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Abstract: Q-type C2H2 zinc-finger protein (C2H2-ZFP) transcription factors are associated with
many plant growth development and environmental stress responses. To date, there have been
few analyses of the Q-type C2H2-ZFP gene family in alfalfa (Medicago sativa subsp. sativa). In this
study, we identified 58 Q-type C2H2-ZFPs across the entire alfalfa genome, and the gene structure,
motif composition, chromosomal mapping, and cis-regulatory elements were explored, as well as the
expression profiles of specific tissues and the response under different abiotic stresses. According
to their phylogenetic features, these 58 MsZFPs were divided into 12 subgroups. Synteny analysis
showed that duplication events play a vital role in the expansion of the MsZFP gene family. The
collinearity results showed that a total of 26 and 42 of the 58 MsZFP genes were homologous with
Arabidopsis and M. truncatula, respectively. The expression profiles showed that C2H2-ZFP genes
played various roles in different tissues and abiotic stresses. The results of subsequent quantitative
real-time polymerase chain reaction (qRT-PCR) showed that the nine selected MsZFP genes were
rapidly induced under different abiotic stresses, indicating that C2H2-ZFP genes are closely related to
abiotic stress. This study provides results on MsZFP genes, their response to various abiotic stresses,
and new information on the C2H2 family in alfalfa.

Keywords: alfalfa; Q-type C2H2 zinc finger protein family; phylogenetic analysis; abiotic stress;
expression pattern

1. Introduction

Zinc finger proteins (ZFPs) are one of the largest families of transcription regulators,
with a highly conserved domain; they play crucial roles in plant development and abiotic
stress responses in natural plants [1]. According to their different residues, zinc finger
proteins are divided into several types, including C2H2, C2HC, C2HC5, and other [2].
Among these types, C2H2 ZFPs are the most numerous in eukaryotes [3]; they contain two
cysteine (Cys2) and two histidine (His2) residues. In order to ensure the stability of their
three-dimensional structure, a zinc ion is coordinated by Cys2/His2 (C2H2) with a ββα

fold [4].
The Q-type ZFPs are a subfamily of the C2H2 ZFPs with a conserved “QALGGH”

motif at the region of the zinc finger domain within the Cys2 and His2 residues; they
participate widely in biological processes, and are endemic to plants with C2H2 ZFPs [5–7].
According to a previous study, the first C2H2-ZFP was found in Petunia, and 21 Q-type
ZFPs were identified according to their special structure, which plays important roles in
the activity of DNA binding [8]. More Q-type ZFPs have been observed in plants such as
Arabidopsis, wheat (Triticum aestivum), and potato (Solanum tuberosum) [1,9,10]. All these
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Q-type ZFPs play vital roles in flowering time, leaf development and other biological
processes, as well as response to abiotic stress [11]. For example, overexpression of ZFP36,
an abscisic acid (ABA)-positive gene, increased tolerance to water stress and reduced
competition for antioxidant enzymes in the ZFP36 mutant, and was induced by ABA
signalling in rice [12]. In transgenic Arabidopsis, GmZF1 enhances tolerance during cold
stress [13]. TaZFP1 plays vital roles in mediating salt stress tolerance by affecting other
physiological processes [14]. The ZFP182 genes in rice participate in ABA-induced abiotic
stress responses [15]. In addition, the overexpression of STZa in Arabidopsis displayed
drought tolerance [7]. Therefore, the C2H2-ZFP gene family plays important roles in
improving abiotic stress resistance in plants. Nevertheless, little research has been carried
out on Q-type C2H2-ZFPs in alfalfa.

Alfalfa (Medicago sativa subsp. sativa) is one of the most economically valuable plants
in the world, with high nutritional value and strong adaptability [16], famous as the “king
of herbages” and widely planted in the northern area of China. However, adverse growth
environments such as low temperatures, water deficit, and salinization of soil affect alfalfa
survival and growth, restricting yield in the entire area. Therefore, in Northern China it
is critical to cultivate and select alfalfa germplasm with stress resistance to enable better
development of animal husbandry.

In the current study, we identified 58 Q-type C2H2-ZFP members in alfalfa. The
phylogenetic relationships, genomic location, gene structure, chromosome distribution,
gene duplication and cis-regulatory elements were also explored. In addition, we analyzed
the expression profiles of MsZFPs in various tissues and under abiotic stress. These
results will provide a valuable resource in exploring the Q-type C2H2 gene family and
understanding the roles of the MsZFP gene family in alfalfa, especially the functional
characterization of plant development processes and abiotic responses.

