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ABSTRACT  
Bisphenol A (BPA), an endocrine-disrupting substance commonly found in plastics and receipts, is 
associated with adverse effects, including endocrine disorders, reduced fertility, and metabolic 
issues. To gain insights into its effects on biological systems, we observed the adverse effects of 
BPA in male Institute of Cancer Research (ICR) mice exposed to BPA at the lowest observed 
adverse effect level for 6 weeks, in comparison with the control groups. We constructed a 
comprehensive transcriptome profile using 20 different tissues to analyze the changes in the 
whole-body systems. This involved employing differential gene expression, tissue-specific gene, 
and gene co-expression network analyses. The study revealed that BPA exposure led to 
significant differences in the transcriptome in the thymus, suggesting activation of T-cell 
differentiation and maturation in response to BPA treatment. Furthermore, various tissues 
exhibited immune response activation, potentially due to the migration of immune cells from 
the thymus. BPA exposure also caused immune-related functional changes in the colon, liver, 
and kidney, as well as abnormal signaling responses in the sperm. The transcriptome analysis 
serves as a valuable resource for understanding the functional impact of BPA, providing 
profound insights into the effects of BPA exposure and emphasizing the need for further 
research on potential associated health risks.
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1. Introduction

Endocrine-disrupting chemicals (EDCs) negatively affect 
the endocrine system La Merrill et al. (2020). These sub-
stances interfere with the synthesis, secretion, transport, 

binding, and elimination of hormones in the body, 
thereby affecting homeostasis, behavior, reproduction, 
and development (Ahn et al. 2022; Guarnotta et al. 
2022; Ha et al. 2023). EDCs differ from hormones in 
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that they are not easily decomposed. Endocrine disrup-
tors, including phthalates, polybrominated diphenyl 
ethers (PBDEs), and bisphenol analogs, adversely affect 
reproductive health Kabir et al. (2015).

Recently, given the increase in the use of disposable 
products, concerns regarding the effects of EDCs on 
human physiology have increased Pilot Program Disrupts 
Endocrine Disrupting Chemicals (2023). Although, EDCs 
are widespread in all aspects of our lives, they are not dis-
posable Kelly et al. (2020). The EDC bisphenol A (BPA) can 
be exposed through normal use of packaging material, 
cell phone cases, receipts, and baby bottles Jalal et al. 
(2018). The growing interest regarding the dangers of 
BPA has prompted the investigation of its physiological 
effects Vom Saal and Vandenberg (2021). BPA is a well- 
known xenoestrogen that mimics the binding of estrogen 
to the estrogen receptor (ER) Acconcia et al. (2015). BPA 
induces oxidative stress to generate reactive oxygen 
species (ROS), which cause damage by accelerating cell 
dysfunction and changes in signaling pathways (Kour-
ouma et al. 2015; Gassman 2017). BPA exposure causes 
adverse effects, including endocrine disorders, fertility 
and developmental disorders, metabolic disorders, high 
blood pressure, and precocious puberty Rochester 
(2013). Several studies have shown that animals exposed 
to low BPA levels have increased severity of diabetes, 
breast cancer, prostate cancer, decreased sperm count, 
reproductive problems, early maturity, and neurological 
problems (Melzer et al. 2012; Radwan et al. 2018). Further-
more, BPA has recently been termed an ‘obesogen,’ 
causing obesity (Vom Saal et al. 2012; Lee and Park 2019).

Because BPA is a symbolic EDC, there are many con-
cerns regarding its effects on the reproductive system, 
and research has mainly focused on its effect on repro-
ductive organs (Gurmeet et al. 2014; Matuszczak et al. 
2019). To understand the molecular mechanism of 
BPA, next-generation sequencing (NGS) techniques, 
such as microarray and RNA sequencing (RNA-seq), 
have been used (Gao et al. 2018). A hybridization- 
based microarray identifies changes in gene expression 
patterns (Hwang et al. 2011), while RNA-seq, a cDNA 
sequence-based approach allows for transcriptome 
quantification (Jung et al. 2017; Drobná et al. 2018). 
However, a comprehensive analysis is required to eluci-
date the various mechanisms of BPA. For example, the 
genome atlas offers comprehensive genetic information, 
providing a blue print for each organ, tissue, and cell in 
an organism (Mure et al. 2018; Wang et al. 2019). It is 
especially useful to determine the physiological effects 
of a toxic substance such as BPA in the body from the 
existing state by discerning alterations in the transcrip-
tome Wan et al. (2011). Despite the extensive research 
on BPA’s impact on specific organs, there is still a lack 

of comprehensive understanding regarding its systemic 
effects across multiple tissues (Costa and Cairrao 2024). 
Particularly, the inter-tissue interactions and the 
broader physiological implications of BPA exposure 
remain underexplored. This study aims to address this 
gap by providing an integrated analysis of BPA’s 
effects across 20 distinct tissues, offering new insights 
into those systemic physiological effects of BPA.

This study presents a comprehensive investigation into 
the pervasive impact of BPA using a mouse model and a 
multi-faceted analytical approach. We used RNA-seq data 
from 20 distinct tissues to determine the effects of BPA 
exposure. Differentially expressed gene (DEG) analysis 
was conducted to determine the shift in gene expression 
patterns in response to BPA. Additionally, tissue specific 
gene (TSG) analysis enabled the pinpointing of genes 
that exhibited tissue-specific expression patterns under 
the influence of BPA. Gene co-expression network (GCN) 
analysis was also conducted to explore the interplay 
between different tissues, identifying potential corre-
lations and mutual influences based on gene expression 
networks. Subsequently, the potential candidate genes 
were functionally annotated to understand not only the 
fragmented impacts of BPA on individual organs but 
also to comprehend the interconnected roles these 
organs play within the entire physiological system in 
response to BPA. In essence, this study provides detailed 
insights into EDCs, offering a holistic view of the systemic 
changes induced by BPA at the transcriptomic level.

