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Abstract: Adipocytic tumors are the most common subtype of soft tissue tumors. In current clinical
practice, distinguishing benign lipomas from well-differentiated liposarcomas (WDLPS), as well
as dedifferentiated liposarcomas (DDLPS) from their morphologic mimics, remains a significant
diagnostic challenge. This is especially so when examining small biopsy samples and without the
aid of additional ancillary tests. Recognizing the important role that microRNAs (miRNAs) play in
tumorigenesis and their potential utility in tumor classification, we analyzed routine clinical tissue
samples of benign and malignant lipomatous tumors, as well as other sarcoma mimics, to identify
distinguishing miRNA-based signatures that can aid in the differential diagnosis of these entities.
We discovered a 6-miRNA signature that separated lipomas from WDLPS with high confidence
(AUC of 0.963), as well as a separate 6-miRNA signature that distinguished DDLPS from their
more aggressive histologic mimics (AUC of 0.740). Functional enrichment analysis unveiled possible
mechanistic involvement of these predictive miRNAs in adipocytic cancer-related biological processes
and pathways such as PI3K/AKT/mTOR and MAPK signaling, further supporting the relevance of
these miRNAs as biomarkers for adipocytic tumors. Our results demonstrate that miRNA expression
profiling may potentially be used as an adjunctive tool for the diagnosis of benign and malignant
adipocytic tumors. Further validation studies are warranted.

Keywords: microRNA; lipoma; well-differentiated liposarcoma; dedifferentiated liposarcoma;
undifferentiated pleomorphic sarcoma

1. Introduction

Soft tissue tumors (STT) represent a heterogeneous and biologically diverse group of
mesenchymal tumors with highly varied clinical behavior and treatment approaches. The
current standard for diagnosis is based primarily on histopathologic evaluation. However,
due to their relative rarity and overlapping morpho-phenotypic features, making an ac-
curate diagnosis of STT is challenging, even for experienced surgical pathologists. With
the recent discovery of tumor-specific genetic alterations in a growing number of STTs,
molecular testing has become increasingly indispensable as an adjunct to the diagnosis of
these neoplasms.

Adipocytic tumors are the most common type of STT [1], with lipomas and liposar-
comas representing the most common benign and malignant STTs, respectively. Benign
lipomas and their variants can be cured by simple surgical excision, and recurrences are rare.
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Of the liposarcoma subtypes, atypical lipomatous tumors/well-differentiated liposarcomas
(collectively termed WDLPS) constitute the most common subtype, comprising 40% of
all liposarcomas [2]. WDLPS is locally aggressive and can undergo dedifferentiation to
a higher-grade sarcoma (i.e., dedifferentiated liposarcoma (DDLPS)) that has significant
metastatic potential. Given the distinct biological nature of these lipomatous neoplasms,
accurate diagnosis is hence necessary for optimal management.

In current clinical practice, the diagnosis of lipomatous tumors is based primarily
on histomorphologic features which may not always be clear cut. For example, lipomas
with degenerative changes can show considerable variation in adipocytic cell size, nuclear
atypia and fat necrosis and similar changes can also be seen in WDLPS. Conversely, the
diagnostic features of WDLPS may be absent or under-represented in small tissue samples,
which are becoming commoner as clinicians gravitate towards less invasive means to obtain
diagnostic tissue. Another area of diagnostic challenge is in separating DDLPS from other
high-grade sarcomas. DDLPS have a wide morphologic spectrum but most frequently
manifest as pleomorphic or spindle cell sarcomas resembling myxofibrosarcoma (MFS)
and/or undifferentiated pleomorphic sarcoma (UPS). Given that DDLPS has a much lower
metastatic rate (15–20%) as compared to the other two sarcoma subtypes (35–50%) [2], their
separation is necessary to facilitate appropriate treatment. Hence, in the above instances,
adjunctive tools such as fluorescent in situ hybridization (FISH) and immunohistochemistry
have to be employed to aid the pathologist in making the diagnosis, but they may not
always be readily available or definitive in their interpretation.

MicroRNAs (miRNAs) belong to a family of evolutionarily conserved, short non-
coding RNAs of approximately 16–26 nucleotides in length involved in post-transcriptional
modulation of gene expression [3,4]. They play vital regulatory roles in various cellular
processes such as proliferation, differentiation, and apoptosis by degrading their target
messenger RNAs (mRNAs) or repressing translation [5,6]. In the realm of cancer pathophys-
iology, miRNA dysregulation has been widely linked to the development and progression
of numerous tumor types [7,8]. Given their roles in oncogenesis, distinct expression profiles,
and high stability in routine clinical samples [9], miRNA expression profiling has immense
potential to serve as a clinical diagnostic tool to improve tumor classification and subtyping.

Hence, with the objective of exploring the potential diagnostic utility of miRNAs,
we performed miRNA expression profiling on formalin-fixed paraffin-embedded tissue
samples of lipomas, WDLPS, DDLPS, MFS, and UPS using a novel quantitative polymerase
chain reaction (qPCR) miRNA assay, aiming to look for distinctive miRNA signatures that
can be used as a diagnostic adjunct in clinical practice to facilitate the classification of
these tumors, comparing their accuracy against the current diagnostic gold standard which
is histomorphology.

