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ABSTRACT: Herein, we report a modular catalytic technique that
streamlines the preparation of gem-difluoroalkanes from unactivated
sp3 precursors. The method is characterized by its simplicity,
generality, and site selectivity, including the functionalization of
advanced intermediates and olefin feedstocks. Our approach is
enabled by a cooperative interplay of halogen- and hydrogen-atom
transfer, thus offering a new entry point to difluorinated alkyl
bioisosteres of interest in drug discovery.

The incorporation of difluoroalkyl groups into hydro-
carbon side chains has gained considerable momentum in

drug discovery, as these fragments offer different solubility,
acidity, molecular shape, and substrate recognition to their
parent nonfluorinated sp3 hybridized analogues (Scheme 1).1−5

In recent years, a variety of methods have been described for
preparing gem-difluoroalkanes by using particularly activated
precursors adjacent to arenes or carbonyl compounds.6,7

However, the synthesis of unactivated C(sp3)−CF2 architec-
tures is not as commonly practiced as one might initially
anticipate.8 Indeed, these scaffolds are typically obtained (a)
via difluorination of carbonyls under harsh conditions with
strong acids and/or oxidants or (b) by using stoichiometric
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Scheme 1. Catalytic Hydrodifluoroalkylation of Olefins

Scheme 2. Optimization of the Reaction Conditionsa

a1 (0.20 mmol), 2 (0.10 mmol), 4-CzIPN (1 mol %), DIPEA (0.20
mmol), AdSH (4 mol %), CH3CN (1.0 mL) and H2O (0.1 mL) at 20
°C for 24 h. b19F NMR yields using 3-Nitro-fluorobenzene as internal
standard. cIsolated yield.
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Lewis acids or organometallics.9−11 In contrast, catalytic
hydrodifluoroalkylation of unactivated olefins and difluoroalkyl
motifs devoiding activating neighboring groups, and/or
stoichiometric organometallic reagents, still remains a partic-
ularly challenging, yet highly rewarding, scenario due to the
inherent propensity of alkyl fluorides to undergo β-fluoride
elimination and/or competitive defluorination.12−15 We
hypothesized that the merger of halogen-atom transfer
(XAT) and hydrogen-atom transfer (HAT) might be suited
for our purposes (Scheme 1).16 Specifically, one-electron
photochemical oxidation of a tertiary amine might generate an
α-amino radical (A) upon deprotonation, setting the scene for
an XAT with an accessible, difluoro bromoalkane (RF2C−Br =
69 kcal·mol−1) prior to addition to an unactivated olefin. HAT
of the resulting open-shell species D with an alkyl thiol (C(sp3)
S−H = 87 kcal·mol−1) might deliver the targeted difluoroalkyl
compound and a thiyl radical. Turnover could be accomplished
by a final single-electron transfer (SET) with the reduced form
of the photocatalyst followed by protonation of the thiolate
with water, thus recovering back the propagating alkyl thiol
and photocatalyst. Herein, we report the realization of this
goal, culminating in a broadly applicable catalytic hydro-
difluoroalkylation of unactivated olefins, including the use of
light olefin feedstocks and advanced reaction intermediates.

Our study began by evaluating the catalytic hydrodifluor-
oalkylation of 1 with 2 (Scheme 2). After some experimenta-
tion, the best results were found by utilizing a combination of
4-CzIPN (1 mol %), AdSH (4 mol %), DIPEA in MeCN/H2O
under blue-LED irradiation, obtaining 3 in 89% isolated
yield.17 Interestingly, significant amounts of 3 were formed
regardless of the redox properties of the photocatalysts
employed, thus reinforcing the notion that XAT was decoupled
from redox events (entries 2−3). Note, however, that the
utilization of electron deficient amines failed to provide even
traces of 3 (see entry 6). Evaluation of the hydrogen atom
donors resulted in changes to the product ratio depending on
the steric and electronic properties of the former. Indeed, the
utilization of methyl thioglycolate and HSSiPh3 in lieu of
AdSH resulted in yields not exceeding 40%, with significant
dehalogenation of 1 being observed in the crude mixtures
(entry 7 and 8). Control experiments in the presence of other
solvents or without photocatalyst or DIPEA resulted in a
significant erosion in yield (entries 9−11).
Prompted by these results, we next focused our attention on

the preparative potential of our protocol (Scheme 3). As
shown, substrates containing alcohols (8, 16, 25−28, 30, 34−
36) or carboxylic acids (5), which are sensitive to oxidation or
prone to react with low-valent transition metals, were well