2. Materials and methods

2.1. Ethical statement

All animal experiments were approved by the Insti-
tutional Animal Care and Use Committee of Chung- 
Ang University, Seoul, Republic of Korea (IACUC 
Number: 202301020018) and were conducted following 
the standard guidelines for animal studies.

2.2. Experimental design and sample preparation

The experimental design is illustrated in Figure 1. Eight 
4-week-old CD-1 (ICR) male mice were used in this 
study. The mice were housed under a 12 h day/12 h 
night cycle at 20–25°C in an atmosphere with 50–60% 
humidity. Mice were allowed to adapt to the environ-
ment for one week and were separated into two 
groups (n = 4/group): control and BPA-treated. We 
used a BPA dose of 50 mg/kg bw/day as defined by 
the U.S. Environmental Protection Agency as the 
lowest observed adverse effect level (LOAEL) (Tyl 2009; 
Hengstler et al. 2011). Control mice were administered 
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vehicle (corn oil) only by oral gavage. BPA-treated were 
orally administered BPA according to body weight 
changes, following the previously mentioned dosage, 
for 6–11 weeks (six weeks of treatment). The mice 
were allowed a stabilization period of one week before 
sample collection. The aorta, brown fat, cerebral 
cortex, colon, heart, hypothalamus, kidney, liver, lungs, 
pituitary gland, prostate, skeletal muscle, skin, sperm, 
spleen, stomach, testis, thymus, thyroid, and urinary 
bladder were collected from each mouse. The skeletal 
muscle samples were collected from the hindlimb 
region of the mouse, and the skin samples were taken 
from the dorsal region after hair removal. Sperm were 
collected from the cauda epididymis and incubated at 
37°C in 5% CO2 for 10 min. Sperm pellets were snap- 
frozen in liquid nitrogen (–196°C) for RNA extraction. 

Tissues other than sperm were incubated overnight at 
4°C in RNAlater (Invitrogen, Carlsbad, CA, USA) and 
snap-frozen in liquid nitrogen (–196°C) for RNA 
extraction.

2.3. RNA extraction, library preparation, and 
sequencing

Total RNA was extracted using the QIAzol lysis 
reagent (Qiagen, Hilden, Germany) following the 
manufacturer’s instructions. The total RNA concen-
tration was calculated using Quant-IT RiboGreen 
(Invitrogen, Carlsbad, CA, USA). To assess the integ-
rity of total RNA, samples were run on a TapeStation 
RNA ScreenTape (Agilent Technologies, Santa Clara, 
CA, USA). Only high-quality RNA preparations (RIN 

Figure 1. Experimental design of the study. A schematic diagram of the experimental design in target tissues (aorta, brown fat, cer-
ebral cortex, colon, heart, hypothalamus, kidney, liver, lung, pituitary gland, prostate, skeletal muscle, skin, sperm, spleen, stomach, 
testis, thymus, thyroid, and urinary bladder) from BPA-treated mice.
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greater than 7.0) were used for RNA library construc-
tion. A library was independently prepared with 1 µg 
of total RNA from each sample using the Illumina 
TruSeq Stranded mRNA Sample Prep Kit (Illumina, 
Inc., San Diego, CA, USA). First, rRNA was removed 
from total RNA using the Ribo-Zero rRNA Removal 
Kit (Human/Mouse/Rat) (Illumina, Inc., San Diego, 
CA, USA), and the remaining mRNA was fragmented 
into small pieces using divalent cations at elevated 
temperatures. The cleaved RNA fragments were 
copied into first-strand cDNA using SuperScript II 
reverse transcriptase (Invitrogen) and random 
primers. This was followed by the synthesis of 
second-strand cDNA using DNA Polymerase I, 
RNase H, and dUTP. These cDNA fragments were 
subjected to an end repair process, the addition of 
a single ‘A’ base, and then ligation of the adapters. 
The products were purified and enriched using PCR 
to create a final cDNA library. Libraries were quan-
tified using the KAPA Library Quantification Kit for 
Illumina Sequencing platforms following the qPCR 
Quantification Protocol Guide (Kapa Biosystems, Wil-
mington, MA, USA) and qualified using a TapeStation 
D1000 ScreenTape (Agilent Technologies, Santa 
Clara, CA, USA). Indexed libraries were then sub-
mitted to an Illumina HiSeq4000 (Illumina, Inc., San 
Diego, CA, USA), and paired-end (2×100 bp) sequen-
cing was performed by Macrogen, Inc. (Seoul, 
Republic of Korea).

2.4. NGS data processing and expression pattern 
analyses

The FastQC (v0.11.7) software was used to check the 
quality of the raw reads (Andrews 2012), and the reads 
were trimmed using Trimmomatic (v0.39) for low- 
quality reads and adapters Bolger et al. (2014). Hisat2 
(v2.2.0) was used to map clean reads against the 
mouse reference genome (Mus musculus; GRCm38, 
GenBank assembly accession: GCA_000001635.9) of the 
Ensembl genome browser (http://www.ensembl.org/ 
Mus_musculus/, accessed on July 31, 2021) using the 
default option of the program Kim et al. (2019). Sam-
tools (v1.10) was used to sort the mapped reads and 
convert the SAM file to a BAM file Li et al. (2009). 
Stringtie (v2.1.4) was used for calculating the frag-
ments per kilobase per million mapped reads (FPKM) 
value Pertea et al. (2015). The raw counts correspond-
ing to the genes in each library were calculated based 
on exons in Mus musculus GTF v101 (Ensembl) as the 
genomic annotation reference file using feature-
Counts (Subread package v1.6.3) Liao et al. (2014). 
Expression pattern analysis was performed using the 

R package ‘Cluster’ using the Ward’s minimum var-
iance method Struyf et al. (1997).