2. Results
2.1. Diagnostic Challenges of Lipomatous Tumors
2.1.1. Well-Differentiated Lipomatous Tumor

A typical case of benign lipoma is histologically characterized by lobules of mature
adipocytes with minimal variation in adipocytic size and no nuclear atypia (Figure 1A).
On the other hand, a classic case of a malignant WDLPS is histologically characterized by
adipocytes with significant variation in size and shape, as well as enlarged hyperchromatic
nuclei (Figure 1C). Stromal cells may also appear multi-nucleated. In some cases, lipoblasts
can be seen (Figure 1D). However, the diagnostic challenge arises when an otherwise
bland-appearing lipomatous neoplasm has clinical or radiological features that raise the
suspicion of a malignant lipomatous neoplasm, for instance, large size or deep location.
In these cases, the possibility of a lipoma-like WDLPS (Figure 1B) has to be considered
and histomorphology alone is unable to differentiate this entity from a benign lipoma
(Figure 1A). Hence, detection of MDM2 amplification via FISH test is required, and doing
so will incur a higher cost of diagnosis.
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Figure 1. Histological comparison between benign lipoma and malignant well-differentiated lipo-
sarcoma (WDLPS). (A) Microscopic image of a benign lipoma, showing lobules of mature adipo-
cytes with minimal variation in adipocytic size and no nuclear atypia (Hematoxylin and Eosin 
(H&E) stain, 100× magnification). (B) Microscopic image showing lipoma-like WDLPS (H&E stain, 
100× magnification). A lipoma-like WDLPS can show marked morphologic similarity to lipoma (Fig-
ure 1A), making it hard to differentiate between the two based on morphology alone. (C) Micro-
scopic image of a malignant WDLPS, showing adipocytes with significant variation in size and 
shape as well as enlarged, hyperchromatic nuclei (H&E stain, 100× magnification). (D) Microscopic 
image of a lipoblast (circled in red) from a case of malignant WDLPS (H&E stain, 200× magnifica-
tion). A lipoblast is characterized by multiple clear cytoplasmic vacuoles that identify a hyperchro-
matic nucleus. 
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The histogenesis or lineage of a high-grade pleomorphic-appearing sarcoma can gen-

erally be determined if the lower grade component can be identified histologically. For 
example, DDLPS can be diagnosed histologically when an otherwise undifferentiated-ap-
pearing pleomorphic sarcoma shows areas of lipogenic differentiation typical of a WDLPS 
(Figure 2A). In these cases, if the clinical context is concordant, the diagnosis of DDLPS 
can be rendered without the need for further ancillary tests. Similarly, high-grade MFS 
can be diagnosed histologically when the myxoid low-grade area of MFS, characterized 
by curvilinear blood vessels, spindle cells, lobulated areas and myxoid stroma, is seen 
(Figure 2B).  

However, sometimes, the lipogenic component of a DDLPS can be very focally pre-
sent or even absent, such that we do not see it in our histologic sections. In these instances, 
the dedifferentiated component of the DDLPS (Figure 2C) may show significant morpho-
logic overlap with high-grade MFS (Figure 2D) and UPS (Figure 2E), exhibiting pleo-
morphic morphology characterized by significant variation in shapes and sizes of cells, 
hypercellularity, mitotic figures, hyperchromatic nuclei, atypical stromal cells, and in 
some cases, tumor necrosis. This overlapping pleomorphic morphology makes the 

Figure 1. Histological comparison between benign lipoma and malignant well-differentiated li-
posarcoma (WDLPS). (A) Microscopic image of a benign lipoma, showing lobules of mature
adipocytes with minimal variation in adipocytic size and no nuclear atypia (Hematoxylin and
Eosin (H&E) stain, 100× magnification). (B) Microscopic image showing lipoma-like WDLPS (H&E
stain, 100× magnification). A lipoma-like WDLPS can show marked morphologic similarity to
lipoma (Figure 1A), making it hard to differentiate between the two based on morphology alone.
(C) Microscopic image of a malignant WDLPS, showing adipocytes with significant variation
in size and shape as well as enlarged, hyperchromatic nuclei (H&E stain, 100× magnification).
(D) Microscopic image of a lipoblast (circled in red) from a case of malignant WDLPS (H&E stain,
200× magnification). A lipoblast is characterized by multiple clear cytoplasmic vacuoles that identify
a hyperchromatic nucleus.

2.1.2. Dedifferentiated Lipomatous Tumor

The histogenesis or lineage of a high-grade pleomorphic-appearing sarcoma can gen-
erally be determined if the lower grade component can be identified histologically. For
example, DDLPS can be diagnosed histologically when an otherwise undifferentiated-
appearing pleomorphic sarcoma shows areas of lipogenic differentiation typical of a
WDLPS (Figure 2A). In these cases, if the clinical context is concordant, the diagnosis of
DDLPS can be rendered without the need for further ancillary tests. Similarly, high-grade
MFS can be diagnosed histologically when the myxoid low-grade area of MFS, character-
ized by curvilinear blood vessels, spindle cells, lobulated areas and myxoid stroma, is seen
(Figure 2B).