Scheme 3. Catalytic Hydrodifluoroalkylation of Unactivated Olefins with Difluorinated Bromoalkanesa,b

aReaction conditions: as for Scheme 2, entry 1. bIsolated yields, average of two independent runs. cOlefin (3.0 equiv).
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tolerated. In addition, olefins possessing secondary or tertiary
sp3 C−H bonds that are a priori susceptible for HAT with in
situ generated C (Scheme 1; 15, 17, 23, 24) or activated
olefins posed no problems (14). Although olefins containing
alkyl halides might compete with 1 for XAT, this was not the
case and 6, 7, and 29 could be obtained in good yields,
providing an additional handle via cross-coupling reactions. As
shown, the method displayed a good functional group
tolerance in the presence of ketones (4, 26), amides (3, 27,
30−33), carbamates (10, 17, 28), nitriles (12, 33), sulfonates
(31), boronic esters (18), or esters (33−36). Even substrates
containing benzylic stereocenters were suitable substrates,
resulting in 36 without noticeable erosion in stereochemical
integrity. Ethylene, the largest-volume organic chemical with
an annual production over 150 million tonnes, could be
employed as an olefin precursor en route to 37 in 91% yield.
Similarly other light olefin feedstocks such as propene, butene,
isobutene, or α-isoamylene could be employed as substrates,
obtaining the corresponding difluoroalkylated compounds 38−
41 in excellent yields. The applicability of our protocol is
further illustrated in Scheme 4. As shown, a variety of
difluorinated architectures derived from Ibuprofen (42), ethyl
L-(−)-Lactate (43), Indomethacin (44), Gemfibrozil (45), D-
Glucose (46), Estrone (47), Ezetimibe (48), Oxaprocin (49),
Naproxen (51), Paclonbutrazol (52), or Cedrol (50) could be
prepared in good yields. The latter is particularly noteworthy
given the multiple number of bridged carbon stereocenters

Scheme 4. Advanced Synthetic Intermediates (R = OBz)a,b

aReaction conditions: as for Scheme 2, entry 1. bIsolated yields, average of two independent runs.

Scheme 5. Preliminary Mechanistic Experimentsa

a58: thermal ellipsoids drawn at 50% probability.
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susceptible to ring-opening, racemization, and the presence of
tertiary alkyl sp3 C−H bonds suited for competitive HAT.
Likewise, heterocycles did not interfere (44, 48, 49, 52, 53, 54,
56). Indeed, Quinine�a priori susceptible to Minisci addition
into the pyridine backbone with alkyl radical intermediates�
could be coupled in good yield, and on a large scale (53). Even
the combination of two bioactive molecules possessing an
alkene and difluorinated backbone could be within reach,
enabling the rapid and reliable formation of 54−56.18
Although unravelling the mechanism of our catalytic

difluoroalkylation should await further investigations, we
decided to conduct experiments that might support the
mechanistic interpretation depicted in Scheme 1. Indirect
evidence for XAT between A and I could be gathered by the
isolation of 58�the identity of which was univocally
confirmed by X-ray crystallography�that likely arises from
hydrolysis of 57 (Scheme 5).17 The intermediacy of open-shell
species of type II was indirectly corroborated by radical-clock
experiments with both β-pinene and diallyl ether, resulting in
59 and 60 as the only observable products. In line with this
notion, EPR spectroscopy revealed the presence of nitroxide-
based persistent radicals 61 upon exposure of 1 to spin-
trapping N-tert-butyl-α-phenylnitrone (PBN). Next, we con-
ducted isotope-labeling studies with D2O, 1, and phenyl vinyl
ether.19 Full deuteration of 62 was anticipated for a mechanism
consisting of HAT from AdSH whereas an erosion in
deuterium content might be expected with DIPEA competing
with AdSH as the hydrogen atom donor. This was indeed the
case, and 85% deuterium incorporation was found in 62-
d1.

20,21

In summary, we report a mild and modular catalytic strategy
for accessing difluoroalkanes from simple unactivated olefins.
By leveraging the merger of halogen-atom transfer with the
appropriate radical philicities and hydrogen-atom donors, a
reliable and rapid access to a broad range of alkyl
difluoroalkanes can be within reach. The transformation is
distinguished by its exquisite chemoselectivity pattern and
broad utility across a wide variety of coupling partners,
including the application to densely functionalized intermedi-
ates and light olefin feedstocks. We anticipate that this
technique might find immediate utility for expediting access to
valuable sp3 fluorinated architectures.
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