2.5. Differentially expressed gene (DEG) and 
tissue-specific gene (TSG) profiling

DEG analyses were performed by comparing the control 
and BPA-treated groups in each tissue and sperm 
samples, resulting in 20 comparisons. The R/Bioconduc-
tor edgeR package (v3.28.1) was used for DEG analyses 
of raw counts (Robinson et al. 2010). The trimmed 
mean of M-values (TMM) method was used to normalize 
raw counts (Robinson and Oshlack 2010). To explore the 
similarities among samples, we performed Multidimen-
sional Scaling (MDS) analysis, which visualizes high- 
dimensional data in a lower-dimensional space, effec-
tively illustrating the relationships between samples. 
This analysis was conducted using the ‘limma’ and 
‘ggplot2’ R packages, which are robust tools for statisti-
cal analysis and data visualization (Wickham 2011; 
Ritchie et al. 2015). DEGs were identified using a nega-
tive binomial generalized linear model included in the 
edgeR R package Robinson et al. (2010). The cutoff for 
DEGs was applied using the adjusted P-value using the 
Benjamini-Hochberg correction with a false discovery 
rate of < 0.05 and an absolute log2 fold change (FC) ≥ 
1 (Benjamini and Hochberg 1995). For TSG profiling, a 
generalized linear model (GLM) was constructed using 
the R program based on a known method (Fang et al. 
2020).

y = m+ Xb+ Zc+ e, 

where y is the log2FPKM value, and μ is the intercept. X is 
the dummy variable for 20 tissues, where samples of the 
tested tissue (e.g. Aorta) are denoted as ‘1’, whereas 
samples outside the same Category A (e.g. Category A) 
are denoted as ‘–1’. b is the effect of the corresponding 
tissue, and Z is the matrix for the covariable, which is 
BPA treatment. c is the corresponding covariable 
effect, and e is the residual effect.

To categorize tissue-specific genes, a generalized 
linear model (GLM) was utilized through three distinct 
models, each addressing a specific aspect of gene 
expression related to BPA treatment. Model 1 aimed to 
identify genes with tissue-specific expression patterns 
without considering the influence of BPA treatment. 
This initial model focused solely on capturing genes 
that exhibit distinct expression profiles in different 
tissues. Model 2 expanded upon Model 1 by incorporat-
ing BPA treatment as a covariable. The purpose of this 
model was to discern tissue-specific genes that show 
significant changes in expression due to BPA exposure, 
highlighting how BPA treatment affects gene expression 
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within specific tissues. Model 3 further refined the analy-
sis by applying additional thresholds to both the BPA 
treatment covariable and the significance level. This 
model aimed to identify tissue-specific genes that 
exhibit statistically significant changes in expression in 
response to BPA, providing a more stringent assessment 
of BPA’s impact.

2.6. Gene co-expression network (GCN) analysis

GCN analysis was conducted using two methods. First, 
the partial correlation and information theory (PCIT) 
algorithm was used to perform GCN analysis Watson- 
Haigh et al. (2010). Using the first GLM result, we con-
structed the network with the genes of absolute co- 
expression correlations of ≥ 0.95. The most significant 
genes (third GLM result) were included.

We also performed weighted gene co-expression 
network analysis (WGCNA) using the second GLM 
result (Zhang and Horvath 2005). Twenty tissues were 
used as traits, and the Pearson method was used to 
evaluate the correlation. The soft threshold (power) 
was chosen using the ‘pickSoftThreshold’ function in 
the WGCNA R package, and the hard threshold using 
0.1 in each module was used for filtering (Langfelder 
and Horvath 2008). Afterward, the network was recon-
structed using the ‘aracne’ function in bnlearn R 
package (Zheng and Huang 2018).

Results of GCN analyses were visualized using Cytos-
cape (v3.7.2) software and comprised genes (nodes) 
included in the network and the connections (edges) 
between genes. The maximum value of expression 
among tissues is presented as the color of each node.

2.7. Functional analyses of DEGs and GCNs

The functions of DEGs and GCN nodes were annotated 
using Database for Annotation, Visualization and Inte-
grated Discovery (DAVID; https://david.ncifcrf.gov/) v6.8 
(Dennis et al. 2003). Gene ontology (GO) terms and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways were used for functional analyses of the DEGs corre-
sponding to 20 tissues and two types of GCNs. In the GO 
terms, biological processes (BP), cellular components 
(CC), and molecular functions (MF) were included. GO- 
BPs were visualized using tables and dotted plots. The 
treemap constructed using REVIGO (http://revigo.irb.hr/) 
was used to present GO terms with default advanced 
options Supek et al. (2011). KEGG annotations were 
enriched based on –log10P-value and fold enrichment 
and shown in the bar graph. All data used in the enrich-
ment analyses were annotated for Mus musculus.