However, sometimes, the lipogenic component of a DDLPS can be very focally present
or even absent, such that we do not see it in our histologic sections. In these instances, the
dedifferentiated component of the DDLPS (Figure 2C) may show significant morphologic
overlap with high-grade MFS (Figure 2D) and UPS (Figure 2E), exhibiting pleomorphic
morphology characterized by significant variation in shapes and sizes of cells, hypercel-
lularity, mitotic figures, hyperchromatic nuclei, atypical stromal cells, and in some cases,
tumor necrosis. This overlapping pleomorphic morphology makes the differential diagno-
sis of the three tumor subtypes difficult, especially in the event of small biopsies, where
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the diagnostic areas of the tumor are not captured due to limited sampling of the tumor.
This conundrum is also further complicated by the fact that these three tumors do not have
specific or diagnostic immunohistochemical expression profiles as well.
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Figure 2. Histological comparison between dedifferentiated liposarcoma (DDLPS), myxofibrosar-
coma (MFS) and undifferentiated pleomorphic sarcoma (UPS). (A) Microscopic image of a DDLPS
(H&E stain, 100× magnification). The adjacent well-differentiated component is identified (left
aspect), which serves as the diagnostic area for DDLPS. (B) Microscopic image of an MFS (H&E
stain, 40× magnification). The image shows the myxoid low-grade area of MFS, characterized by
curvilinear blood vessels, spindle cells, lobulated areas and myxoid stroma. This area serves as the
diagnostic area for high-grade MFS. (C–E) Microscopic images showing side-by-side comparison of
(C) DDLPS, (D) high-grade MFS and (E) UPS (H&E stain, 200× magnification). As illustrated here,
the three pleomorphic sarcomas exhibit similar pleomorphic morphology, making the differential
diagnosis of the three tumor subtypes difficult.

2.2. miRNAs Expression Profiles Discriminate Benign Lipoma from Liposarcoma (WDLPS and
DDLPS) and Other Sarcoma Subtypes (MFS and UPS)

To explore if miRNA biomarkers have diagnostic utility in discriminating benign
lipoma from liposarcoma and other sarcoma subtypes, expression levels of 350 miRNAs
were measured in a total of 112 FFPE tissue samples from lipoma, WDLPS, DDLPS, MFS,
and UPS cases. Out of the 350 miRNAs measured, 287 miRNAs were detected in more than
90% of all tissue samples. Hierarchical clustering performed using the expression of these
287 miRNAs resulted in clusters representing the majority of lipoma, WDLPS, DDLPS, and
a mix of MFS/UPS samples (Figure 3A). Principal component analysis showed that the
first three principal components (PC1, PC2, and PC3) captured 21.5%, 15.1%, and 12.9% of
the variation in miRNA expression profiles, respectively. Lipoma can be well discriminated
from WDLPS, DDLPS, and MFS/UPS through variation in miRNA expression profiles
captured in PC1 and PC2 (Figure 3B) or PC1 and PC3 (Figure 3C). Similarly, WDLPS,
DDLPS, and MFS/UPS samples could be partially differentiated from each other through
the variation in miRNA expression profiles captured in the first three principal components
(Figure 3B–D).
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Figure 3. Biologically distinct soft tissue tumors can be differentiated by microRNA expression
profiles. (A) Heatmap showing hierarchical clustering of benign (lipoma) and malignant (WDLPS,
DDLPS, MFS, UPS) soft tissue tumor FFPE samples using their microRNA expression profiles
measured by qPCR. (B–D) Results of principal component analysis (PCA) on miRNA expression
profiles of soft tissue tumor FFPE samples shown in graphs plotting (B) principal component 2 (PC2)
against principal component 1 (PC1), (C) principal component 3 (PC3) against PC1, and (D) PC3
against PC2.

2.3. Expression Levels of Six miRNAs Distinguish Lipoma from WDLPS with High Accuracy

To discriminate benign lipoma from morphologically similar malignant lipomatous tu-
mors, miRNA signatures incorporating up to 12 features (differentially expressed miRNAs)
were built to differentiate between lipoma (n = 34) and WDLPS samples (n = 24) (Figure 4A).
A 6-miRNA panel would be optimal since AUC did not increase by more than 0.1 with the
addition of more miRNAs to the panel. The optimal 6-miRNA classifier panel classified
lipoma from WDLPS with an AUC of 0.963 (95% CI: 0.916 to 0.991) (Figure 4B). Among
these six miRNA biomarkers, two were downregulated (miR-18a-5p and miR-769-5p)
and four were upregulated (miR-196a-5p, miR-501-5p, miR-500a-5p, and miR-362-5p) in
WDLPS samples compared to lipoma samples, respectively (Figure 4B).
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16) and UPS (n = 18). Of note, none of our MFS and UPS samples that had available FISH 
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Figure 4. Accurate classification of soft tissue tumors using miRNA signatures. (A,C,E) Mean AUC
(Area under the ROC curve) of miRNA signatures, with panels of 1 to 12 miRNAs, evaluated for
accuracy in differentiating (A) WDLPS from lipoma, (C) DDLPS from MFS and UPS, (E) DDLPS from
WDLPS. (B,D,F) ROC curves of the optimal miRNA panels evaluated for classifying (B) WDLPS from
lipoma, (D) DDLPS from MFS and UPS, and (E) DDLPS from WDLPS.

2.4. miRNA Signature Can Distinguish DDLPS from Its Histologic Mimics

To investigate if miRNA biomarker panels can further separate dedifferentiated lipo-
matous tumors (i.e., DDLPS, which have a lower metastatic rate) from other more aggressive
sarcoma mimics with spindle cell and/or pleomorphic features, miRNA expression profiles
of DDLPS FFPE tissue samples (n = 20) were compared to that of MFS (n = 16) and UPS
(n = 18). Of note, none of our MFS and UPS samples that had available FISH data showed
evidence of MDM2 gene amplification (Table 1). miRNA biomarker-classifier panels in-
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corporating up to 12 features were then built and evaluated (Figure 4C). Our analysis
showed that by using a signature of six miRNA features, a classification model can be
established to separate DDLPS from MFS and UPS with AUC of 0.74 (95% CI: 0.64 to 0.82)
(Figure 4D). Among the six features identified, miR-204-5p, let-7d-3p and miR-151a-3p were
over-expressed while miR-516a-5p, miR-195-5p and miR-497-5p were under-expressed in
DDLPS samples compared to that in MFS/UPS (Figure 4D).

