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Abstract Eukaryotic cells use guided search to coordinately control dispersed genetic elements.

Argonaute proteins and their small RNA cofactors engage nascent RNAs and chromatin-associated

proteins to direct transcriptional silencing. The small ubiquitin-like modifier (SUMO) has been

shown to promote the formation and maintenance of silent chromatin (called heterochromatin) in

yeast, plants, and animals. Here, we show that Argonaute-directed transcriptional silencing in

Caenorhabditis elegans requires SUMOylation of the type 1 histone deacetylase HDA-1. Our

findings suggest how SUMOylation promotes the association of HDAC1 with chromatin remodeling

factors and with a nuclear Argonaute to initiate de novo heterochromatin silencing.

Introduction
Argonautes are an ancient family of proteins that utilize short nucleic acid guides (usually composed

of 20–30 nts of RNA) to find and regulate cognate RNAs (reviewed in Meister, 2013). Argonaute-

dependent small RNA pathways are linked to chromatin-mediated gene regulation in diverse eukar-

yotes, including plants, protozoans, fungi, and animals (reviewed in Martienssen and Moazed,

2015). Connections between Argonautes and chromatin are best understood from studies in fission

yeast Schizosaccharomyces pombe, where the Argonaute, Ago1, a novel protein, Tas3, and a het-

erochromatin protein 1 (HP1) homolog, Chp1, comprise an RNA-induced transcriptional silencing

(RITS) complex that maintains and expands heterochromatin (Verdel et al., 2004). The Chp1 protein

binds H3K9me3 through its conserved chromodomain (Partridge et al., 2000; Partridge et al.,

2002) and is thought to anchor Ago1 within heterochromatin, where it is poised to engage nascent

RNA transcripts (Holoch and Moazed, 2015). Low-level transcription of heterochromatin is thought

to create a platform for propagating small-RNA amplification and heterochromatin maintenance

(reviewed in Holoch and Moazed, 2015).

In yeast, a protein complex termed SHREC (Snf2/Hdac-containing Repressor complex) has been

linked to both the establishment and maintenance of heterochromatin and transcriptional silencing

(Job et al., 2016; Motamedi et al., 2008; Sugiyama et al., 2007). SHREC contains a homolog of

type 1 histone deacetylase (HDAC), a homolog of Mi-2 and CHD3 ATP-dependent chromatin

remodelers, and a Krüppel-type C2H2 zinc finger protein. SHREC therefore resembles the nucleo-

some remodeling and deacetylase (NuRD) complex in animals (Denslow and Wade, 2007;

Torchy et al., 2015). NuRD complexes play a key role in converting chromatin from an active to a

silent state, and can be recruited to targets through sequence-independent interactions (e.g., modi-

fied chromatin or methylated DNA) or through sequence-specific interactions via the Krüppel-type

C2H2 zinc finger protein and other DNA-binding factors (Ecco et al., 2017; Lupo et al., 2013). In
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animals, NuRD complexes function broadly in developmental gene regulation and transposon silenc-

ing (Ecco et al., 2017; Feschotte and Gilbert, 2012; Ho and Crabtree, 2010).

The post-translational modification of heterochromatin factors by the small ubiquitin-like protein

SUMO has been implicated at several steps in the establishment and maintenance of transcriptional

gene silencing and has been linked to silencing mediated by the Piwi Argonaute (reviewed in

Ninova et al., 2019). The addition of SUMO (i.e., SUMOylation) requires a highly conserved E2

SUMO-conjugating enzyme, UBC9, which interacts with substrate-specific co-factor (E3) enzymes to

covalently attach SUMO to lysines in target proteins (Johnson, 2004). Whereas ubiquitylation is pri-

marily associated with the protein turnover (reviewed in Glickman and Ciechanover, 2002), SUMOy-

lation is primarily associated with changes in protein interactions, especially with proteins that

contain SUMO-interacting motifs (SIMs) (reviewed in Kerscher, 2007). In mammals, for example,

SUMOylation of the KAP1 corepressor is required to recruit the NuRD complex and the SETDB his-

tone methyltransferase via SIM domains in CHD3 and SETDB and to silence KRAB targets

(Ivanov et al., 2007).

Here, we identify a connection between the SUMO pathway and transcriptional silencing initiated

by the Piwi Argonaute pathway in the Caenorhabditis elegans germline. We show that SUMOylation

of C-terminal lysines on the type 1 HDAC, HDA-1, is required for Piwi-mediated transcriptional

silencing. SUMOylation of HDA-1 promotes its association with conserved components of the C. ele-

gans NuRD complex, the nuclear Argonaute HRDE-1/WAGO-9, the histone demethylase SPR-5, and

the SetDB-related histone methyltransferase MET-2. Our findings suggest how SUMOylation of

HDAC1 promotes the recruitment and assembly of an Argonaute-guided chromatin remodeling

complex that orchestrates de novo transcriptional gene silencing in the C. elegans germline.

Results

The SUMO and HDAC pathways promote piRNA silencing
In C. elegans, silencing initiated by the Piwi Argonaute PRG-1 depends on chromatin modifications

at the target locus and on a group of worm-specific Argonautes (WAGOs), including nuclear-local-

ized family members WAGO-9/HRDE-1 and WAGO-10 (Ashe et al., 2012; Bagijn et al., 2012;

Lee et al., 2012; Shirayama et al., 2012) and nuage-localized family members WAGO-1 and

WAGO-4 (Gu et al., 2009; Shirayama et al., 2012; Xu et al., 2018). WAGOs engage antisense

guides produced by cellular RNA-dependent RNA polymerases (RdRPs) (Gu et al., 2009). How the

downstream machinery that amplifies and maintains silencing is recruited to targets remains

unknown. To identify additional components of the transcriptional silencing arm of the piRNA path-

way, we performed an RNAi-based genetic screen of chromatin factors and modifiers using a sensor

transgene silenced by the piRNA pathway (Figure 1A; see Seth et al., 2018). The piRNA sensor is

100% silenced in wild-type germlines, but is desilenced in the germlines of prg-1(tm872), rde-3

(ne3370), and hrde-1/wago-9(ne4769) mutants, resulting in expression of a bright, easily scored

GFP::CSR-1 fusion protein (Figure 1B; Seth et al., 2018). Even the partial inactivation of known

piRNA silencing factors activated sensor expression in a percentage of exposed animals (Figure 1C

and Supplementary file 1).

Our RNAi screen identified many components of known HDAC complexes, as well as SUMO

pathway factors (Figure 1C and Supplementary file 1). For example, depletion of mep-1 (Krüppel-

type zinc finger protein) and other genes encoding NuRD-complex co-factors (let-418/Mi-2, hda-1/

HDAC1, lin-40/MTA2/3, lin-53/RBBP4/7, and dcp-66/GATAD2B) desilenced the piRNA sensor

(Figure 1C and Supplementary file 1). Depletion of SIN3-HDAC complex genes, sin-3 (SIN3) and

mrg-1 (MORF4L1), also desilenced the reporter (Figure 1C and Supplementary file 1). RNAi of two

SUMO pathway genes, smo-1 (SUMO) and ubc-9 (SUMO-conjugating enzyme), desilenced the sen-

sor. Notably, however, RNAi of the conserved E3 SUMO ligase gene gei-17 (PIAS1/Su(var)2–10)

(Hari et al., 2001; Mohr and Boswell, 1999; Ninova et al., 2020) did not desilence the piRNA sen-

sor (Figure 1C).

Null alleles of many of these genes cause embryonic arrest, which precludes an analysis of silenc-

ing in the adult germline. To further explore the role of SUMO and HDAC factors in piRNA silencing,

we therefore tested whether partial or conditional loss-of-function alleles activate the piRNA sensor.

Auxin-inducible degron alleles of hda-1, let-418, mep-1, and mrg-1 and a truncation allele of sin-3 all
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desilenced the piRNA sensor in 100% of worms examined (Figure 1C). We found that a 3xflag fusion

to the endogenous smo-1 gene desilenced the piRNA sensor in ~40% of adults analyzed

(Figure 1C), suggesting that this tagged smo-1 allele behaves like a partial loss of function. A strain

expressing a temperature-sensitive UBC-9(G56R) protein desilenced the sensor in 90% of the ani-

mals at the semi-permissive temperature of 23˚C (Figure 1C) (Kim et al., 2021). By contrast,

Figure 1. SUMOylation and chromatin remodeling factors promote piRNA-mediated silencing. (A) Schematic of

the piRNA sensor screen. The piRNA sensor strain contains a gfp::csr-1 transgene that is silenced by the piRNA

pathway in the presence of an active oma-1::gfp transgene (Seth et al., 2018). OMA-1::GFP localizes to the

cytoplasm of oocytes. Inactivation of the piRNA pathway (by RNAi, mutation, or auxin-inducible protein depletion)

desilences the transgene, resulting in GFP::CSR-1 expression in perinuclear P-granules throughout the germline,

as shown in (B). (B) Differential interference contrast and epifluorescence images of dissected gonads in wild-type

(wt), prg-1(tm872), and wago-9/hrde-1(ne4769) worms. PRG-1 is required to initiate silencing, while WAGO-9 is

required to maintain silencing. The percentage of desilenced worms and number of worms scored are shown. (C)

Analysis of SUMO and chromatin remodeling factors required for piRNA-mediated silencing. Genes identified in

the RNAi-based screen of chromatin factors are listed with their human homologs and with the percentage of

worms that express GFP::CSR-1 among the total number of worms analyzed (n) when function is reduced by RNAi

(blue column) or by either mutation or degron-dependent protein depletion (peach column).
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presumptive null alleles of gei-17 completely failed to desilence the piRNA sensor strain (Kim et al.,

2021). Together, these findings suggest that histone deacetylase complexes and components of the

SUMO pathway promote piRNA-mediated silencing.