3. Results

3.1. Overview of RNA-Seq data processing and 
DEG analysis

In this study, we used 20 tissue samples (aorta, brown 
fat, colon, cerebral cortex, heart, hypothalamus, kidney, 
liver, lung, pituitary gland, prostate, skeletal muscle, 
skin, sperm, spleen, stomach, testis, thymus, thyroid, 
and urinary bladder) from eight individuals (four 
control groups and four BPA-treated groups). Four 
billion paired-end sequence reads were generated 
from 161 tissue samples, with an average of 24.9 
million reads per sample. The clean reads that passed 
the trimming process averaged 24.1 million, with an 
average trimming rate of 3.48%. Trimmed reads were 
mapped with an average unique mapping rate of 
82.18% and an average overall mapping rate of 94.84% 
to mouse reference genome GRCm38 (Table S1). The 
transcriptome after BPA treatment showed clear separ-
ation for each tissue type in the MDS plot (Figure 2). 
Expression pattern analysis of 161 samples was per-
formed, and most samples were clustered by tissue; 
tissues showing similar expression patterns were 
grouped (category A: aorta, brown fat, heart, and skel-
etal muscle; category B: cerebral cortex and hypothala-
mus; category C: colon, kidney, lung, pituitary gland, 
prostate, skin, stomach, thyroid, urinary bladder; cat-
egory D: liver; category E: spleen and thymus; category 
F: sperm; category G: testis), as shown in Figure S1. A 
Circos plot was generated to display the BPA-treated 
transcriptome at the location of the corresponding 
chromosome. Each dot represents the transcriptome, 
indicating the starting position on the chromosome, 
and the expression level was normalized to the z-score 
of logFPKM values, which were derived from normalized 
expression values of FPKM. The Circos plot includes 
DEGs, which were confirmed by comparing the gene 
expression level of the BPA-treated group with that of 
the control group (up-regulated DEG: red, down-regu-
lated DEG: blue). A total of 37,077 genes were tested 
in the DEG analyses. The number of tested genes 
varied depending on the expressed genes in each 
tissue: aorta = 16,129; brown fat = 15,360; colon =  
17,963; cerebral cortex = 17,999; heart = 14,674; hypo-
thalamus = 18,940; kidney = 17,206; liver = 14,504; lung  
= 18,609; pituitary gland = 17,047; prostate = 18,346; 
skeletal muscle = 14,880; skin = 18,729; sperm = 29,661; 
spleen = 18,463; stomach = 17,698; testis = 22,873; 
thymus = 17,993; thyroid = 18,693; and urinary bladder  
= 18,668. The expression levels in the sperm and testis 
were relatively high for every chromosome, particularly 
chromosome Y (Figure 2). The numbers of DEGs in the 
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20 tissues are shown in Table S2. The thymus had the 
largest number of DEGs (n = 8,579), including 4,455 up- 
regulated DEGs and 4,124 down-regulated DEGs. The 
lungs (n = 372), skeletal muscle (n = 315), colon (n =  
115), spleen (n = 100), and aorta (n = 80) followed, in 
that order. DEG analysis revealed that the number of 
DEGs was small in several tissues, and it was difficult to 
perform subsequent functional analyses for these 
tissues.

3.2. Functional annotations of DEGs

To investigate BPs related to BPA treatment, functional 
enrichment analyses of the DEGs based on the GO and 
KEGG databases were performed. As shown in the BP 
treemap of the total DEGs in the thymus, the most 
DEG-rich tissue, positive regulation of cell migration 
was identified as the representative term (Figure 3a). 
Specifically, immune-related pathways (systemic lupus 

erythematosus, Th1 and Th2 cell differentiation, and 
Th17 cell differentiation) were the main KEGG pathways 
in the up-regulated results, and cell metabolism and 
signaling-related pathways (metabolic pathways, 
PI3K-Akt signaling pathway, rap1 signaling pathway, 
and calcium signaling pathway) were the representa-
tive KEGG pathways among down-regulated results 
(Figure 3b, c). The next most DEG-rich tissues were 
the aorta, colon, lungs, skeletal muscle, and spleen. 
Similar to the thymus, immune-related BP terms 
(response to bacterium, inflammatory response, regu-
lation of immune response, immune system process, 
and immune response) were up-regulated, except in 
the aorta, and protein folding-related BP terms 
(response to unfolded protein, chaperone-mediated 
protein folding requiring cofactor, protein refolding, 
protein folding, and cellular response to unfolded 
protein) were down-regulated, excluding the skeletal 
muscle (Figure S2).

Figure 2. Overview of the transcriptome expression of 20 tissues affected by BPA. Circos plot showing the transcriptome patterns 
according to chromosome location (border). The 20 tissues are indicated in legend by the colors on the left side of the Circos 
plot. Up-regulated and down-regulated differentially expressed genes (DEGs) are indicated by red and blue dots, respectively. 
Circos plot features a central multidimensional scaling (MDS) plot depicting the clustered distribution of 161 samples.
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However, in the case of tissues with very few DEGs 
(cerebral cortex, heart, hypothalamus, skin, sperm, and 
thyroid), functional analysis could not be performed. 
Despite functional annotation, the tissues that showed 
relatively few results were brown fat, kidney, liver, pitu-
itary gland, prostate, and urinary bladder. In brown fat 
and the urinary bladder, only two genes (H2-EBI and 
GM11127) were involved in the functional results and 
were down-regulated. The most significant KEGG path-
ways were graft-versus-host disease and allograft rejec-
tion. Antigen processing and presentation were the 
most notable GO terms. Similarly, in the kidney, every 
functional result was down-regulated, and the largest 
proportion of BP terms were immune-related (cellular 
response to interferon-beta, defense response, defense 
response to protozoan, and immune response). In con-
trast, the liver showed only up-regulated expression 

with the same pathways as those in brown fat and 
urinary bladder, including expression of H2-T10 and 
H2-BL. The pituitary gland and prostate tissues identified 
protein processing in the endoplasmic reticulum as the 
most significant KEGG pathway and protein folding- 
related terms (protein folding, unfolded protein 
binding, and protein refolding) were down-regulated 
and considered significant GO terms.