Table 1. Results of MDM2 FISH analysis performed on MFS and UPS cases.

MDM2 FISH Results MFS (n = 16) UPS (n = 18)

Amplified (positive) 0 0
Non-amplified (negative) 13 11

Data not available 3 7

2.5. WDLPS and DDLPS Are Associated with Distinct miRNA Expression Profiles

Beyond diagnostic utility, a comparison between the differentially expressed miRNA
profiles between WDLPS and DDLPS may provide further insight into the molecular
mechanisms involved in tumor progression and dedifferentiation in these tumors. Our
analyses showed that miRNAs are significantly differentially expressed in WDLPS and
DDLPS and that the two types of liposarcomas can be discriminated against using miRNA
panels (Figure 4E). An optimal classifier built with six miRNAs distinguished WDLPS from
DDLPS with an AUC of 0.96, (95% CI 0.89 to 0.99) (Figure 4F). Among these miRNAs, miR-
21-5p, miR-15b-5p and miR-135b-5p were overexpressed, while miR-193a-5p, miR-423-5p
and miR-191-5p were under-expressed in DDLPS compared to WDLPS. These miRNAs
that are distinctly expressed in these tumor types may play an important role in the disease
progression from WDLPS to DDLPS.

2.6. miRNAs Differentially Expressed between Lipoma and Liposarcoma, and between WDLPS
and DDLPS

By analyzing the miRNA expression profiles of our various lipomatous tumors and
their mimics, we also found that certain miRNAs are differentially expressed in the various
entities. The most differentially expressed miRNAs are listed in Table 2 below.

Table 2. List of most differentially expressed miRNAs in our clinical samples.

Upregulated Downregulated

In liposarcoma (including WLDPS and
DDLPS) compared to lipoma miR-196a-5p

miR-144-3p
miR-144-5p
miR-451a

In DDLPS compared to WDLPS

miR-21-5p
miR-454-3p

miR-374a-5p
miR-15b-5p

miR-193a-5p
miR-423-5p

2.7. Dysregulated Pathways in Liposarcomagenesis—Involvement of PI3K/AKT and
MAPK Pathways

In an attempt to elucidate the molecular pathways that contribute to liposarcomagene-
sis and to gain some insight into the network that might be regulated by miRNAs, pathway
analysis via gene set enrichment analysis (GSEA) was performed to identify differentially
regulated pathways between different benign and malignant lipomatous subtypes. Using
a q-value of 0.025, 18 pathways were found to be up-regulated in WDLPS compared to
lipoma. The key components regulating many of these pathways include phosphoinositide
3-kinase (PI3K), protein kinase B (also known as Akt) and/or mitogen-activated protein ki-
nase (MAPK) (Table 3). No differentially regulated pathways were found between WDLPS
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vs. DDLPS and DDLPS vs. MFS/UPS samples, indicating that the predominant pathways
activated in these tumors are likely to be similar to each other.

Table 3. Differentially regulated pathways between lipoma and WDLPS.

Pathway Key Components p-Value q-Value

Cardiac EGF pathway GPCR, Phospholipase C, PKC Delta, MAPK 1.00 × 10−4 1.49 × 10−2

Caspase pathway Caspase cascade 1.00 × 10−4 1.49 × 10−2

AMB2 neutrophils pathway PI3K, Akt, MAPK 1.00 × 10−4 1.49 × 10−2

RAP1 signaling PI3K, Akt, MAPK 1.00 × 10−4 1.49 × 10−2

Insulin glucose pathway PI3K, Akt 1.00 × 10−4 1.49 × 10−2

PI3KCI AKT pathway PI3K, Akt 2.00 × 10−4 2.13 × 10−2

PKB mediated events Akt 2.00 × 10−4 2.13 × 10−2

Integrin alphaIIB beta3 signaling thrombin, ADP, collagen, fibrinogen and
thrombospondin, PTK2/FAK 3.00 × 10−4 2.49 × 10−2

Costimulation by the CD28 family CD28, CTLA4, ICOS, PD1 and BTLA
receptors, PI3K, Akt 4.00 × 10−4 2.49 × 10−2

CD40 pathway JAK/STAT, NF-kappaB, MAPK, P38, JNK 4.00 × 10−4 2.49 × 10−2

Regulation of the actin cytoskeleton
by Rho GTPases Rho, ROCK 4.00 × 10−4 2.49 × 10−2

P38 MAPK pathway MKK3, MKK6, P38 5.00 × 10−4 2.49 × 10−2

IL2 PI3K pathway IL2, PI3K, Akt 5.00 × 10−4 2.49 × 10−2

Lysophospholipid pathway Rho, PI3K, Akt, MAPK, PLC, cAMP 5.00 × 10−4 2.49 × 10−2

Telomerase pathway ATM, ATR, TERT, Akt 5.00 × 10−4 2.49 × 10−2

Chemical pathway cytochrome c, AIF, caspase cascade 6.00 × 10−4 2.49 × 10−2

ECM regulators Components Regulating remodeling of the
extra-cellular matrix 6.00 × 10−4 2.49 × 10−2

HNF3B pathway Regulated by PI3K, MAPK. Regulates cancer 6.00 × 10−4 2.49 × 10−2

3. Discussion
3.1. Ancillary Tests Currently Used in the Diagnosis of Adipocytic Tumors

Despite progress in the understanding of sarcoma pathobiology with the introduction
of high-throughput genomics, novel diagnostic biomarkers based on gene expression
profiling have yet to make a significant impact in the routine practice of most clinical centers.
Although techniques such as FISH have been successfully incorporated into the diagnostic
arsenal in many academic centers, they may still be beyond the resource constraints of
smaller laboratories. Hence, it would be desirable to find alternative adjunctive ancillary
tools that can aid in the diagnostic process.