SUMOylation of HDA-1 promotes piRNA surveillance
In a parallel study, we found that C. elegans HDA-1 is SUMOylated in the adult germline (Kim et al.,

2021). Moreover, we showed that SUMOylation of HDA-1, formation of an adult NuRD complex,

and piRNA-mediated silencing depend redundantly on PIE-1, a CCCH zinc finger protein with

SUMO E3-like function, and on GEI-17, a homolog of PIAS1/Su(var)2–10 SUMO E3 ligase, suggest-

ing that SUMOylation of HDA-1 might promote piRNA surveillance (Kim et al., 2021). Human

HDAC1 is SUMOylated near its C-terminus on consensus SUMO-acceptor lysines 444 and 476

(Figure 2A; David et al., 2002), but HDA-1 does not contain consensus SUMO acceptor sites, and

poor conservation between the C-termini of human HDAC1 and worm HDA-1 did not suggest the

identity of potential SUMO-acceptor sites. However, GPS-SUMO prediction software identified

lysines 444 and 459 of HDA-1 as possible non-consensus SUMO-acceptor sites

(Figure 2A; Zhao et al., 2014). To investigate whether one or both of these lysine residues is

required for HDA-1 SUMOylation, we used CRISPR genome editing to mutate the endogenous hda-

1 gene in a strain that expresses SUMO fused to 10 N-terminal histidines, his10::smo-1 (Kim et al.,

2021). We then used nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography under stringent

denaturing conditions (Tatham et al., 2009) to capture SUMOylated proteins from worm lysates.

The Ni-column eluates were then analyzed by western blotting for HDA-1. SUMOylated HDA-1 was

recovered by Ni-NTA affinity chromatography from wild-type lysate and from lysates of each single-

site lysine-to-arginine mutant (Figure 2B, lanes 7–9), but was absent when both K444 and K459 were

mutated together, HDA-1(KKRR) (Figure 2B, lane 10). As a control, the protein MRG-1, which is

highly SUMOylated in wild-type worms (Kim et al., 2021), was readily detected in worms expressing

HDA-1(KKRR) (Figure 2B). When we introduced the piRNA sensor into the HDA-1 SUMO-acceptor

site mutants, we found that whereas the piRNA sensor remained silent in the single-site mutants

(n = 30) (data not shown), it was expressed in 100% of HDA-1(KKRR) worms (Figure 2C).

Since the SUMOylation sites in HDA-1 are very close to the C-terminus, we wondered if append-

ing SUMO via translation fusion to the HDA-1(KKRR) mutant protein might restore HDA-1 function in

the piRNA sensor assay. Using CRISPR, we inserted a modified smo-1 open reading frame just

before the stop codon of the hda-1[KKRR] gene at the endogenous hda-1 locus. The modified SMO-

1 fusion cannot be transferred to other proteins because it lacks the GG amino acids required for

conjugation (Dorval and Fraser, 2006; see Materials and methods). Surprisingly, the resulting hda-1

[KKRR]::smo-1 strain was homozygous viable, healthy, and expressed an HDA-1::SMO-1 fusion pro-

tein at levels similar to those observed for wild-type HDA-1 (Figure 2D). Strikingly, appending SMO-

1 to the C-terminus of HDA-1(KKRR) completely rescued the silencing defect of HDA-1(KKRR)

(Figure 2C). Moreover, HDA-1(KKRR)::SMO-1 rescued the piRNA-mediated silencing defects of

smo-1 and ubc-9 mutants (Figure 2C), suggesting that the SUMO pathway promotes piRNA-medi-

ated silencing via C-terminal SUMOylation of HDA-1.

HDA-1 SUMOylation is not required for maintenance of piRNA-initiated
silencing
Once silencing is established by the upstream components of the Piwi pathway, it can be maintained

indefinitely by the co-transcriptional arm of the pathway without the continued need for prg-1 activ-

ity (Shirayama et al., 2012). For example, the initial silencing of the gfp::cdk-1 transgene requires

PRG-1 activity, but maintenance of silencing does not (Shirayama et al., 2012). To ask if HDA-1

SUMOylation is required for the maintenance of piRNA-initiated silencing, we crossed an already

silenced gfp::cdk-1 transgene into an hda-1[KKRR] mutant strain. We found that the gfp-1::cdk-1

reporter remained silent even after five generations in HDA-1(KKRR) worms (n = 26), supporting the

idea that C-terminal SUMOylation of HDA-1 is not required to maintain piRNA-induced transcrip-

tional silencing.
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Figure 2. SUMOylation of HDA-1 at K444 and K459 facilitates piRNA-mediated silencing. (A) Domain structure of C. elegans type 1 histone deacetylase

HDA-1 and C-terminal location of SUMO-acceptor sites. Sequence alignment showing poor conservation at the C-termini of C. elegans HDA-1 and

Homo sapiens HDAC1. The human HDAC1 C-terminus possesses two consensus SUMO-acceptor sites, K444 and K476 (acceptor lysines in red;

consensus SUMO acceptor motif in pink box). GPS-SUMO predicts two candidate non-consensus SUMOylation sites in HDA-1, both near the

C-terminus, K444 and K459 (red lysines in green boxes). (B) Western blot analyses of HDA-1 and MRG-1 before (lanes 1–5) and after (lanes 6–10) affinity

enrichment of SUMOylated proteins from wild-type (wt) or hda-1 SUMO acceptor-site mutants. SUMOylated proteins were enriched from worms

expressing HIS10::SMO-1. Black arrowheads indicate SUMOylated HDA-1 and MRG-1; white arrowheads indicate unmodified forms of HDA-1 and

MRG-1. Asterisks indicate non-specific bands. Additional higher forms (indicated by white star) were detected, suggesting Multi-monoSUMOylation or

PolySUMOylation of HDA-1. (C) Analysis of piRNA-mediated silencing in SUMOylation-defective mutants and rescue by HDA-1::SMO-1 translational

fusion. (Top) The color of each bar indicates the percentage of worms in which the piRNA sensor was silent (OFF, gray) or expressed (ON, green). Thirty

(n = 30) worms of each genotype were examined. (Bottom) Differential interference contrast and epifluorescence images of dissected gonads from hda-

1[KKRR] and hda-1[KKRR]::smo-1. (D) Western blots showing levels of HDA-1 and variants proteins expressed from the endogenous hda-1 locus. Tubulin

Figure 2 continued on next page
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HDA-1 SUMOylation mutants cause temperature-dependent reductions
in fertility
Factors that promote genome integrity and epigenetic inheritance are required for germline immor-

tality: their loss causes a mortal germline phenotype, whereby fertility declines in each generation

and this decline is often exacerbated at elevated temperatures (Ahmed and Hodgkin, 2000).

Although hda-1 is an essential gene required for embryonic development (Shi and Mello, 1998),

worms expressing HDA-1(KKRR) and HDA-1(KKRR)::SMO-1 from the endogenous hda-1 locus were

viable and fertile. Careful examination of brood size revealed that HDA-1(KKRR) worms made signifi-

cantly fewer progeny than wild-type worms at 20˚C and at 25˚C (Figure 2E). When maintained at 25˚

C, the fertility of HDA-1(KKRR) worms steadily declined over several generations, from an average of

132 progeny in the first generation to fewer than 10 progeny in the fifth and subsequent generations

(Figure 2F). Wild-type worms also showed an initial decline in fertility when maintained at 25˚C, but

averaged ~100 progeny in the fourth and subsequent generations (Figure 2F). By contrast, wago-9/

hrde-1 mutants showed a rapid decline in fertility and could not be maintained beyond the

third generation (Figure 2F; Buckley et al., 2012; Spracklin et al., 2017). Appending SUMO via

translational fusion, HDA-1(KKRR)::SMO-1, rescued the fertility defect of HDA-1(KKRR) worms, sug-

gesting that HDA-1 SUMOylation promotes fertility (Figure 2E). When maintained at 25˚C, however,

HDA-1(KKRR)::SMO-1 worms gradually became infertile over five generations (Figure 2F). Worms

expressing HDA-1::SMO-1—with intact SUMO-acceptor sites—were similar to HDA-1(KKRR)::SMO-1

animals, exhibiting significantly reduced fertility at 20˚C and a further progressive decline in fertility

over five generations at 25˚C (Figure 2F). Thus, properly regulated SUMOylation of HDA-1 is essen-

tial for germline immortality.

SUMOylation promotes HDA-1 association with other chromatin factors
including NuRD complex components
SUMOylation modulates protein interactions (Hendriks and Vertegaal, 2016; Kerscher, 2007). To

examine how SUMOylation affects HDA-1 complexes, we introduced a GFP tag into the C-terminus

of the endogenous wild-type and mutant hda-1 alleles and used GFP-binding protein (GBP) beads

to immunoprecipitate the HDA-1::GFP fusion proteins (Rothbauer et al., 2008). SDS-PAGE analysis

revealed that a core set of proteins strongly interact with HDA-1::GFP (Figure 3A).

Mass spectrometry (MS) of the corresponding gel slices identified these proteins as: LIN-40, a homo-

log of metastasis-associated protein (MTA1) (Chen and Han, 2001); LIN-53, a homolog of retino-

blastoma-associated protein 46/48 (RBAP46/48) (Solari and Ahringer, 2000); DCP-66, a homolog of

GATA zinc finger domain containing protein GATAD (Käser-Pébernard et al., 2014); and SPR-5, a

homolog of lysine demethylase (LSD1/KDM1) (Katz et al., 2009).