3.3. TSG analysis

Through GLM with different cut-offs, three types of 
tissue-specific gene sets were identified (Table S3). 
Model 1 did not include the effect of BPA treatment, 
and only the top 1% of the GLM results for each tissue 
was used. The total number of TSGs calculated using 
Model 1 was 7,244, including 3,683 and 3,561 highly 

Figure 3. Functional analysis for DEGs in thymus exposed to BPA. (a) Treemap of the biological process. (b-c) The 20 most significant 
KEGG pathways associated with up-regulated/down-regulated DEGs. –log10 (P-value) and fold enrichment are shown at the back-
ground of the table as explained.
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expressed genes in the control and BPA-treated groups, 
respectively. Model 2 included the effect of BPA as Z 
(covariable), and the significance level of b (correspond-
ing tissue effect) was limited to P-value < 0.05. As a result 
of GLM model 2, 2,839 genes were selected as TSGs in 20 

tissues, including 1,674 genes that were highly 
expressed in the control group and 1,165 genes that 
were highly expressed in the BPA-treated group. 
Model 3 was Model 2 with an additional threshold of Z 
(covariable) and a P-value < 0.05. GLM Model 3 resulted 

Figure 4. PCIT networks. (a) PCIT networks of 20 tissues. (b) Network for the seven categories (category A: aorta, brown fat, heart, and 
skeletal muscle; category B: cerebral cortex and hypothalamus; category C: colon, kidney, lung, pituitary gland, prostate, skin, stomach, 
thyroid, urinary bladder; category D: liver; category E: spleen and thymus; category F: sperm; category G: testis). Node color indicates 
the tissue (20 colored squares) or category (7 border colors) in the legend. The node border indicates the TSG of model 3, and the size 
of the node indicates the expression. The shape of the node indicates genes expressed in the control (ellipse) and treatment (triangle) 
groups.
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in 966 TSGs with 506 and 460 genes expressed in control 
and treatment groups.

3.4. GCN analysis and functional annotations for 
PCIT results

The gene co-expression network obtained using the 
PCIT algorithm comprised 1,485 nodes and 31,250 
edges (Figure 4a). The color of the nodes indicates the 

tissue representing the maximum average expression 
level in the TSG among 20 tissues. The border of the 
node shows TSGs of Model 3 in the network, and the 
expression level of the gene is shown as the node size. 
The shape of the node indicates whether it is a 
control-expressed gene (eclipse) or a treatment- 
expressed gene (triangle). Classifying the same 
network into seven categories revealed that several 
genes in category C constituted the network (Figure 

Figure 5. Weighted gene co-expression network analysis (WGCNA). (a) Module-trait correlation heatmap. Correlation of 6 modules 
and 20 tissues calculated by WGCNA. (b) Gene co-expression network constructed using WGCNA. Node colors indicate 20 different 
tissues, and the border of the node indicates 7 categories (category A: octagon; category B: triangle; category C: round rectangle; 
category D: hexagon; category E: diamond; category F: ellipse; category G: V shape).
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4b). The corresponding network was divided into 17 
subnetworks (SNs) (Fig. S3). Information on the SN is pre-
sented in Table S4, along with the number of nodes and 
edges. The largest of the 17 SNs was SN1, which mostly 
comprised the lung and prostate and included five 
tissues (colon, lung, prostate, testis, and thyroid). Four 
SNs comprised three different tissues: SN2, SN3, SN10, 
and SN15. SNs composed of two tissues accounted for 
the most number at seven, followed by SNs composed 
of only one tissue at five. SN1, SN3, SN4, SN6, SN7, 
SN11, SN12, and SN17 were included in the TSG results 
of Model 3, and SN3 and SN4 were significantly associ-
ated with BPA treatment. SN3 mostly comprised the 
colon and liver, and the BP terms included immune- 
related terms (adaptive immune response, positive regu-
lation of T cell proliferation, and immune system 
process). In addition, the KEGG pathway displayed 
similar immune-related pathways (primary immunodefi-
ciency, T-cell receptor signaling pathway, B-cell receptor 
signaling pathway, intestinal immune network for IgA 
production, natural killer cell-mediated cytotoxicity, 
and cytokine-cytokine receptor interaction) as BP terms 
(Fig. S4a, b). SN4, which consists of the kidney and skin 
TSG, had blood coagulation as the largest BP term. Simi-
larly, the complement and coagulation cascades were 
the most remarkable KEGG pathway, followed by meta-
bolic pathways and steroid hormone biosynthesis (Fig. 
S4c, d).