Routine lineage-specific immunohistochemistry (IHC) has a limited role in the differ-
ential diagnosis of lipomatous tumors. While lineage-specific markers are relatively robust
for the diagnosis of other soft tissue sarcomas, such as vascular markers for angiosarcomas
and smooth muscle markers for leiomyosarcomas, S100 immunostain is only positive in
adipocytes and not in the dedifferentiated component of liposarcomas.

Amplification of the chromosome 12q13-15 region involving the MDM2 gene occurs
in >95% of WDLPS and DDLPS cases [10–12], and identification of this genomic alteration
by FISH [13] is used in most advanced medical institutions as an adjunctive diagnostic
test. However, MDM2 amplification can also be seen in other sarcomas [14,15], and hence
interpretation of the results has to be done in the appropriate clinical context, especially
when dealing with small biopsy samples. While amplification of the MDM2 (and often
CDK4) gene also leads to overexpression of the protein that IHC can detect, the available
antibodies are difficult to optimize and have variable sensitivities that range from 50% to
100%. In addition, there exists inter-observer variability with regard to the threshold for
classifying a case as positive [16]. While several studies have also suggested the addition
of p16 immunostains to the panel of MDM2 and CDK4 immunostains to increase overall
sensitivity, doing so conversely decreases the diagnostic specificity [16,17]. Hence, given
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that a significant proportion of IHC-negative cases still require FISH analysis, there is a
limited diagnostic utility and economical benefit of using IHC alone.

3.2. miRNAs as Potential Diagnostic Biomarkers

In the recent decade, studies on the role of miRNAs have unveiled their promising
potential as diagnostic biomarkers [9,18]. miRNAs play critical regulatory roles in many
essential biological processes, and some have recognized the dysregulation of miRNAs as a
fundamental hallmark of cancer [8,19]. Aberrant expression of miRNAs in tumors (so-called
tumor miRNA signatures) makes them ideal candidates as tumor biomarkers [8,20,21]. Indeed,
miRNAs have been shown to be helpful in tumor classification and subtyping in line with
the cell of origin and differentiation state [22–24]. The ability of miRNA expression profiles in
discriminating histologic subtypes of tumors has been successfully demonstrated for lung
cancer [25–27], renal cell carcinoma [28–30], and mesothelioma [31]. Another attribute of
miRNAs is their stability in biological specimens due to their small size and resistance to
degradative processes. The high stability of miRNAs compared to other biomolecules, such
as mRNA and DNA, enables their robust detection and quantification in meager amounts of
materials (such as core needle biopsy or fine-needle aspiration samples) and in compromised
clinical samples such as FFPE tissue samples [32,33], thus opening the window for them to
serve as novel molecular diagnostic biomarkers for routine clinical practice.

While many studies have looked into the miRNA expression profiles of STT [34–40],
few delved specifically into exploring the potential of miRNA as a tool to aid the morpho-
logic diagnosis of STT. This study investigated the potential utility of miRNA expression
signature as an adjunctive test to improve the differential diagnosis of well-differentiated
and dedifferentiated lipomatous tumors. Specifically, we set out to identify differentially
expressed miRNAs that could be used in the accurate classification between lipoma and
morphologically overlapping WDLPS, and miRNA classifiers that could separate DDLPS
from other common high-grade sarcomas. To evaluate the potential of miRNA expression
profiles as diagnostic biomarkers, we performed miRNA profiling of 350 well-annotated
miRNA candidates chosen based on their abundant and stable expression in various tissues
and serum (unpublished data from MiRXES). We conducted our miRNA analyses on FFPE
tissue samples of a cohort of well-characterized cases based on the current diagnostic
criteria with the intent of translating our findings to practical clinical use. These cases have
also been verified by qualified histopathologists with expertise in soft tissue pathology.
With 58 FFPE tissue samples of lipoma and WDLPS, we derived an optimal 6-miRNA
classifier that enables their separation with high confidence (AUC = 0.963). The unique
miRNA expression signatures corresponding to benign lipoma and malignant WDLPS
provide a proof-of-concept that miRNA expression profiling can be a powerful tool to
discriminate well-differentiated lipomatous tumors of benign nature from malignant ones
in routine clinical settings to aid in objective diagnostic decision-making, especially in
the setting of small biopsy samples which often poses greater diagnostic difficulty. In
addition, with miRNA expression profiling, we also identified a miRNA panel that can
discriminate DDLPS from the more aggressive sarcoma mimics MFS and UPS using a
6-miRNA signature, with an AUC of 0.740.