We also used reversed-phase high-performance liquid chromatography (RP-HPLC) MS to identify

HDA-1::GFP interactors (see Materials and methods). Among approximately 200 high-confidence

interactors with �10 spectral counts, we identified 63 proteins that were depleted by an arbitrary

cutoff of 40% in immunoprecipitates from both smo-1(RNAi) and hda-1[KKRR]::gfp lysates

(Figure 3B, C and Supplementary file 2). These SUMO-dependent interactors included MEP-1

(Unhavaithaya et al., 2002), AMA-1 (major subunit of pol lI) (Sanford et al., 1983), and MET-2

(SETDB1 H3K9 histone methyltransferase) (Andersen and Horvitz, 2007; Bessler et al., 2010). This

analysis also revealed that the core interactors identified above, LIN-40, LIN-53, DCP-66, and SPR-5,

were reduced (by 12–37%) in immunoprecipitations (IPs) from smo-1(RNAi) or HDA-1(KKRR) lysates

Figure 2 continued

was used as a loading control. (E) Brood size analysis of wt worms or HDA-1 SUMOylation-site mutants, and rescue by HDA-1::SMO-1 translational

fusion. Worms were grown at 20˚C or 25˚C, as indicated. Statistical significance was determined by ordinary one-way ANOVA: *p<0.05; **p<0.01;

****p<0.0001; ns: not significant. (F) Mortal germline analyses of wt or HDA-1 SUMOylation-site mutant, and HDA-1::SMO-1 fusion worms. The wago-9/

hrde-1 mutant has a severe mortal germline phenotype. Worms were passaged at 25˚C for eight generations, and the average number of progeny from

10 individuals (n = 10) was determined at each generation. Error bars represent standard error of the mean (SEM).

The online version of this article includes the following source data for figure 2:

Source data 1. Brood size and germ line mortality.
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Figure 3. SUMOylation of HDA-1 promotes its association with NuRD and other chromatin factors. (A) Silver stained gel of proteins that co-

immunoprecipitate with HDA-1::GFP. The indicated protein bands were excised from the gel and identified by mass spectrometry. (B) Scatter plot

comparing the levels of proteins identified by mass spectrometry in HDA-1::GFP IPs from smo-1(RNAi) and wild-type (no RNAi) worms. The x axis shows

the log value of spectral counts for each protein identified by IP-MS from wild-type worms. The y axis shows the log ratio of spectral counts for each

protein in HDA-1::GFP IPs from smo-1(RNAi) vs. wild-type. (C) As in B, but comparing hda-1[KKRR]::gfp to hda-1[WT]::gfp. In (B) and (C), the spectral

counts of HDA-1 (RED) were used to normalize between samples. A full list of the identified proteins is provided in Supplementary file 2. (D) Western

blot analyses of proteins (indicated to left of blots) that associate with MEP-1::GTF (GFP IP) in hda-1[WT], hda-1[KKRR] and hda-1[KKRR]::smo-1 lysates.

The detected proteins are indicated to the right (black arrowheads). The modified isoforms, HDA-1::SUMO and HDA-1::SUMO-UBIQUITIN are

indicated with white arrow and white star, respectively. (E) Side-by-side comparison of HDA-1 isoforms detected in the HDA-1, SMO-1, and UBIQUITIN

blots in (D). The black dot indicates an unknown HDA-1 isoform. The black star indicates an unknown SUMOylated protein.
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(Figure 3B, C and Supplementary file 2). Of note, interactions between HDA-1 and SIN-3/SIN3A

were not sensitive to SUMO-pathway perturbations (Figure 3B, C and Supplementary file 2).

HDA-1 SUMOylation promotes the association of MEP-1 with chromatin
regulators
To explore the molecular consequences of HDA-1 SUMOylation on its physical interactions with

MEP-1 and other chromatin regulators, we crossed hda-1[KKRR] and hda-1[KKRR]::smo-1 strains to

worms that express a tandemly tagged MEP-1::GFP::TEV::3XFLAG (MEP-1::GTF) from the endoge-

nous mep-1 locus (Kim et al., 2021). We then used GBP beads to immunoprecipitate MEP-1::GTF

protein complexes from hda-1 wild-type or mutant lysates. As expected, interactions between MEP-

1::GTF and LET-418/Mi-2 did not depend on HDA-1 SUMOylation (Figure 3D; Kim et al., 2021).

Consistent with our HDA-1 proteomics studies, however, MEP-1::GTF pulled down wild-type HDA-1

but not HDA-1(KKRR) (Figure 3D). Moreover, LIN-53, MRG-1, and the HP-like heterochromatin pro-

teins HPL-1 and HPL-2 were also greatly reduced in MEP-1 complexes purified from hda-1[KKRR]

lysates (Figure 3D). Strikingly, each of these factors were dramatically increased, above wild-type

levels, in MEP-1 complexes purified from hda-1[KKRR]::smo-1 lysates (Figure 3D). Thus, the C-termi-

nal fusion of SUMO to HDA-1 rescues MEP-1 interactions with HDA-1(KKRR) and also promotes

MEP-1 interaction with HDA-1-binding partners. It is important to note that SUMO-conjugation (in

contrast to the SUMO-translational fusion) is rapidly reversed in lysates prepared for IP studies

(Kim et al., 2021), which explains why the bands detected by western blotting in Figure 3D—even

for the strongly SUMOylated MRG-1—migrate at the size of the unmodified proteins.

In MEP-1 immunoprecipitates from hda-1[KKRR]::smo-1 lysates, we detected multiple HDA-1

bands, including a prominent band slightly larger than the expected size of HDA-1::SMO-1 (white

stars in Figure 3D, E). Western blots with ubiquitin-specific antibody suggested that this prominent

band is a mono-ubiquitinated form of the fusion protein (Figure 3D, E). In both input and IP sam-

ples, we also observed an isoform similar in size to endogenous HDA-1 that was not detected by

SUMO-specific antibodies (Figure 3D, E), suggesting that the HDA-1::SMO-1 fusion protein may be

cleaved near the C-terminus of HDA-1, removing the SUMO peptide.

HDA-1 SUMOylation promotes histone deacetylation in vivo
The findings above suggest that SUMOylation promotes the assembly and function of HDA-1 com-

plexes. Our proteomic studies also revealed that SUMOylation promotes interactions between HDA-

1 and other histone-modifying enzymes required for heterochromatin formation, including the

demethylase SPR-5/LSD1, which removes activating H3K4me2/3 marks, and the methyltransferase

MET-2/SetDB1, which installs silencing H3K9me2/3 marks (Greer and Shi, 2012). Consistent with

the idea that SUMOylation of HDA-1 promotes silencing via SPR-5 and MET-2, immunostaining

revealed greatly reduced levels of H3K9me2 and increased levels of the H3K4me3 and throughout

the germline in HDA-1(KKRR) worms as compared to wild-type (Figure 4A, B, Figure 4—figure sup-

plement 1). Immunostaining also revealed higher levels of acetylated H3K9 (H3K9Ac) in germlines of

HDA-1(KKRR) and mep-1-depleted worms than in wild-type (Figure 4C). Moreover, we found that

HDA-1, LET-418, and MEP-1 (including MEP-1 expressed from the germline-specific wago-1 pro-

moter) bind heterochromatic regions of the genome, depleted of the activating H3K9Ac mark and

enriched for the silencing marks H3K9me2/3 (Figure 4D). Thus, SUMOylation of HDA-1 appears to

drive formation or maintenance of germline heterochromatin.

SUMOylated HDA-1 and PRG-1 co-regulate hundreds of targets,
including many spermatogenesis genes
The visibly reduced level of germline heterochromatin in HDA-1(KKRR) worms suggests that gene

expression is broadly misregulated when HDA-1 cannot be SUMOylated. To examine the effect of

HDA-1 SUMOylation on germline gene expression, we performed high-throughput sequencing of

mRNAs isolated from dissected germlines of hda-1[KKRR], hda-1[KKRR]::smo-1, and ubc-9[G56R] ani-

mals, and from worms expressing degron alleles of hda-1 and mep-1 with or without auxin exposure

beginning at the L4 stage (Figure 5A). Replicate libraries gave highly reproducible mRNA profiles

from each mutant (Figure 5—figure supplement 1A). Depletion of HDA-1 or MEP-1 or inactivation

of the SUMO pathway caused widespread upregulation of germline mRNAs and transposon families,
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with extensive but incomplete overlap between the mutants (Figure 5B, Figure 5—figure supple-

ment 1B, Figure 5—figure supplement 2). Twice as many genes were upregulated in degron::hda-

1 germline as in degron::mep-1 or ubc-9[G56R] (Figure 5B, Figure 5—figure supplement 1B), likely

reflecting the role of HDA-1 in multiple complexes. Nearly 10-fold fewer genes were upregulated in

hda-1[KKRR] than in auxin-treated degron::hda-1 animals (Figure 5B, Figure 5—figure supplement

1B), consistent with the phenotypic differences between the two mutants. Most (305, ~71%) of the

genes upregulated in hda-1[KKRR] germlines were also upregulated in auxin-treated degron::hda-1
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Figure 4. HDA-1 SUMOylation is required for formation of germline heterochromatin. (A, B) Immunofluorescence micrographs of (A) wild-type (wt) and

(B) hda-1[KKRR] gonads stained with anti-H3K9me2 antibody and DAPI. The dashed boxes indicated ‘a’ and ‘b’ are enlarged as shown. Two

representative gonads are shown for each strain. (C) Differential interference contrast and immunofluorescence micrographs of gonads from wt, hda-1

[KKRR], mep-1::gfp::degron with auxin (50 mM) worms stained with anti-H3K9Ac antibody and DAPI. (D) Genome Browser tracks (Integrated Genomics

Viewer [IGV]) showing ChIP-seq peaks for NuRD complex components (HDA-1, LET-418, and MEP-1) and three histone modifications (H3K9Ac,