3.5. GCN analysis and functional annotations for 
WGCNA results

To identify different co-expressed modules after BPA 
treatment in 20 tissues, WGCNA was conducted based 
on the pairwise correlation of gene expression for the 
2,839 genes in GLM model 2. The number of genes in 
the modules ranged from 30 to 1,300 (Table S5), and 
the correlation matrix between the modules and 20 
tissues was visualized using a heatmap (Figure 5a). A 
whole-gene co-expression network using WGCNA, com-
posed of six modules, resulted in 2,275 nodes and 2,875 
edges (Figure 5b). The turquoise module, which was 
positively correlated with a coefficient of 0.97 in 
sperm, was the largest with 1,300 nodes and 1,626 
edges. The most representative BP term was the G 
protein-coupled receptor signaling pathway (Figure 
6a), which consists of subordinate terms related to 
responses to stimuli, such as the sensory perception of 
smell, detection of chemical stimuli involved in the 
sensory perception of smell, and detection of tempera-
ture stimuli involved in the sensory perception of pain. 
The immune response, cellular response to interferon- 
beta, and regulation of type interferon production 

were sub-terms of immunoglobulin production (Table 
1). The blue module showed a positive correlation with 
the sperm (0.46), spleen (0.46), and thymus (0.35). The 
largest contributing BP term was the cell surface recep-
tor signaling pathway, comprising immune-related 
receptor signaling pathways (Figure 6b, Table 1). Simi-
larly, the KEGG pathway analysis revealed cytokine- 
and chemokine-related pathways, such as viral protein 
interaction with cytokine and cytokine receptor (Figure 
S5a). The brown module showed a positive correlation 
(0.61) with the thymus, displaying the regulation of sys-
temic arterial blood pressure and zymogen activation as 
representative BP terms (Figure 6c, Table 1). Among the 
enriched KEGG pathways, the renin-angiotensin system 
was significant, and other enriched signaling pathways 
are presented in Figure S5b. The yellow module with 
the highest correlation with the skin exhibited the regu-
lation of cytokine production as a significant BP term 

Figure 6. Functional analysis results (BP terms) for turquoise, 
blue, and brown modules. (a) BP treemap of the turquoise 
module. (b) BP treemap of the blue module. (c) BP treemap of 
the brown module.
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(Figure S6). Finally, the liver- and kidney-related red 
modules showed the largest proportion of BP terms 
related to response to chromate (Figure S7).

4. Discussion

In this study, we investigated the complex correlation 
induced by BPA exposure in various mouse tissues to elu-
cidate its potential implications for human health. BPA, a 
ubiquitous compound present in everyday items such as 
water bottles, food containers, and receipts, induces tox-
icity and various disorders (Abraham and Chakraborty 
2020; Manzoor et al. 2022). Its pervasive concentrations 
across various environments and products have raised 
considerable concerns about its several adverse effects 
(Vom Saal and Vandenberg 2021). BPA has drawn signifi-
cant attention due to its anti-androgenic and estrogen- 
mimicking effects, which confirm its role as an endocrine 

disruptor and its potential impact on human reproduc-
tion Ma et al. (2019). Notably, BPA can negatively affect 
the neuroendocrine process, particularly the regulatory 
mechanisms of the hypothalamus–pituitary–gonadal 
axis Xi et al. (2011). Given that hormonal fluctuations in 
female mice could introduce variability into the exper-
imental outcomes, male mice were selected for this 
study to minimize such influences and to more clearly 
assess the direct impact of BPA. Disruption of the hypo-
thalamic–pituitary–testicular (HPT) axis can lead to 
decreased sperm quality Wisniewski et al. (2015). 
Additionally, BPA induces oxidative stress, reducing 
sperm motility and causing oxidative damage in the 
brain and testes Sadek et al. (2014). Studies have also 
shown that BPA causes obesity (Vom Saal et al. 2012; 
Acconcia et al. 2015). In summary, BPA may have multiple 
effects on the whole-body system as well as the reproduc-
tive system.

Table 1. Subordinate biological process (BP) terms related to WGCNA modules.
WGCNA module BP term P-value Fold Enrichment

Turquoise module G protein-coupled receptor signaling pathway 　 　
sensory perception of smell 2.37E-09 3.71499
G-protein coupled receptor signaling pathway 5.84E-06 2.54475
response to stimulus 1.44E-04 5.89845
detection of chemical stimulus involved in sensory perception of smell 1.55E-03 17.27129
detection of temperature stimulus involved in sensory perception of pain 7.96E-03 22.02090
detection of chemical stimulus involved in sensory perception of pain 2.01E-02 97.87065
visual perception 2.02E-02 4.79758
detection of chemical stimulus involved in sensory perception of pain 6.56E-02 29.36119
immunoglobulin production 　 　
immune response 1.42E-03 3.41409
cellular response to interferon-beta 7.81E-03 9.78706
regulation of type Ⅰ interferon production 3.99E-02 48.93532
immunoglobulin production 7.92E-02 3.96773