Both FISH and miRNA analyses utilize FFPE tissue which is one of the most readily
available tissue sources in clinical practice. However, FFPE tissue samples have their
limitations as well. While it is known that the fixation and preservation processes involve
the usage of chemicals that can degrade or alter the quality of nucleic acids preserved
within the tissue, studies have shown that miRNAs, being small, have the advantage of
remaining relatively stable despite these deleterious processes, possibly related to their
association with RNA-induced silencing complex (RISC) [41]. Another known limitation of
FFPE tissue samples is the degradation of the quality of nucleic acid over time. Nonetheless,
Siebolts et al. found that the quality of miRNA extracted from FFPE tissue samples was not
significantly reduced within 5–7 years, and was only significantly reduced in samples that
were 10–20 years old [42]. As the aim is for miRNA analysis to be a potential diagnostic
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adjunct, its main usage would hence be on current/relatively fresh samples, and this issue
would be less of a concern.

3.3. Biological Relevance of Differentially Regulated miRNAs
3.3.1. miRNAs Differentially Expressed between Lipoma and Liposarcoma

Beyond diagnostic utility, analyses of dysregulated miRNAs in tumor samples may
also shed light on biological relevance and contribute to further understanding of the
mechanisms of liposarcoma tumorigenesis and progression. The top miRNAs that were
found to be differentially expressed between benign lipoma and malignant liposarcoma in
our study include miR-144-3p, miR-144-5p, miR-451a and miR-196a-5p. Our results showed
that miR-144 and miR-451a were downregulated in WDLPS/DDLPS compared to lipoma.
These findings were in concordance with several studies reporting the downregulation of
miR-144/451a in multiple cancers [43–48], as well as in WDLPS and DDLPS [37,38,49]. Our
findings are in keeping with a tumor suppressor-like function of miR-144 and miR-451a
in adipocytic tissue along with these published findings. Furthermore, in line with our
observation, miR-196a-5p was reportedly upregulated in cancers and shown to act as an
oncogene by exerting multiple functions in tumorigenesis and cancer progression [50–52].
In osteosarcoma, elevated expression of miR-196a predicts poor prognosis [53] and has
been shown to promote cell migration, invasion and the epithelial–mesenchymal transition
by targeting HOXA5 [54]. To the best of our knowledge, no association of miR-196a-5p
with the pathogenesis of liposarcoma has been reported so far. Our finding reveals a
potential pathogenic role of miR-196a-5p in the malignant transformation of adipocytic
tissue. Its inclusion in our optimal 6-miRNA signature for the classification of lipoma from
WDLPS further shows its potential as a diagnostic biomarker. Future work on molecular
targets regulated by miR-196a-5p may shed light on its involvement in other oncogenic
mechanisms underlying liposarcomagenesis. The dysregulation of miRNAs in liposarcoma
has also been investigated in a limited fashion by others. Other dysregulated miRNAs that
have been reported include upregulation of miR-214, miR-199a, miR-155, miR-21, miR-26a
and downregulation of miR-10b, miR-126, miR-143, miR-145, miR-1257, miR-193b and the
let-7 family in WDLPS/DDLPS compared to benign fatty lesions [37,38,55–59]. In keeping
with the results of these previously published studies, our data confirm the upregulation of
miR-214-3p, miR-199a, miR-21-3p, miR-21-5p and downregulation of miR-10b, miR-126-3p,
miR-126-5p, miR-143-3p, miR-143-5p, miR-145-5p, 193b-3p in WDLPS/DDLPS compared to
benign lipoma, further supporting the biological significance of these miRNAs as validated
biomarkers for WDLPS/DDLPS.

3.3.2. miRNAs Differentially Expressed between WDLPS and DDLPS

To better understand the molecular changes undergone by WDLPS during progres-
sion, i.e., dedifferentiation to DDLPS, we also compared the miRNA expression profiles of
these two biologically related but distinct tumor types. We found that miR-193a-5p and
miR-423-5p were significantly downregulated while miR-21-5p, miR-454-3p, miR-374a-5p
and miR-15b-5p were upregulated in DDLPS compared to WDLPS. Of these, the important
role of miR-193a-5p as a tumor suppressor has previously been studied in hepatocellular
carcinoma [60], breast cancer [61], non-small-cell lung cancer [62] and osteosarcoma [63].
Similarly, the tumor-suppressive function of miR-423-5p has also been demonstrated in
ovarian cancer [64], colon cancer [65], nasopharyngeal carcinoma [66] as well as osteosar-
coma [67]. miR-21 is an extensively studied miRNA that is widely overexpressed in multiple
cancers, including sarcomas [68–75], while the upregulation of miR-374a-5p has been found
in several cancers, including gastric cancer [76], breast cancer [77] and osteosarcoma [78].
Therefore, it is not surprising that we also found overexpression of miR-21 and miR-374a-5p
in WDLPS samples compared to lipoma. However, the functions of miRNA-454-3p and
miR-15b-5p appear to be complex, with both tumor suppressive or oncogenic functions
being ascribed to the two miRNAs in different cancers, purportedly via different path-
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ways [79–88]. Future studies are needed to explore the potential functional roles that these
miRNAs may have in the dedifferentiation of WDLPS.