H3K9me2, and H3K9me3) along each C. elegans chromosome (I–V and X). MEP-1(gonad) data are from worms that express MEP-1::GTF only in the

germline, using the wago-1 promoter, for germline-specific CHIP.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Increased levels of active H3K4me3 chromatin mark in hda-1[KKRR].
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Figure 5. The SUMO, NuRD, and piRNA pathways regulate the same group of targets. (A) Schematic of mRNA-seq from dissected gonads. (B) Venn

diagram showing overlap between upregulated genes in degron::hda-1, mep-1::degron, ubc-9(G56R), and hda-1[KKRR] germlines. Numbers in

parentheses indicate total number of upregulated genes. (C) Scatter plot of upregulated genes in hda-1[KKRR]. The x-axis represents reads in wild-

type (wt), and y-axis represents reads in hda-1[KKRR]. (D) Scatter plot showing the effect of hda-1[KKRR]::smo-1 on the 430 genes (from C) upregulated

in hda-1[KKRR]. The x-axis represents reads in wt, and y-axis represents reads in hda-1[KKRR]::smo-1. (E) Venn diagram showing overlap between

upregulated genes in hda-1[KKRR], prg-1, rde-3, and wago-9 mutants. (F) Bar graph showing fractions of upregulated genes involved in

spermatogenesis, oogenesis, neutral, or other categories. ‘Other’ indicates genes that cannot be put into one of the other categories (Ortiz et al.,

2014). Genes with >1 mRNA-seq reads in wt gonad were used to generate the ‘wild-type’ dataset as a reference. The number of genes in each dataset

is labeled at the top. (G–I) Scatter plots comparing mRNA-seq reads in (G) hda-1[KKRR], (H) rde-3, and (I) prg-1(ne4766) to those in wt. The blue dashed

lines indicate a twofold increase or decrease in mutant compared to wt.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure 5 continued on next page
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animals (Figure 5B). As expected, mRNAs upregulated in hda-1[KKRR] were restored to nearly wild-

type levels in hda-1[KKRR]::smo-1 (Figure 5C, D). Consistent with the known roles of the NuRD com-

plex and SUMOylation pathways in modulating chromatin states, we observed a loss of enrichment

for H3K9me2, as measured by ChIP-seq, near the promoters of genes upregulated in hda-1[KKRR],

ubc-9[G56R], and auxin-treated degron::hda-1 worms (Figure 5—figure supplement 3).

Because HDA-1 SUMOylation is required for silencing of a piRNA reporter, we examined which

endogenous mRNAs are co-regulated by HDA-1 SUMOylation and the piRNA pathway factors, PRG-

1, WAGO-9/HRDE-1, and RDE-3. We prepared mRNA sequencing libraries from dissected gonads

collected from prg-1(ne4766), wago-9/hrde-1(tm1200), and rde-3(ne3370) mutant animals

(Figure 5A). RDE-3 is required for production of small RNAs (termed 22G-RNAs) that guide tran-

scriptional and post-transcriptional silencing by WAGO Argonautes, including WAGO-9 (Gu et al.,

2009; Zhang et al., 2011). Of the 430 mRNAs upregulated (�2-fold) in hda-1[KKRR], we found that

362 (84%) were upregulated (�2-fold) in prg-1(ne4766), 360 (84%) were upregulated in rde-3

(ne3370), and 331 (77%) were upregulated in all three mutant strains (Figure 5E). Similarly, the

genes upregulated in hda-1[KKRR] accounted for 40% of the genes upregulated in prg-1(ne4766)

and 50% of those upregulated in rde-3(ne3370) (Figure 5E). Fewer genes were upregulated in

wago-9/hrde-1 (Figure 5E, Figure 5—figure supplement 1B), perhaps due to redundancy with

other WAGO Argonautes. Whereas only 5 transposon families were upregulated in prg-1(ne4766)

and a total of 6 transposon families were upregulated in hda-1[KKRR] (Figure 5—figure supplement

2), thirty (30) were upregulated in rde-3 mutants (Figure 5—figure supplement 2), consistent with

the previously described role for rde-3 and the WAGO pathway in maintaining the silencing of most

transposons in worms. The silencing defect was more severe in auxin-treated degron::hda-1 than in

hda-1[KKRR] (Figure 5—figure supplement 1B, Figure 5—figure supplement 2), resulting in the

increased expression of many more transposons and a more extensive overlap with genes upregu-

lated in rde-3 mutant worms (Figure 5—figure supplement 1C, Figure 5—figure supplement 2).

This result indicates that HDA-1 also promotes the maintenance of silencing independently of HDA-

1 SUMOylation.

Most of the genes upregulated in prg-1, rde-3, and hda-1[KKRR] mutants are normally expressed

during spermatogenesis (Figure 5F–I, Figure 5—figure supplement 4). In most cases, the upregula-

tion of these spermatogenesis mRNAs did not correlate with reduced WAGO 22G-RNAs targeting

these genes (Figure 5—figure supplement 5), suggesting that the spermatogenesis switch may be

regulated indirectly by the small RNA pathways.

HDA-1 physically interacts with WAGO-9/HRDE-1 and functions in
inherited RNAi
Because WAGO-9/HRDE-1 is a nuclear Argonaute that functions downstream in the Piwi pathway to

establish and maintain epigenetic silencing (Ashe et al., 2012; Bagijn et al., 2012; Buckley et al.,

2012; Shirayama et al., 2012), we asked if WAGO-9/HRDE-1 interacts with HDA-1. We used

CRISPR genome editing to generate a functional gfp::wago-9 strain and then used GBP beads to

immunoprecipitate GFP::WAGO-9 complexes. Western blot analyses revealed that HDA-1 co-pre-

cipitates specifically with GFP::WAGO-9 (Figure 6A). We also found that the HP1-like protein HPL-2

interacts with WAGO-9/HRDE-1 (Figure 6A), consistent with previous genetic studies (Ashe et al.,

2012; Buckley et al., 2012; Gu et al., 2012; Luteijn et al., 2012; Shirayama et al., 2012). HPL-2

binds methylated H3K9 in heterochromatin (Garrigues et al., 2015). Neither HDA-1 nor HPL-2 were

precipitated by GBP beads incubated with lysates prepared from untagged wild-type worms. These

interactions were confirmed by reciprocal GFP IP experiments using hda-1::gfp lysates (Figure 6B).

Moreover, the interaction of HDA-1 with WAGO-9 and HPL-2 was reduced in hda-1[KKRR] animals

Figure 5 continued

Figure supplement 1. Comparison of replicates in gonad mRNA-seq.

Figure supplement 2. Analysis of transposons.

Figure supplement 3. Loss of HDA-1 SUMOylation leads to depletion of H3k9me2 on a selected set of genes.

Figure supplement 4. Upregulated spermatogenic genes in the mutants.

Figure supplement 5. Analysis of small RNAs targeting upregulated genes in hda-1[KKRR].
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or by smo-1(RNAi) (Figure 6B). Interestingly, we observed a truncated form of HDA-1(KKRR)::GFP in

the input samples that appears to result from proteolytic removal of the C-terminal GFP (Figure 6B,

filled arrow, compare input to IP lanes). By contrast, GFP is not proteolytically removed from wild-

type HDA-1::GFP in the presence or absence of smo-1(RNAi). The reason for this difference in pro-

tein stability is not known and will require further study. Taken together, the SUMO-dependent inter-

actions between HDA-1 and WAGO-9 suggest that SUMOylation of HDA-1 promotes the assembly

of an Argonaute-guided nucleosome-remodeling complex.

Many of the factors that maintain heritable epigenetic silencing triggered by piRNAs—including

WAGO-9/HRDE-1—are also required for multigenerational germline silencing triggered by exoge-

nous dsRNA, that is, inherited RNAi (Ashe et al., 2012; Buckley et al., 2012; Shirayama et al.,

2012). We therefore asked if HDA-1 SUMOylation is also required for inherited RNAi. Worms

expressing a bright germline OMA-1::GFP were fed bacteria that express GFP dsRNA (i.e., RNAi by

feeding) for one generation (P0). The subsequent F1 and F2 generations were removed from the

RNAi food and cultured on a normal Escherichia coli diet (no gfp dsRNA). In wild-type worms, oma-

1::gfp was silenced in the P0 generation (in the presence of gfp dsRNA) and remained silent in the

F1 and F2 generations in the complete absence of gfp dsRNA (Figure 6C). By contrast, as previously

shown (Ashe et al., 2012; Buckley et al., 2012; Spracklin et al., 2017), oma-1::gfp is efficiently

silenced in P0 wago-9/hrde-1 worms in the presence of gfp dsRNA, but oma-1::gfp is reactivated in

the F1 and F2 generation after the removal from gfp dsRNA. hda-1[KKRR] animals were similarly

defective for heritable RNAi: oma-1::gfp was efficiently silenced in the P0 worms in the presence of

gfp dsRNA, but expression was fully restored in the F1 and F2 generations in the absence of gfp

dsRNA (Figure 6C). Finally, the hda-1[KKRR]::smo-1 translational fusion fully rescued the heritable

RNAi defect of hda-1[KKRR] (Figure 6C). Taken together, these findings suggest that HDA-1

SUMOylation promotes heritable transcriptional silencing in both the piRNA and RNAi pathways.
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Figure 6. HDA-1 interacts with WAGO-9/HRDE-1, which requires HDA-1 SUMOylation. (A) Western blot analysis showing that HDA-1 and HPL-2 co-

immunoprecipitate with GFP::WAGO-9/HRDE-1. (B) Western blot analysis of WAGO-9 and HPL-2 in HDA-1::GFP immunoprecipitates from wild-type,

HDA-1 SUMO acceptor-site mutant, or smo-1(RNAi) worms. Blotting with anti-SMO-1 antibody showed depletion of SMO-1 in the smo-1(RNAi) worms.