Blue module cell surface receptor signaling pathway 　 　
cell surface receptor signaling pathway 3.58E-13 11.38353
immunoglobulin production 1.83E-08 10.56309
immune response 2.25E-08 5.23316
neutrophil chemotaxis 2.60E-06 13.02781
inflammatory response 6.96E-06 4.81239
positive regulation of GTPase activity 1.26E-05 5.46622
lymphocyte chemotaxis 8.71E-05 21.01260
monocyte chemotaxis 1.76E-04 17.60515
positive regulation of T cell proliferation 2.54E-04 10.56309
cellular response to interleukin-1 3.88E-04 9.65023
eosinophil chemotaxis 5.23E-04 24.81488
chemokine-mediated signaling pathway 5.27E-04 13.29369
positive regulation of interferon-gamma production 5.39E-04 8.98470
T cell costimulation 8.84E-04 20.84450
cellular response to interferon-gamma 1.49E-03 7.17127
negative thymic T cell selection 4.95E-03 27.91675
T cell receptor signaling pathway 6.98E-03 6.57970
positive regulation of immunological synapse formation 1.52E-02 130.27815
chemotaxis 1.94E-02 4.86112
positive regulation of neutrophil chemotaxis 2.05E-02 13.47705
cell chemotaxis 2.72E-02 6.13074
positive regulation of natural killer cell mediated cytotoxicity 2.76E-02 11.49513
T cell homeostasis 2.76E-02 11.49513
natural killer cell mediated immunity 3.02E-02 65.13907
positive regulation of ERK1 and ERK2 cascade 3.48E-02 3.31216
negative regulation of leukocyte tethering or rolling 3.76E-02 52.11126
positive regulation of natural killer cell degranulation 4.49E-02 43.42605
positive regulation of interleukin-12 production 4.62E-02 8.68521
positive regulation of B cell proliferation 4.81E-02 8.49640
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Thorough transcriptome profiling enables compre-
hensive studies that go beyond the scope of fragmen-
tary transcriptome analyses, which typically focus on 
specific genes or proteins (Norreen-Thorsen et al. 2022; 
Abbassi-Daloii et al. 2023). By analyzing the transcrip-
tomes of entire genomes using various approaches, 
researchers can gain insights into gene expression pat-
terns, including gene expression levels and locations 
(Kukurba and Montgomery 2015; Abbassi-Daloii et al. 
2023). This approach can uncover genes that play 
crucial roles in the initiation and progression of diseases, 
which not only clarifies associated biological processes 
but also enhances the understanding of disease etiology 
and elucidation of the underlying mechanisms (Yin et al. 
2014; Sukjamnong et al. 2020; Kim et al. 2021; Satam 
et al. 2023). Therefore, in-depth transcriptome studies 
are vital tools for analyzing genes related to diseases 
and biological changes. This comprehensive approach 
paves the way for a deeper understanding of the 
complex interplay of genes within biological systems. 
Through an intricate RNA-seq analysis spanning 20 dis-
tinct mouse tissues exposed to BPA, our investigation 
was able to narrow down into three complex inter-
actions caused by BPA.

4.1. Regulation of sperm function and 
reproductive health

WGCNA provides a comprehensive view of the modules 
co-expressed across TSGs and related tissues, revealing 
key biological functions and hub genes (Figure 5b). 
This simplifies the interpretation of various gene 
responses in several co-expression modules Niemira 
et al. (2019). Among the six modules, the turquoise 
module displays the G protein-coupled receptor 
(GPCR) signaling pathway and the OLFR gene as the 
primary term and novel gene, respectively.

GPCRs are a family of cell surface receptors that bind 
extracellular molecules and activate intracellular 
responses (Weis and Kobilka 2018). The OLFR genes 
encode GPCRs. GPR30, a type of GPCR, uniquely 
responds to sex hormones such as estrogen. It binds 
the sperm cell membrane and is renamed as the G 
protein-coupled estrogen receptor (GPER) (Chevalier 
et al. 2012; Adegoke et al. 2020). GPCRs, including 
ADRA2A, AGTR1, AGTR2, FZD3, and GLP1R, are involved 
in specific sperm functions, such as capacitation, acro-
some reaction, and motility Corda et al. (2022). The acro-
some reaction is triggered by an increase in cytosolic 
calcium concentration (Ca2+) within sperm, mediated 
by GPER activation Gao et al. (2022).

Previous studies have shown that BPA, which mimics 
the function of estrogen receptors, can negatively affect 

spermatogenesis. Wisniewski et al. showed that estro-
gen receptor alpha operates in the early stages of the 
HPT axis, regulating several signaling pathways involved 
in spermatogenesis in the testis Wisniewski et al. (2015). 
Castellini et al. found that BPA exposure in men was 
associated with reduced sperm counts and motility Cas-
tellini et al. (2020). Further, González-Rojo et al. revealed 
that BPA exposure in zebrafish led to impaired sperma-
togenesis and induced histone hyperacetylation in the 
testes González-Rojo et al. (2019). A comprehensive 
review of the molecular mechanisms underlying BPA 
action in spermatozoa by Rahman and Pang concluded 
that BPA can disrupt spermatogenesis at various stages 
(Rahman and Pang 2019). Krzastek et al. highlighted 
BPA as a major concern when discussing the impact of 
environmental toxin exposure on male fertility potential 
(Krzastek et al. 2020). These findings collectively suggest 
that BPA negatively affects male fertility, particularly 
spermatogenesis.

Our network analysis results contribute to a deeper 
understanding of the toxicological effects of BPA. They 
also aid in the development of strategies to mitigate 
its impact on male fertility. Further research in these 
areas could provide valuable insights into the molecular 
mechanisms of action of BPA in spermatozoa and its 
potential effects on male fertility.

4.2. Heat shock proteins (HSPs): key players in 
protein folding and cellular stress responses

Our DEG annotation revealed that among the down- 
regulated DEGs, those encoding proteins crucial for 
protein folding-related functions were predominant 
(Figure S2). This observation is consistent with previous 
research findings linking BPA to alterations in protein 
folding, modification, and metabolism (Chen et al. 2015).

Heat shock proteins (HSPs) are crucial in various phys-
iological processes, including protein folding-related 
mechanisms Hu et al. (2022). They are expressed in 
cells exposed to stress factors such as heat, chemicals, 
or radiation Park et al. (2023). HSPs help to stabilize 
protein structure, prevent misfolding, and maintain the 
stability of properly folded proteins Lang et al. (2021). 
HSP90 is the most important for protein folding. 
HSP90 binds to a variety of proteins to stabilize their 
structure. It is particularly important for the folding of 
proteins involved in cell signaling, cell division, and 
cell death (Xu et al. 2012; Ren et al. 2022). It has also 
been associated with colorectal cancer (Papaconstanti-
nou et al. 2001; Hackl et al. 2010).

This interplay of BPA on protein folding and immune 
function suggests its role in inducing cellular stress, 
potentially compromising cell survival and function. It 
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suggests a potential negative effect of BPA on the 
immune system.