3.4. Potential Pathways Involved in Liposarcomagenesis

Given the divergent or convergent regulatory role miRNAs can exert on signaling path-
ways, we additionally performed gene enrichment analysis by GSEA on the differentially
expressed miRNA between benign and malignant lipomatous tumors to investigate the
dysregulated pathways involved in the malignant adipocytic transformation. In line with
published studies, our analysis revealed high activation of PI3K/AKT/mTOR and MAPK
pathways in liposarcoma compared to benign adipose tissue. The PI3K/AKT/mTOR path-
way is a well-known survival pathway that is dysregulated in many cancers [89,90]. The
role of this pathway in liposarcoma has been a focus of some previous studies. Using clini-
cal samples and a zebrafish model, Gutierrez et al. [91] reported a central role for oncogenic
AKT signaling in adipocyte transformation and implicating AKT as a potential therapeutic
target in unresectable WDLPS/DDLPS. Another study reported activating PIK3CA muta-
tions in about 14% of liposarcoma samples [92]. Furthermore, inhibition of the pathway and
its downstream effector, mTOR, has also been found to induce apoptosis in liposarcoma
cell lines [93]. DDLPS frequently bears additional genetic changes/recurrent mutations as
compared to WDLPS, including 1p32 and 6p23 amplifications causing oncogenic overex-
pression of ASK1/MAP3K5, JUN, and activation of the MAPK pathway [10,57,94]. ERK,
JNK, and p38 MAP kinase pathway activation have also been observed in transgenic
mice with WDLPS development as a downstream response to increased interleukin-22
levels [95].

4. Materials and Methods
4.1. Sample Selection

Formalin-fixed paraffin-embedded (FFPE) tissue samples were obtained from the De-
partment of Pathology, National University Hospital (NUH), Singapore. Prior to the study,
Institutional Review Board approval (DSRB) was obtained for all samples in accordance
with the NUH’s Institutional Review Board (IRB) Guidelines. Total FFPE tissue samples
included: lipoma (n = 34), WDLPS (n = 24), DDLPS (n = 20), MFS (n = 16) and UPS (n = 18)
(Table 4). All cases were reviewed by expert soft tissue pathologists to verify the diagnosis
(based on histomorphologic diagnostic criteria delineated in the World Health Organization
(WHO) Classification of Soft Tissue Tumors [2]) and to select the representative tissue areas
for subsequent miRNA expression profiling in this study. The percentage of tumor cells
was estimated to be at least 80–90% for each sample.

4.2. Fluorescence In Situ Hybridization (FISH)

The majority of the WDLPS and DDLPS cases were diagnosed based on classical
histomorphologic features or had prior MDM2 fluorescence in situ hybridization (FISH)
performed clinically for the diagnosis. For the MFS and UPS cases, tissue microarrays
(TMAs) were constructed from the available tissue samples and the sections were subjected
to MDM2 FISH analysis where possible. TMA sections of 4 µm containing FFPE tissue
cores were placed on electrostatically charged slides (Platinum Pro, Matsunami Glass Ind.
Ltd., Kishiwada, Japan). FISH processing was done using the IntelliFISH Universal FFPE
Tissue Pretreatment Kit (Vysis, Downer’s Drove, IL, USA) according to the manufacturer’s
instructions and established laboratory protocol. The sections were then subjected to direct
FISH using the Vysis MDM2/CEP 12 FISH Probe Kit (Vysis, Downer’s Drove, IL, USA). A
total of 30 non-overlapping, intact interphase nuclei were scored per case using fluorescence
microscopy. Only nuclei containing both red and green signals were enumerated. The
ratio of MDM2 signals to the Centromeric 12 probe signals was calculated. A ratio greater
than or equal to 2.0 is interpreted as amplified and a ratio of less than 2.0 is non-amplified.
The FISH images were obtained using an Olympus BX61 microscope and captured on the
Applied Image Analysis System v.3.93 (Applied Imaging, Pittsburgh, PA, USA).
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Table 4. Summary of demographics and characteristics of patient samples used.

Lipoma
(n = 34)

WDLPS 1

(n = 24)
DDLPS 2

(n = 20)
MFS 3

(n = 16)
UPS 4

(n = 18)

Gender
Male 23 17 13 5 10
Female 11 7 7 11 8

Age (median, range) 51.5 (5–81) 59 (42–87) 64 (39–85) 67 (36–94) 60.5 (26–94)
Race

Chinese 25 15 14 15 12
Malay 4 3 3 1 2
Indian 2 0 0 0 0
Others 5 3 6 3 0 4

Anatomic site
Extremities 6 3 6 6 9 8
Central body sites 7 24 16 13 5 10
Others 8 7 2 1 2 0

1 WDLPS = well-differentiated liposarcoma; 2 DDLPS = dedifferentiated liposarcoma; 3 MFS = myxofibrosarcoma;
4 UPS = undifferentiated pleomorphic liposarcoma; 5 Others include Caucasian, other Asian ethnicities, and
samples with race not specified; 6 Extremities include upper and lower limbs; 7 Central body sites include
retroperitoneum, abdominal cavity, thoracic cavity, inguinal canal, abdominal wall and chest wall; 8 Others
include head and neck sites and skin (site not otherwise specified).

4.3. RNA Extraction and miRNA Profiling

miRNA profiling was carried out with a patented modified stem-loop mediated
reverse transcription-quantitative polymerase chain reaction (mSMRT-qPCR) miRNA assay
in a highly controlled workflow. Focusing on miRNAs strongly associated with various
cancer types, 350 miRNAs were profiled and the process was carried out as follows. Total
RNA was extracted from the FFPE tissues using the Qiagen miRNeasy FFPE kit (Hilden,
Germany) on a semi-automated QiaCube system. A set of three spike-in control RNAs,
all with sequences different from annotated mature human miRNAs (miRbase version21),
was added to the sample lysis buffer prior to RNA isolation. The quantified levels of
the spike-in control RNAs were used to normalize RNA isolation efficiency. Following
isolation, the isolated miRNAs were reverse transcribed using miRNA-specific reverse
transcription (RT) primers as per the manufacturer’s instruction (MiRXES). Concurrently,
a 6-log serial dilution of synthetic templates for each miRNA and a non-template control
(NTC) were reverse transcribed. All the sample and template cDNAs were then pre-
amplified through a 14-cycle PCR reaction using Augmentation Primer Pools (MiRXES).
Following cDNA amplification, a total of 350 miRNAs were measured, with technical
replicates, via qPCR using miRNA-specific qPCR assays (MiRXES) on QS5 384-well qPCR
system (Applied Biosystems).