A band the size of untagged HDA-1 (black arrowhead) in hda-1[KKRR]::gfp in input appears to be a cleavage product that removes the GFP tag. (C)

Graph showing the levels of silencing induced by RNAi over three generations in wild-type, hda-1[KKRR], and hda-1[KKRR]::smo-1 worms. Worms were

treated with gfp(RNAi) at P0, and F1 larvae were transferred to regular NGM plates. The percentage of worms that express OMA-1::GFP was scored

(n�22, two replicates). Error bars represent standard error of the mean (SEM).
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Discussion

HDAC1 SUMOylation promotes Argonaute-directed transcriptional
silencing
Argonaute small RNA pathways collaborate with chromatin factors to co-regulate gene expression,

transposon activity, and chromosome dynamics (reviewed in Almeida et al., 2019). Here, we have

identified components of the NuRD complex as well as the SUMO and its E2 protein ligase, UBC-9,

as chromatin-remodeling and -modifying complexes required for the initiation of Piwi-mediated

gene silencing. Using mutagenesis of candidate SUMO-acceptor sites and affinity enrichment of

SUMO, we identified C-terminal lysines required for the SUMOylation of the HDAC1 homolog,

HDA-1. Mutating these lysines to arginine in HDA-1(KKRR) abolished the initiation but not the main-

tenance of piRNA-mediated silencing and also abolished the initiation of transgenerational silencing

in response to dsRNA. Appending SUMO by translational fusion to HDA-1(KKRR) completely res-

cued Argonaute-mediated silencing and even restored piRNA silencing in animals with mutations in

the SUMO conjugating machinery. Taken together, these molecular genetic studies strongly impli-

cate HDAC1 SUMOylation in promoting Argonaute-directed transcriptional silencing (Figure 7).

Figure 7. Model: HDAC1 SUMOylation promotes Argonaute-directed transcriptional gene silencing. SUMOylation of HDA-1 enables nucleosome

remodeling and deacetylase (NuRD) complex assembly in the adult germline and WAGO-9 or other Argonautes recruit the NuRD complex to piRNA

targets. The Argonaute/NuRD complex, along with other histone-modifying enzymes—for example, SPR-5, MET-2—removes the active histone marks

(H3K9Ac and H3K4me2/3) and establishes silencing marks (H3K9me2/3) to suppress their transcription.
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SUMO: a potent genetic modifier with an elusive biochemical signature
Given the strong genetic evidence that the modification of HDA-1 by SUMO promotes piRNA silenc-

ing in the adult germline, we were surprised that the conjugated isoform of HDA-1 was undetectable

in our IP assays from adult animals. Only when Ni-Affinity purification was used under strict denatur-

ing conditions was it possible to recover the HDA-1-SUMO isoform. A likely explanation for these

findings is that the covalent attachment of SUMO to its target proteins is rapidly reversed in lysates

from C. elegans adults (Kim et al., 2021).

The dynamic nature of SUMO conjugation is well known from studies on other organisms

(Mukhopadhyay and Dasso, 2007), and the SUMO protease SENP1 has been identified as an

important regulator of human HDAC1 SUMOylation (Cheng et al., 2004, see more discussion

below). In the future, it will be interesting to explore whether any of the three C. elegans homologs

of SENP1 regulate HDA-1 SUMOylation in the worm germline. The presence of such factors, which

appear to be very active in worm lysates, likely explains why so little HDA-1-SUMO was recovered in

our IP studies. Indeed, it seems likely that the labile nature of the SUMO interaction could explain

the discordance between its robust genetic effect and its surprisingly weak physical association with

its targets in co-IP assays. Consistent with this idea, an HDA-1::SMO-1 translational fusion protein

with an abnormal linkage via the N-terminus of SUMO was stable in protein lysates, strongly rescued

the silencing defects of the presumptive SUMO-acceptor mutant protein HDA-1(KKRR), and dramati-

cally enhanced the detection of protein-protein interactions between HDA-1 and components of an

adult-stage NuRD complex.

We were surprised that the HDA-1::SMO-1 fusion protein, which was constructed at the endoge-

nous and essential hda-1 locus, was so well-tolerated. Conceivably, the cleavage and ubiquitination

of HDA-1::SMO-1 that we detected in our IP assays provide alternative mechanisms to counter the

effects of this translational fusion. The mono-ubiquitinated form of the HDA-1::SMO-1 protein exhib-

ited reduced staining with a SUMO-specific antibody, raising the possibility that the SUMO moiety

in this protein is itself modified by ubiquitin, a modification that has been reported for SUMO iso-

forms in humans (Danielsen et al., 2011; Tatham et al., 2008). Taken together, our findings suggest

that HDA-1 SUMOylation is not only important genetically but is highly dynamic and may be regu-

lated at multiple levels.

HDAC1 SUMOylation plays diverse roles in gene regulation
Studies in mice and in human cell culture have investigated SUMOylation of C-terminal HDAC1

lysines (Cheng et al., 2004; Citro et al., 2013; David et al., 2002; Joung et al., 2018; Tao et al.,

2017). In at least three cases, mutating these lysines increased the levels of histone acetylation and

transcriptional activation (David et al., 2002; Cheng et al., 2004; Joung et al., 2018). As mentioned

above, the SUMO protease SENP1 was identified as a factor that promotes the removal of C-termi-

nal SUMO moieties from human HDAC1 in a prostate cancer model, causing upregulation of the

androgen receptor (Cheng et al., 2004). In a subsequent study, these authors identified SENP1 as

upregulated in human prostate cancers and found that overexpression of SENP1 was sufficient to

drive prostate neoplasia in a mouse model (Cheng et al., 2006). One very interesting study showed

that Ab insult led to upregulation of the SUMO E3 factor PIAS and resulted in SUMOylation of C-ter-

minal lysines in HDAC1 in the rat hippocampus (Tao et al., 2017). Remarkably, this study showed

that a lentivirus-driven HDAC1::SUMO translational fusion protein could rescue the learning and

memory deficits of an APP/Presenilin 1 murine model of Alzheimer’s disease (Tao et al., 2017), sug-

gesting that HDAC1 SUMOylation may be neuroprotective in response to Ab accumulation. Taken

together, our worm studies and these studies in mammalian systems point to the likely importance

of HDAC1 SUMOylation in the regulation of gene expression in diverse animals.

SUMO promotes the assembly of a germline MEP-1-NuRD complex
Precisely how HDA-1 SUMOylation promotes its downstream functions in piRNA silencing will

require further work. One possibility is that SUMO acts as a bridge between HDA-1 and a nuclear

Argonaute WAGO-9, while simultaneously promoting NuRD complex assembly (Figure 7 model).

This model is supported by the dramatically enhanced association between MEP-1 and the HDA-1::

SMO-1 translational fusion and by the ability of HDA-1::SMO-1 to rescue the piRNA silencing defects

of upstream SUMO pathway mutants.
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Paradoxically, HDA-1 is not SUMOylated in the embryo and yet interacts robustly with MEP-1

(Kim et al., 2021). We do not know why the association of HDA-1 with MEP-1 requires SUMO in the

adult germline but not the embryo. Perhaps unknown co-factors promote their SUMO-independent

interaction in the embryo. Alternatively, adult germline-specific factors may inhibit or modify HDA-1

or other NuRD complex components to prevent their direct association. SUMOylation of HDA-1 in

the adult may therefore enable it to associate with MEP-1 via a mechanism bridged by SUMO, a

SUMO glue, or SUMO-SIM network mode of interaction (Matunis et al., 2006; Psakhye and

Jentsch, 2012 Pelisch et al., 2017). The MEP-1 protein has two consensus SIMs, which could be

important for this association between MEP-1 and HDA-1. However, our preliminary studies on these

motifs were confounded by the finding that their simultaneous mutation resulted in a completely

sterile inactive mep-1 allele, similar phenotypically to a null allele. Thus, although the SIM motifs in

MEP-1 may be important for its interaction with HDA-1-SUMO, they may also be required for other

functions or for interactions with other essential co-factors.

Parallels in the role of SUMOylation in Piwi silencing in insects, mice,
and worms
Histone deacetylation is a necessary step in de novo transcriptional silencing. Yet, precisely how

nuclear Argonautes orchestrate both deacetylation and the subsequent installation of silencing

marks on target chromatin is not known. The nuclear Argonaute WAGO-9/HRDE-1 initiates transcrip-

tional silencing downstream of both the piRNA- and the dsRNA-induced silencing pathways

(Ashe et al., 2012; Bagijn et al., 2012; Buckley et al., 2012; Shirayama et al., 2012), and we have

shown here that HDA-1 interacts with WAGO-9 in a manner that partially depends on HDA-1

SUMOylation. In fruit fly, the nuclear Argonaute Piwi was recently shown to interact with the SUMO

E3 PIAS homolog Su(var)2–10 and to promote the recruitment of the histone methyltransferase

SetDB1/EGGless (Egg) and its cofactor MCAF1/Windei (Wde) (Ninova et al., 2020). A worm paralog

of EGG, MET-2, was identified in our SUMO-dependent HDA-1 IP complexes. Although the worm

PIAS/Su(var)2–10 homolog, GEI-17, scored negative in our piRNA sensor screen, in a parallel study

we have identified a synthetic piRNA silencing defect between gei-17 and mutations in pie-1, which

encodes a tandem zinc finger protein with properties consistent with SUMO E3 activity (Kim et al.,

2021). Thus, an attractive possibility is that upon binding to nascent target transcripts, nuclear Argo-

nautes recruit SUMO E3 factors to promote the SUMOylation and recruitment of both histone

deacetylase and histone methyltransferase complexes.

Interestingly, in Drosophila Kc167 cells, a MEP-1:Mi-2 complex (called MEC) reportedly forms

without HDAC1 (Kunert et al., 2009). Kc167 cells are derived from ovarian somatic cells and express

components of the Piwi pathway (Vrettos et al., 2017), raising the possibility that HDAC1 SUMOyla-

tion might promote its association with the MEC complex in these cells. Interestingly, a recent paper

showed that Drosophila MEP-1 and the HDA-1 homolog RPD3 interact with PIWI and with Su(var)2–

10 in fly ovarian somatic cells, where they function together to promote transposon silencing

(Mugat et al., 2020). Another recent study found that the mouse Piwi homolog MIWI engages

NuRD complex components and DNA methyltransferases to establish de novo silencing of transpo-

sons in the mouse testes, suggesting additional parallels to the findings from worms and flies

(Zoch et al., 2020). It will be interesting in the future to learn if mammalian and insect Piwi Argo-

nautes target HDAC1 SUMOylation to promote de novo Piwi silencing.