4.3. BPA exposure induces widespread immune- 
related responses across diverse tissues

Up-regulated DEGs from various tissues, including the 
thymus, brown fat, colon, heart, kidney, liver, lung, skel-
etal muscle, stomach, and urinary bladder, suggested an 
immune-related response as the primary biological 
effect of BPA treatment. The thymus, a primary 
immune organ, exhibited an enhanced immune- 
related response (Figure 3b). As the thymus is composed 
of T lymphocytes derived from bone marrow progenitor 
cells and serves as the site for T lymphocyte maturation, 
it exhibits prominent helper T cell differentiation and 
hematopoietic cell lineage Aydemir et al. (2018). BPA 
induces an inflammatory response through various cell 
signaling pathways, aligning with the overlapping 
KEGG pathway results for up-regulated DEGs (Murata 
and Kang 2018).

GCN analysis suggested the involvement of enriched 
pathways, highlighting altered tissue-specific effects of 
BPA exposure (Figure 4). Notably, subnetworks SN3 
and SN4 from the PCIT algorithm were particularly sig-
nificant (Figure S3). SN3, comprising the colon, hypo-
thalamus, liver, and prostate tissues, echoed the 
involvement of immune-related pathways observed in 
the DEG results. TSGs such as RAG2 and CD27 underpin 
their potential impact on T cell development and main-
tenance (Collins et al. 1996; Hendriks et al. 2000). T cell 
receptor genes such as TRBV and TRAJ recognize anti-
genic peptides and bind to major histocompatibility 
complex (MHC) molecules, which are complex heterodi-
mers Massari et al. (2018). Our results suggest that the 
colon and liver significantly influence the binding of T 
cells to their receptors.

SN4, composed of kidney and skin tissues, revealed 
blood coagulation as a notable term, with serine-pro-
tease inhibitor (SERPIN) genes being the most significant. 
SERPIN genes are circulatory protein-coding genes that 
play roles in coagulation, inflammation, and immune 
response El-Hefnawy et al. (2022). These genes are 
associated with chronic kidney diseases and immuno-
logical Th1 responses Sánchez-Navarro et al. (2021). 
Therefore, BPA-exposed mice show alterations in 
several biological processes related to immune cell 
development and T cell immunity generation in the 
colon and liver, and BPA can cause serious damage to 
the kidney.

The blue module from the WGCNA is associated with 
cell-surface receptor signaling pathways, offering 
insights into immune-related binding reactions, such 

as T cells and cytokine receptors. The major genes 
related to the corresponding terms were CD3, which is 
related to T cell receptor expression, and CD40, which 
participates in the mediation of immune and inflamma-
tory responses. Our results suggest that the spleen exhi-
bits immune-related under the effect of BPA, which is in 
line with a previous study that showed that BPA caused 
an increase in the immunoreactivities of CD3, CD4, and 
CD8 in lymphocytes and IL-4 and IFN-γ levels in the 
spleen Yoshino et al. (2004).

The brown module from the WGCNA is associated 
with zymogen activation and the renin-angiotensin 
system, which regulates physiological functions in 
response to stimuli. The renin-angiotensin system, the 
most enriched KEGG pathway, involves kallikrein 1 
(KLK1) genes that are implicated in carcinogenesis and 
are considered biomarkers of novel cancer and other dis-
eases Diamandis et al. (2000). Previous studies have 
suggested that the major effector or peptide angioten-
sin II of the renin-angiotensin system can induce a 
cascade of pro-inflammatory responses in response to 
BPA treatment by increasing leukocyte-endothelial 
interactions, ROS production, and pro-inflammatory 
cytokine accumulation Zhang et al. (2020). The other 
modules also suggested changes in immune-related 
functions, similar to other WGCNA results. Hence, BPA 
induces abnormalities in sperm signaling and alters the 
immunoreactivity of the spleen and thymus. This 
suggests a robust response to BPA characterized by an 
abnormal immune response linked to carcinogenesis.

Overall, the findings of this study suggest that BPA 
exposure can have a profound impact on the immune 
system. Further research is essential to gain a deeper 
understanding of the mechanisms by which BPA dis-
rupts immune function and its potential long-term 
health effects, to develop effective strategies to mitigate 
BPA-mediated toxicity.

5. Conclusion

Our comprehensive analysis of RNA-seq data from 20 
different mouse tissues exposed to BPA sheds light on 
the extensive impact of this endocrine disruptor. Our 
findings highlight the significant effect of BPA exposure 
on various tissues, especially the thymus that emerged 
as the most susceptible organ, followed by the colon, 
liver, lung, kidney, skeletal muscle, spleen, stomach, 
and sperm. The identification of immune response acti-
vation pathways in most BPA-exposed tissues, particu-
larly the elevated expression of genes related to T cell 
receptors, strongly suggests an orchestrated immune 
reaction initiated by the migration of immune cells 
from the thymus, where T cell maturation occurs. 
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Moreover, our analyses suggest metabolism suppression 
across different tissues, raising concerns about the 
development of associated diseases in the affected 
organ. The in-depth study of transcriptome, which 
includes the molecular responses of these tissues to 
BPA exposure, provides a valuable resource for under-
standing the intricate effects of endocrine disruptors 
on body and tissue functions. To the best of our knowl-
edge, this is the first report decoding the response to 
BPA exposure in 20 tissues. This approach not only 
enhances our ability to discern the impacts of hazardous 
materials such as BPA, but also contributes to the 
broader exploration of biological functions in response 
to toxic substances.
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