (52, 86), 3 (87), 4 (D. J. Curtis, P. Zhang, J. D. Van Nostrand, and J.
Zhou, unpublished data), and 5 (47), indicating the data generated by the GeoChip are
consistent from version to version. In addition, a study examining a contaminated and
uncontaminated well at the OR-FRC using shotgun metagenomics found that commu-
nities from highly contaminated wells were less diverse and had a higher abundance of
stress and metal resistance genes compared to the pristine well (88), as has been
observed in the GeoChip studies referenced above. In the current study, the GeoChip
5 was able to detect a much higher functional diversity in these communities than
shotgun sequencing and was able to detect more or similar numbers of genes with
significant differences. These results showcase the effectiveness of the GeoChip 5.0 in
characterizing complex environmental microbial communities from a functional gene
perspective.

In summary, the developed GeoChip 5.0 contains �160,000 probes, covering
�370,000 sequences in �1,500 gene families. It is the most comprehensive FGA
available to date for dissecting the functional structure of complex microbial commu-
nities. Computational and experimental evaluations demonstrated that GeoChip 5.0 is
highly specific, sensitive, and quantitative for characterizing microbial community
functional composition and structure. The GeoChip allows for rapid, high-throughput,
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and cost-effective analysis of microbial communities. As previously discussed (24),
open-format sequencing-based and closed-format array-based technologies have dif-
ferent advantages and disadvantages in terms of specificity, sensitivity, quantitation,
resolution, reproducibility, and novel discovery. Thus, they should ideally be used in a
complementary fashion to address complex ecological questions within the context of
ecological, environmental, and medical applications (24). The FGA developed here is an
important part of the integrated omics toolbox for microbial community analysis.

MATERIALS AND METHODS
Sequence retrieval and probe design. Sequence retrieval and probe design for the GeoChip 5.0

were performed using the GeoChip design pipeline as described previously (16, 17). To maintain
consistency between GeoChip versions and minimize the number of probes that needed to be designed,
legacy probes from previous versions of GeoChip that were still valid were included on GeoChip 5 (see
Fig. S5 in the supplemental material). Probe design was performed using a new version of the
CommOligo software (65).

Microarray analysis. Two versions of the GeoChip 5.0 array were developed. The smaller version
(GeoChip 5.0S) has �60,000 probes per array (see Table S1 for details). The larger format (GeoChip 5.0M)
has �180,000 probes per array (Table S1). All GeoChip 5.0 microarrays were manufactured by Agilent
(Santa Clara, CA, USA) using either the 8 by 60,000 (8 arrays per slide) or the 4 by 180,000 (4 arrays per
slide) format.

Genomic DNA from Desulfovibrio vulgaris Hildenborough and Clostridium cellulolyticum H10 (H10)
was extracted using a GenElute bacterial genomic DNA kit (Sigma-Aldrich, St. Louis, MO, USA) following
the manufacturer’s instructions. Soil (5 g) and groundwater (4 to 6 liters) were extracted using freeze-
grinding mechanical lysis (89). Wastewater samples were extracted using a PowerSoil DNA isolation kit
(Qiagen, Germantown, MD, USA).

Since very small amounts of community DNAs were obtained from groundwater, whole-community-
genome amplification was required (67). DNA was labeled with Cy3 using random priming with Klenow
fragment, cleaned using a QIAquick purification kit (Qiagen) per the manufacturer’s instructions, and then
dried. Labeled DNA suspended in hybridization solution containing 10% formamide was pipetted into the
center of a gasket slide well (Agilent), covered with an array slide, sealed using a SureHyb chamber, placed
into the hybridization oven, and hybridized at 67°C for 24 h. After hybridization, slides were rinsed and imaged
with a NimbleGen MS200 microarray scanner (Roche NimbleGen, Madison, WI, USA).

All statistical analyses were performed in R (version 3.4.4, 2018-03-15) using packages stats, ape, and
vegan.

A more detailed description of methods used is in Text S1 in the supplemental material.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00296-19.
TEXT S1, PDF file, 0.5 MB.
FIG S1, TIF file, 0.5 MB.
FIG S2, TIF file, 0.2 MB.
FIG S3, TIF file, 0.3 MB.
FIG S4, TIF file, 0.3 MB.
FIG S5, TIF file, 0.4 MB.
TABLE S1, PDF file, 0.3 MB.
TABLE S2, DOCX file, 0.04 MB.
TABLE S3, DOCX file, 0.01 MB.
TABLE S4, DOCX file, 0.02 MB.
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