The mep-1 gene was previously implicated in regulating the transition from spermatogenesis to

oogenesis in hermaphrodites (Belfiore et al., 2002), and our findings suggest that HDA-1 SUMOyla-

tion also promotes this function. We were surprised, however, to find that spermatogenesis targets

are also regulated by the WAGO-pathway factor RDE-3 and by the Piwi Argonaute PRG-1. Similar

findings were reported recently by Reed et al., 2020. These observations raise the interesting possi-

bility that C. elegans germline, Argonaute systems function with SUMO and HDAC1 in promoting

the switch from spermatogenesis to oogenesis in hermaphrodites.
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Materials and methods

C. elegans strains and genetics
All the strains in this study were derived from Bristol N2 and cultured on nematode growth media

(NGM) plates with OP50, and genetic analyses were performed essentially as described (Bren-

ner, 1974). The strains used in this study are listed in Supplementary file 3.

RNAi screen
RNAi screen was performed against all 337 genes in the chromatin subset of the C. elegans RNAi

collection (Ahringer). RNAi of smo-1 and ubc-9 were added to the screen as chromatin regulators.

Synchronous L1 worms of the reporter strain were plated on the isopropyl-b-D-

thiogalactoside (IPTG) plates with the corresponding RNAi food. Bacteria with empty L4440 vector

served as negative control. The desilencing phenotype was scored when the worms on the control

plates grew to young adult stage at 20˚C. In the first round of the screen, 78 RNAi clones scored

positive. In the second round, we required that the sensor be desilenced in more than 5% of worms,

resulting in 29 positive clones, including smo-1 and ubc-9 (Supplementary file 1).

CRISPR/Cas9 genome editing
The Co-CRISPR strategy (Kim et al., 2014) and mep-1 sgRNA and smo-1 sgRNA (see Kim et al.,

2021) were used to generate mep-1::gfp::degron and 3xflag::smo-1 strains. Other CRISPR lines

were generated by Cas9 ribonucleoprotein (RNP) editing (Dokshin et al., 2018) or Cas12a (cpf1)

RNP editing. Cas12a genome editing mixture containing Cas12a protein (0.5 ml of 10 mg/ml), two

crRNAs (each 2.8 ml of 0.2 mg/ml), annealed PCR donor (4 mg), and rol-6(su1006) plasmid (2 ml of 500

ng/ml) was incubated at 37˚C for 30 min and 25˚C for 1 hr or overnight before injecting animals. For

short insertions, like FLAG, auxin-inducible degron, HIS10, and point mutations, synthetic single-

strand DNAs were used as donors; for long insertions, like GFP, 2/3xFLAG-Degron, and SUMO,

annealed PCR products were used as donors. Guide RNA sequences and ssOligo donors used in this

study are listed in Supplementary file 4.

Generation of strains expressing SUMO-conjugated HDA-1
To prevent transfer of SUMO from the HDA-1::SMO-1 fusion to other SUMO targets, we mutated

the tandem C-terminal glycines of SMO-1/SUMO to alanines (GG to AA) (Dorval and Fraser, 2006).

The modified smo-1 open reading frame was fused directly before the stop codon of hda-1 or hda-1

(ne4747[KKRR]) gene at the endogenous hda-1 locus by CRISPR genome editing as described

above.

Auxin treatment
For the auxin-inducible degron system (Zhang et al., 2015), tir-1::mRuby was expressed in the germ-

line under the control of the sun-1 promoter and eft-3 30 UTR. The degron-tagged L1 larvae were

plated on NGM plates with 100 mM auxin indole-3-acetic acid (IAA; Alfa Aesar, A10556) unless oth-

erwise stated and kept in dark. Worms were collected at young adult stage for further analysis.

Gonad fluorescent image
Gonads were dissected on glass slide (Thermo Fisher Scientific, 1256820) in M9 buffer, mounted in

2% paraformaldehyde (Electron Microscopy Science, Nm15710) in egg buffer (25 mM HEPES pH

7.5, 118 mM NaCl, 48 mM KCl, 2 mM CaCl2, 2 mM MgCl2), and directly imaged. Epifluorescence

and differential interference contrast (DIC) microscopy were performed using an Axio Imager M2

Microscope (Zeiss). Images were captured with an ORCA-ER digital camera (Hamamatsu) and proc-

essed using Axiovision software (Zeiss).

Immunofluorescence
Immunostaining of gonads was performed essentially as described (Kim et al., 2021). Primary anti-

bodies (diluted 1:100) included anti-acetyl-histone H3K9 antibody (Abcam, ab12179), anti-di-methyl-

histone H3K9 antibody (Abcam, ab1220), and anti-tri-methyl histone H3K4 (Millipore, 07-473). Sec-

ondary antibodies (diluted 1:1000) included goat anti-mouse IgG (H+L) Alexa Fluor 594 (Thermo
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Fisher Scientific, A11005), goat anti-mouse IgG (H+L) Alexa Fluor 488 (Thermo Fisher Scientific,

A11001), and goat anti-rabbit IgG (H+L) Alexa Fluor 568 (Thermo Fisher Scientific, A11011). Epifluor-

escence and DIC microscopy were performed using an Axio Imager M2 Microscope (Zeiss). Images

were captured with an ORCA-ER digital camera (Hamamatsu) and processed using Axiovision soft-

ware (Zeiss).

Affinity chromatography of histidine-tagged SUMO
Synchronous adult worms (~200,000) were used for Ni-NTA pull-downs. HIS-tagged SUMO/SUMOy-

lated proteins were enriched as described in Kim et al., 2021.

Co-IP and western blotting
IPs were performed as described (Kim et al., 2021). For western blots, protein samples were dena-

tured in NuPAGE LDS sample buffer (4�) (Thermo Fisher Scientific, NP0008), loaded on precast

NuPAGE Novex 4–12% Bis-Tris protein gel (Life Technologies, NP0321BOX), and transferred onto

0.2 mm nitrocellulose membrane (Bio-Rad, 1704158) using a Transblot turbo transfer system (Bio-

Rad). Membranes were incubated with primary antibodies at 4˚C overnight and then with secondary

antibodies for 1.5 hr at room temperature. Primary antibodies (and dilutions) included anti-FLAG

(1:1000) (Sigma-Aldrich, F1804), anti-GFP (1:1000) (GenScript, A01704) anti-MRG-1 (1:1000) (Novus

Biologicals, 49130002), anti-HPL-1 (1:1000) (Novus Biologicals, 38620002), anti-HPL-2 (1:1000)

(Novus Biologicals, 38630002), anti-LIN-53 (1:1000) (Novus Biologicals, 48710002), anti-HDA-1

(1:2500) (Novus Biologicals, 38660002), anti-LET-418 (1:1000) (Novus Biologicals, 48960002), anti-

SMO-1 (1:500) (purified from Hybridoma cell cultures, the Hybridoma cell line was gift from Ronald

T. Hay, University of Dundee) (Pelisch et al., 2014), anti-tubulin (1:2000) (Cell Signaling Technology,

9099S), anti-ubiquitin (1:1000) (Abcam, ab7780), and anti-WAGO-9/HRDE-1 (1:500) (gift from Eric A.

Miska) (Ashe et al., 2012). Antibody binding was detected with HRP-conjugated secondary antibod-

ies: goat anti-mouse (1:2500) (Thermo Fisher Scientific, 62-6520) and mouse anti-rabbit (1:3000)

(Abcam, ab99697).

Immunoprecipitation-mass spectrometry (IP-MS)
Synchronous adult worms were used for IP experiments unless otherwise indicated. Worm lysates

were prepared by combining 1 ml frozen worm pellet mixed with 1 ml IP lysis buffer (Kim et al.,

2021) and 2 ml glass beads, and then vortexing on FastPrep (MP Biomedicals) at a speed of 6 m/s

for 20 s for four times. Lysates were clarified twice by centrifugation for 30 min each at 12,000 rpm,

4˚C. GBP beads were prepared by conjugating GBP nanobody to N-hydroxysuccinimide (NHS)-

activated Sepharose beads (Rothbauer et al., 2008). GBP beads were incubated with lysates for 1

hr at 4˚C on a rotating shaker, and GFP-tagged proteins and complexes were eluted with 1% sodium

dodecyl sulfate (SDS), 50 mM Tris, pH 8.0 at 95˚C for 10 min. Proteins were precipitated

with trichloroacetic acid (TCA) and digested with trypsin. The resulting peptides were analyzed on a

Q Exactive mass spectrometer (Thermo Fisher Scientific) coupled with an Easy-nLC1000 liquid chro-

matography system (Thermo Fisher Scientific). Peptides were loaded on a pre-column (75 mm ID, 6

cm long, packed with ODS-AQ 120 Å�10 mm beads from YMC Co., Ltd.) and separated on an ana-

lytical column (75 mm ID, 13 cm long, packed with Luna C18 1.8 mm 100 Å resin from Welch Materi-

als) using a 78 min acetonitrile gradient from 0% to 30% (v/v) at a flow rate of 200 nl/min. The top

15-most intense precursor ions from each full scan (resolution 70,000) were isolated for HCD MS2

(resolution 17,500; NCE 27), with a dynamic exclusion time of 30 s. We excluded the precursors with

unassigned charge states or charge states of 1+, 7+, or >7+ . Database searching was done by

pFind 3.1 (http://pfind.ict.ac.cn/) against the C. elegans protein database (UniProt WS235). The fil-

tering criteria were: 1% false discovery rate (FDR) at both the peptide level and the protein level;

precursor mass tolerance, 20 ppm; fragment mass tolerance, 20 ppm; the peptide length, 6–100

amino acids. Spectral counts of HDA-1 in IP samples were used for normalization. Proteins either

absent in N2 or with more than twofold of the spectra counts in the hda-1::gfp IP compared to those

in N2 are shown in Supplementary file 2.
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Silver staining
One-third of each sample from each IP-MS experiment was fractionated on a 4–12% SDS-PAGE gel.