4.4. Data Processing and Statistical Analysis

After the completion of the experiments, the raw threshold cycle (ˆ) values were
determined using the QS5 software with an automatic baseline setting and a threshold of
0.5. The absolute copy numbers of each miRNA were determined through interpolation
of the Ct values to that of the synthetic miRNA standard curves and adjusted for RT-
qPCR efficiency. Technical variations introduced during all experimental steps such as RNA
isolation, reverse transcription, and qPCR were normalized using the spike-in control RNAs.
Any miRNAs that were detected in less than 90% of all samples profiled were excluded
from the subsequent analysis. All subsequent analyses were performed on normalized (via
global mean normalization) and log2 transformed miRNA expression values.

4.5. Feature Selection for Tumor Classification

The following procedures were performed to identify miRNAs (features) that can best
differentiate between (i) lipoma and WDLPS, (ii) WDLPS and DDLPS, and (iii) DDLPS and
MFS/UPS.
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From the full panel of 350 miRNAs, any miRNAs detected in less than 90% of all
samples were removed, resulting in a final panel of 287 miRNAs. For these miRNAs, any
non-detection or outliers were replaced by imputation. If the expression value of a miRNA
in one sample is not detected, or the expression value is less than the mean by more than
3 standard deviations, it is replaced by the minimum value of that miRNA within 3 standard
deviations of the mean. If the expression value is more than 3 standard deviations above
the mean, it is replaced by the maximum value within 3 standard deviations of the mean.

A 4-fold cross-validation method, with 100 iterations, was used to select the features.
The samples were split between the training and validation sets such that the ratio between
the sample subtypes was similar. For each training set, the panel of 287 miRNAs was first
transformed by standardization and was then fitted into a logistic regression model with an
L2 penalty. miRNAs were sorted by their absolute coefficients and the top 1 to 12 miRNAs
were chosen for model building. Support vector machines with a radial basis function
kernel were used for classification and the prediction performance was tested on the
validation set. The optimal number of markers was decided when the incremental of cross-
validated AUC is smaller than 0.01 when additional markers were added. Using the results
of all 100 iterations, the results were evaluated with receiver operating curves. Top markers
were chosen by combining all data together and repeating the feature selection process with
the optimal number of markers. All analysis was performed with Scikit-learn 1.0 in Python
3.8.12 (program downloadable from https://www.anaconda.com/products/distribution,
accessed on 16 June 2022).

4.6. Receiver Operating Characteristic (ROC) Curve

The area under the receiver operating characteristic (ROC) curve, or AUC, was used
to evaluate the diagnostic performance of the panel of selected features. For each 4-fold
cross-validation, cross-validated ROC was plotted by averaging ROCs in each test set.
One hundred repeats of such cross-validated ROCs were used to calculate 95% confidence
intervals of the cross-validated ROCs. All analysis was performed with Scikit-learn 1.0 in
Python 3.8.12.

4.7. Silico Prediction of the miRNA Regulatory Network

Pathway analysis was performed with all samples pooled together through the miRSEA
method (MiRSEA: Discovering the pathways regulated by dysfunctional MicroRNAs). miRNA
and mRNA linkages were curated with the miRTarBase Release 7.0 based solely on strong
experimental evidence. The Molecular Signatures Database (MSigDB), Collection C2
(including Kegg, Reactome, Pathway Interaction Database and Biocarta), from the Broad
Institute was then used to determine the involvement of different genes in each pathway in
the database.

Briefly, the miRNA and the pathway were correlated together by identifying the
specific strength of the miRNA targeting the pathway. A p-value for the miRNA-pathway
association was calculated based on the hypergeometric distribution. The miRNA fold
change together with the p-value for pathway targeting was used to calculate the regulation
of the pathway with a weighted Kolmogorov–Smirnov-like statistic. Pathways targeted
by less than 10 miRNAs or more than 200 miRNAs were ignored. In addition, if less
than 50% of miRNA targeting a specific pathway was measured in the experiment, the
pathway was also ignored. The p-value of any pathway regulation was calculated by
randomly permutating samples 5000 times. FDR correction was carried out by using
the null distribution of all pathways and the enrichment of the un-permutated data set.
miRNAs in the leading edge were defined by selecting miRNA before the maximum F-score
and targets corresponding to the leading edge miRNA were investigated. Pathways with
p < 0.01 and false discovery rate q < 0.05 were considered significant. The analysis was
performed with MatLab 2020.

https://www.anaconda.com/products/distribution
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5. Conclusions

Our results suggest that molecular analysis of miRNA expression profiles can provide
additional information that complements conventional diagnostic methods. Specifically,
we have identified a 6-miRNA panel that can accurately differentiate between benign
lipoma and WDLPS, and a separate 6-miRNA panel that helps separate DDLPS from other
common sarcoma subtypes. We believe that miRNA-based assays have a potential as
complementary ancillary tools to aid pathologists in diagnosing these morphologically
similar but biologically disparate lipomatous tumors. Further large batch study remains a
necessary work to validate the promising results and optimize the biomarker panels.
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