Gels were silver stained using ProteoSilver Plus Silver Stain Kit (Sigma-Aldrich). Visible bands were

cut for trypsin digestion and MS identification, and the most abundant protein in each band is

labeled in Figure 3A.

RNAi inheritance
L1 oma-1::gfp larvae were placed on IPTG plates (NGM plate with 1 mM IPTG and 100 mg/ml ampi-

cillin) seeded with E. coli strain HT115 transformed with either control vector L4440 or gfp RNAi

plasmid. The worms were scored for OMA-1::GFP signal in the oocyte at gravid adult stage and

transferred to regular NGM plates. OMA-1::GFP was monitored at gravid adult stage for every gen-

eration until most worms recovered the expression of oma-1::gfp.

Germline mortal assay
For each strain, 18 worms at L4 stage were singled and grown at 25˚C. For each generation, the

mothers were transferred to new plates every two days and their brood sizes were scored. One

worm from each plate for every generation was randomly picked to continue scoring the brood size

until plates became totally sterile.

Gonad mRNA-seq and analysis
For every mutant, about 100 gonads were dissected from the young adult worms (first day as

adults). We carefully cut near the �1 oocyte to make sure every gonad is similar and transfer gonads

into a 1.5 ml microcentrifuge tube. RNA was extracted from dissected gonads using Tri-reagent with

a yield about 0.5 mg. Ribosomal RNA was depleted by RNase H digestion after being annealed with

home-made anti-rRNA oligos for C. elegans. DNA was removed by DNase treatment. RNA-seq

libraries were constructed using a KAPA RNA HyperPrep kit, and paired-end sequencing was per-

formed on a Nextseq 500 Sequencer with the illumina NextSeq 500/550 high-output kit v2.5 (150

cycles).

Salmon was used to map the mRNA-seq reads with the worm database WS268, and its output

files were imported to DESeq2 in R. The differentially expressed genes were filtered by fold change

more than 2 and adjusted p-value <0.05. The scatter plots were generated by the plot function in R.

CHIP-seq
CHIP was carried out using a previous described protocol (Askjaer et al., 2014). Young adult worms

were washed three times with M9 and once with PBS and then cross-linked with 1.1% formaldehyde

in phosphate-buffered saline (PBS) with protease inhibitors for 10 min before being quenched with

125 mM glycine. Exchanging to CHIP Cell lysis buffer (20 mM Tris-Cl, 85 mM KCl, 0.5% NP40,

pH 8.0), DNA was fragmented by sonication (Bioruptor, high intensity, 30 s on and 30 s off for 45

cycles). Samples were incubated with antibodies overnight at 4˚C, and then with magnetic beads,

which were precleaned with 5% bovine serum albumin (BSA) in PBS + 0.02% Tween-20 (PBST) for 4

hr. After a series of washes in buffers of different stringency, DNA was eluted with CHIP elution

buffer (1% SDS, 250 mM NaCl, 10 mM Tris pH 8.0, 1 mM EDTA) at 65˚C for 15 min twice. RNA and

proteins were removed by RNase A and Proteinase K treatments. Samples were reverse cross-linked

by incubating at 65˚C, and the DNA was purified using a Zymo DNA clean kit (cat # D5205). Libraries

were prepared with NEBNext Ultra II DNA Library Prep Kit. Libraries were multiplexed and

sequenced on HiSeq X or NovaSeq 6000 with paired-end 150 bp sequencing. With a pair-wised IP

sample and its input, a ChIP-Seq Pipeline in the DolphinNext platform (built by the Bioinformatics

core at UMass Medical School) was used to analyze the CHIP-seq data. The data processing and

analysis pipeline includes adapter removal (cutadapt), reads mapping (Bowtie2-align-s v2.2.3), dupli-

cates removal (Picard-tools v1.131), peak calling (MACS2 v2.1.1.20160309), peak location, and quan-

tification (Bedtools v2.25.0, Quinlan and Hall, 2010). The output bed files were used to generate

figures with IGV (v2.7.2) for Figure 4D. Background subtraction was applied with the intersect func-

tion of Bedtools for Figure 5—figure supplement 3.
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Small RNA cloning and data analysis
The small RNA cloning was conducted as the previous report (Shen et al., 2018). Worms were syn-

chronized and collected at young adult stage. Small RNAs were enriched using a mirVana miRNA

isolation kit (Invitrogen) from Trizol purified total RNA. Homemade PIR-1 was used to remove the d

or triphosphate at the 50 to generate 50 monophosphorylated small RNA. Products were then ligated

to 30 adaptor (/5rApp/TGGAATTCTCGGGTGCCAAGG/3ddC/) by T4 RNA ligase 2(NEB) and 50

adaptor (rGrUrUrCrArGrArGrUrUrCrUrArCrArGrUrCrCrGrArCrGrArUrCrNrNrNrCrGrArNrNrNrUrA

rCrNrNrN, N is for a random nucleotide) by T4 ligase 1(NEB) sequentially, followed by reverse tran-

scription with RT primer (CCTTGGCACCCGAGAATTCCA) and SuperScript III (Invitrogen). PCR

amplification was done with Q5 and primers with indexes (forward: AATGATACGGCGACCACC-

GAGATCTACACGTTCAGAGTTCTACAGTCCGA, reverse: CAAGCAGAAGACGGCATACGAGAT

[6bases index] GTGACTGGAGTTCCTTGGCACCCGAGAATTCCA). PCR productions around 150 bp

were separated by 12% SDS-PAGE, extracted with TE buffer (10 mM Tris-HCl, 0.1 mM EDTA, pH

8.0), and purified with isopropanol precipitation. Libraries were equally mixed and sequenced on a

NextSeq 550 sequencer using the Illumina NextSeq 500/550 high-output kit v2.5 (75 cycles) with 75

bp single-end sequencing. Adapters were trimmed by cutadapt and reads were mapped to a worm

database (WS268) using Bowtie2. DESeq2 was used to normalized reads between samples.
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Appendix 1

Appendix 1—key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Antibody Mouse monoclonal anti-
FLAG M2

Sigma-Aldrich Cat# F1804;
RRID:AB_
262044

IB(1:1000)

Antibody Rabbit polyclonal anti-GFP GenScript Cat# A01704;
RRID:AB_
2622199

IB(1:1000)

Antibody Rabbit polyclonal anti-MRG-
1

Novus Biologicals Cat# 49130002;
RRID:AB_
10011724

IB(1:1000)

Antibody Rabbit polyclonal anti-HPL-1 Novus Biologicals Cat# 38620002;
RRID:AB_
10008562

IB(1:1000)

Antibody Rabbit polyclonal anti-HPL-2 Novus Biologicals Cat# 38630002;
RRID:AB_
10647696

IB(1:1000)

Antibody Rabbit polyclonal anti-LIN-53 Novus Biologicals Cat# 48710002;
RRID:AB_
10011629

IB(1:1000)

Antibody Rabbit polyclonal anti-HDA-
1

Novus Biologicals Cat# 38660002;
RRID:AB_
10708816

IB(1:2500)

Antibody Rabbit monoclonal anti-
tubulin

Cell Signaling
Technology

Cat# 9099,
RRID:AB_
10695471

IB(1:2000)

Antibody Rabbit polyclonal anti-LET-
418

Novus Biologicals Cat# 48960002,
RRID:AB_
10708820

IB(1:1000)

Antibody Mouse monoclonal anti-
SMO-1

Pelisch et al., 2014 Gift from
Ronald T Hay

IB(1:500) freshly purified
from hybridoma cell
culture

Antibody Rabbit polyclonal anti-
ubiquitin

Abcam Cat# ab7780;
RRID:AB_
306069

IB(1:1000)

Antibody Rabbit polyclonal anti-
HRDE-1/WAGO-9

Ashe et al., 2012 Gift from Eric A
Miska

IB(1:500)

Antibody Goat anti-mouse IgG (HRP-
conjugated)

Thermo Fisher
Scientific

Cat# 62-6520;
RRID:AB_
2533947

IB(1:2500)

Antibody Mouse Anti-rabbit IgG light
(HRP-conjugated)

Abcam Cat# ab99697;
RRID:AB_
10673897

IB(1:3000)

Antibody Mouse monoclonal anti-
histone H3, di methyl K9

Abcam Cat# ab1220;
RRID:AB_
449854

IF(1:100)

Antibody Mouse monoclonal anti-
histone H3, acetyl K9

Abcam Cat# ab12179;
RRID:AB_
298910

IF(1:100)

Antibody Rabbit polyclonal anti-
trimethyl histone H3, K4

Millipore Cat# 07-473;
RRID:AB_
1977252

IF(1:100)
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Antibody Goat anti-mouse IgG (H+L)
Alexa Fluor 488

Thermo Fisher
Scientific

Cat# A-11001;
RRID:AB_
2534069

IF(1:1000)

Antibody Goat anti-mouse IgG (H+L)
Alexa Fluor 594

Thermo Fisher
Scientific

Cat# A-11005;
RRID:AB_
2534073

IF(1:1000)

Antibody Goat anti-rabbit IgG (H+L)
Alexa Fluor 568

Thermo Fisher
Scientific

Cat# A-11011;
RRID:AB_
143157

IF(1:1000)

Antibody Mouse monoclonal anti-
FLAG

Sigma-Aldrich Cat# F3165;
RRID:AB_
259529

For CHIP

Antibody Mouse monoclonal anti-
dimethyl histone H3, K9

MBL international Cat#
MABI0307;
RRID:AB_
11124951

For CHIP

Antibody Rabbit polyclonal anti-
histone H3, trimethyl K9

Millipore Cat# 07-523;
RRID:AB_
310687

For CHIP

Antibody Rabbit polyclonal anti-
histone H3, acetyl K9

Abcam Cat# ab4441;
RRID:AB_
2118292

For CHIP

Strain, strain
background

C. elegans strains This study Supplementary file 3

Strain, strain
background

E. coli: Strain OP50 Caenorhabditis
Genetics Center

WormBase:
OP50

Strain, strain
background

E. coli: Strain HT115 Caenorhabditis
Genetics Center

WormBase:
HT115

Strain, strain
background

E. coli: Ahringer collection Laboratory of C.
Mello

N/A

Peptide,
recombinant
protein

Ex Taq DNA polymerase Takara Cat# RR001C

Peptide,
recombinant
protein

iProof high fidelity DNA
polymerase

Bio-Rad Cat#1725302

Peptide,
recombinant
protein

Alt-R S.p. Cas9 Nuclease V3 Integrated DNA
Technologies (IDT)

Cat# 1081058 CRISPR reagent

Peptide,
recombinant
protein

Alt-R A.s. Cas12a (Cpf1) V3 Integrated DNA
Technologies (IDT)

Cat# 1081068 CRISPR reagent

Peptide,
recombinant
protein

GFP-binding protein (GBP)
beads

Homemade N/A

Peptide,
recombinant
protein

Hybridase Thermostable
RNase H

Lucigen
Corporation

Cat# H39500

Peptide,
recombinant
protein

Turbo DNase Thermo Fisher
Scientific

Cat# AM2238

Peptide,
recombinant
protein

Super Script III Reverse
Transcriptase

Thermo Fisher
Scientific

Cat# 18080085

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Peptide,
recombinant
protein

T4 RNA ligase 1 New England
Biolabs

Cat# M0437M

Peptide,
recombinant
protein

T4 RNA ligase 2 New England
Biolabs

Cat# M0242L

Peptide,
recombinant
protein

Super Script III Reverse
Transcriptase

Thermo Fisher
Scientific

Cat# 18080085

Chemical
compound, drug

Ethidium bromide Sigma-Aldrich Cat# E1510

Chemical
compound, drug

Isopropyl-b -D-
thiogalactoside (IPTG)

Sigma-Aldrich Cat#
11411446001

Chemical
compound, drug

Ampicillin Sigma-Aldrich Cat# A9518

Chemical
compound, drug

Tetracycline Sigma-Aldrich Cat# 87128

Chemical
compound, drug

Indole-3-acetic acid (IAA) Alfa Aesar Cat# A10556

Chemical
compound, drug

Tetramisole hydrochloride Sigma-Aldrich Cat# L9756-5G

Chemical
compound, drug

Paraformaldehyde 16%
solution

Electron Microscopy
Science

Cat# Nm15710

Chemical
compound, drug

Formaldehyde, 36.5–38% in
H2O

Sigma-Aldrich Cat# F8775

Chemical
compound, drug

PBS Life Technologies Cat# AM9615

Chemical
compound, drug

Tween20 Fisher BioReagents Cat# BP337-
500

Chemical
compound, drug

Bovine serum albumin (BSA) Life Technologies Cat# AM2618

Chemical
compound, drug

1M HEPES, pH7.4 TEKnova Cat# H1030

Chemical
compound, drug

Sodium citrate dihydrate Thermo Fisher
Scientific

Cat# BP337500

Chemical
compound, drug

Triton X-100 Sigma-Aldrich Cat# T8787-
250ml

Chemical
compound, drug

cOmplete EDTA-free
Protease Inhibitor Cocktail

Roche Cat#
11836170001

Chemical
compound, drug

NP-40 EMD Millipore Cat# 492018

Chemical
compound, drug

Tris (Base) Avantor Cat# 4099–06

Chemical
compound, drug

Ethylenediaminetetraacetic
acid disodium salt dihydrate

Sigma-Aldrich Cat# E1644

Chemical
compound, drug

TE buffer, pH 8.0 Thermo Fisher
Scientific

Cat# AM9858

Chemical
compound, drug

Sodium dodecyl sulfate
(SDS)

Sigma-Aldrich Cat# L3771-
100G

Chemical
compound, drug

Sodium chloride (NaCl) Genesee Scientific Cat# 18-214

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Chemical
compound, drug

Magnesium chloride (MgCl2) Sigma-Aldrich Cat# M8266

Chemical
compound, drug

DL-Dithiothreitol (DTT) Sigma-Aldrich Cat# D0632-
10G

Chemical
compound, drug

Calcium chloride (CaCl2) Sigma-Aldrich Cat# C5080

Chemical
compound, drug

Potassium chloride (KCl) Sigma-Aldrich Cat# P9541

Chemical
compound, drug

Guanidine-HCl Sigma-Aldrich Cat# G3272

Chemical
compound, drug

Imidazole Sigma-Aldrich Cat# 792527

Chemical
compound, drug

b-Mercaptoethanol Sigma-Aldrich Cat# M6250

Chemical
compound, drug

Sodium phosphate, dibasic Sigma-Aldrich Cat# S7907

Chemical
compound, drug

Sodium phosphate,
monobasic

Sigma-Aldrich Cat# S0751

Chemical
compound, drug

Urea Thermo Fisher
Scientific

Cat#
Ac327380010

Chemical
compound, drug

Trichloroacetic acid (TCA) Sigma-Aldrich Cat# T0699

Chemical
compound, drug

1-Bromo-3-chloropropane Sigma-Aldrich Cat# B9673

Chemical
compound, drug

Glycine Thermo Fisher
Scientific

Cat# BP381-1

Chemical
compound, drug

TRI reagent Sigma-Aldrich Cat# T9424

Chemical
compound, drug

Trypsin New England
Biolabs

Cat# P8101S

Commercial assay,
kit

SlowFade Diamond antifade
Mountant with DAPI

Life Technologies Cat# S36964

Commercial assay,
kit

Quick start Bradford 1xdye
reagent

Bio-Rad Cat# 5000205

Commercial assay,
kit

NuPAGE LDS sample buffer
(4x)

Thermo Fisher
Scientific

Cat# NP0008

Commercial assay,
kit

GlycoBlue Coprecipitant Thermo Fisher
Scientific

Cat# AM9515

Commercial assay,
kit

Ni-NTA resin Qiagen Cat# 30210

Commercial assay,
kit

pCR-Blunt II Topo cloning kit Thermo Fisher
Scientific

Cat# K280020

Commercial assay,
kit

MinElute PCR purification Kit Qiagen Cat# 28006

Commercial assay,
kit

ChIP DNA clean and
concentrator Kit

Zymo Research Cat# 5205

Commercial assay,
kit

ProteoSilver Plus Silver Stain
Kit

Sigma-Aldrich Cat# PROT-
SIL2

Commercial assay,
kit

Trans-blot Turbo Mini NC
Transfer Packs

Bio-Rad Cat# 1704158
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Commercial assay,
kit

Lumi-Light Plus western
blotting substrate

Sigma-Aldrich Cat#
12015196001

Commercial assay,
kit

Hyperfilm ECL Thermo Fisher
Scientific

Cat# 45001507

Commercial assay,
kit

mirVana miRNA Isolation Kit Thermo Fisher
Scientific

Cat# AM1561

Commercial assay,
kit

KAPA RNA HyperPrep with
RiboErase (KK8560)

Roche Cat#
08098131702

Commercial assay,
kit

KAPA single-indexed
adapter kit (KK8700)

Roche Cat#
08005699001

Commercial assay,
kit

ChIP-Grade Protein A/G
Magnetic Beads

Thermo Fisher
Scientific

Cat# 26162

Commercial assay,
kit

Illumina NextSeq 500/550
v2.5 kit (75 cycles)

Illumina, Inc. Cat# 20024906

Commercial assay,
kit

Illumina NextSeq 500/550
v2.5 kit (150 cycles)

Illumina, Inc. Cat# 20024907

Recombinant DNA
reagent

Peft3::cas9 vector
(backbone: blunt II topo
vector)

Friedland et al.,
2013

N/A Backbone: blunt II topo
vector (Kim et al., 2021)

Recombinant DNA
reagent

pRF4: injection marker, rol-6
(su1006)

Mello et al., 1991 N/A Backbone: blunt II topo
vector (Kim et al., 2021)

Recombinant DNA
reagent

smo-1 sgRNA plasmid This study Supplementary file 4

Recombinant DNA
reagent

mep-1 sgRNA plasmid Kim et al., 2021 Supplementary file 4

Sequence-based
reagent

List of gRNA sequences This study Supplementary file 4

Sequence-based
reagent

Alt-R CRISPR-Cas9 tracrRNA Integrated DNA
Technologies (IDT)

Cat# 1072534 CRISPR reagent

Sequence-based
reagent

Anti-rRNA Oligos for C.
elegans

This study
(homemade)

N/A

Software,
algorithm

GraphPad Prism version
8.2.1

GraphPad Software http://www.
graphpad.com

Software,
algorithm

Salmon Patro et al., 2017 v1.1.0

Software,
algorithm

DEseq2 Love et al., 2014 v1.26.0

Software,
algorithm

Bowtie2 Langmead and
Salzberg, 2012

v2.2.3

Software,
algorithm

Picard-tools Broad Institute,
2019

v1.131

Software,
algorithm

MACS2 Feng et al., 2012 v2.1.1.20160309

Software,
algorithm

BedTools Quinlan and Hall,
2010

v2.25.0

Software,
algorithm

IGV Robinson et al.,
2017

v2.7.2
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