2. Materials and Methods
2.1. Database Sources and Identification of the C2H2 Gene Family in Alfalfa

We downloaded 211 Arabidopsis C2H2 ZFP sequences from The Arabidopsis Infor-
mation Resource (TAIR) (http://www.arabidopsis.org, 25 May 2021) and 218 C2H2-ZFP
sequences of M. truncatula from a published article [17]. All these plant C2H2 protein
sequences were queries to search the alfalfa C2H2 family through local protein blast
(BLASTP) against the whole genome sequence database [18], with an E-value threshold of
0.00001. In addition, redundant protein sequences were removed using the CD-Hit website
(www.bioinformatics.org, accessed on 25 May 2021) with the default parameters [19]. The
remaining C2H2 sequences were confirmed by Pfam (www.pfam.xfam.org, accessed on
27 May 2021) and SMART (http://smart.embl-heidelberg.de/, accessed on 16 June 2021),
then Q-type C2H2-ZFP members were selected [20,21]. Subsequently, the ProtParam Tool
(https://web.expasy.org/protparam/, accessed on 17 June 2021) was used to infer the
index values of the grand average of hydropathicity (GRAVY) and the theoretical isoelec-
tric point (pI) of these putative MsZFP genes [22]. Finally, we used the WoLF-PSORT
(https://www.genscript. com/wolf-psort.html, accessed on 25 June 2021) to predict the
subcellular localization of MsZFP [23].

2.2. Analysis of Phylogenetic, Gene Structure and Conserved Composition MsZFP Genes

To clarify the evolutionary relationship of these MsZFP genes, Clustal W software
was used to align these MsZFP sequences with initial parameters [24], and MEGA 6.0
was used to construct a phylogenetic tree with the neighbour joining (NJ) method and
1000 replicate bootstrap tests [25]. The MsZFP gene structures were explored from the
Gene Structure Display Server (www.gsgd.gao-lab.org, accessed on 17 July 2021). MEME
v5.1.1 (http://meme-suite.org/index.html, accessed on 26 July 2021) was used to estimate
their conserved motifs [26]. The selected number of motifs was determined according to a
previous study [27], and the default settings were used for the other parameters.

http://www.arabidopsis.org
www.bioinformatics.org
www.pfam.xfam.org
http://smart.embl-heidelberg.de/
https://web.expasy.org/protparam/
https://www.genscript
www.gsgd.gao-lab.org
http://meme-suite.org/index.html
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2.3. Analysis of Chromosomal Distribution and Gene Duplication

Based on MapChart software, we were able to recognize the genomic mapping of
MsZFP genes and their relative distances according to the genome annotation data of alfalfa.
Gene duplication is a major source for expanding gene families and producing new genes
in eukaryotes. To explore the gene duplication events of 58 MsZFP genes, we used TBtools
software to perform a collinearity analysis [28]. In addition, Dnasp5 software was used to
analyse the nonsynonymous (Ka) and synonymous (Ks) replacement rates of genes after
replication, and to explore the mechanism of gene differentiation after replication [29,30].

2.4. Cis-Regulatory Element Analysis

The PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/
html/, accessed on 7 November 2021) was used to identify the cis-regulation of the changed
MsZFPs under abiotic stresses, according to the sequences of 2000 bp from the promoter
region of MsZFP genes. We explored ten cis-regulatory elements related to stress, hormones,
and light response, including ABRE (ABA-responsive element), ARE (antioxidant response
element), CGTCA motif, DRE (dehydration responsive element), G-box, MBS (MYB binding
site), LTR (low-temperature responsiveness), TC-rich repeats, TCA element, and TGACG
motif. All these are involved in abscisic acid response, anaerobic induction, MeJA response,
abiotic stresses, light response, drought inducibility, cold response, defence against stress,
and salicylic acid response [31].

2.5. Tissue Specific Expression of MsZFP Genes

Based on the expression profiles of these MsZFP genes in specific tissues, we were
able to speculate on their roles in alfalfa tissue development. Furthermore, the expression
profiles of MsZFP genes in various tissues were explored by genome-wide transcriptome
data downloaded from the CADL-Gene Expression Atlas, released by the Noble Research
Atlas (https://www.alfalfatoolbox.org, accessed on 28 May 2021) for a total of six tissues of
transcriptome data, including leaves, flowers, pre-elongated stems, elongated stems, roots
and nodules. Subsequently, TBtools software was used to generate a heatmap of MsZFP
gene expression data.

2.6. Analysis of These MsZFP Genes under Abiotic Stress

Four transcriptome sequencing projects were performed in previous studies, includ-
ing cold stress (SRR7091780-SRR7091794) [32], drought, salt stress and ABA treatments
(SRR7160313-SRR7160357) [33,34]. In this research, the expression of MsZFP genes was
obtained through local protein blast (BLASTP) against these four transcriptomes, using
TBtools software to generate heatmaps.

2.7. Plant Materials and Stress Treatments

The cultivated variety of XinJiangDaYe alfalfa was used as experimental material and
cultivated by a hydroponic experiment in an artificial chamber. To ensure consistency of
germination, seeds were vernalized under 4 ◦C conditions. After three days of germination,
these seedlings were moved into specific nutritional conditions (1/2 MS, pH = 5.8) and
cultivated under long-day conditions. Until the third leaf appeared, the plants were placed
under different stress treatments (approximately 13 days after vernalization). For cold
stress, these seedlings were cultivated in an artificial climate chamber with a 16 h light/8 h
dark cycle at 4 ◦C. Four treatment time points (2, 6, 24, and 48 h) were sampled and used
as a control. For drought and salt stress, these seedlings were put into specific nutritional
conditions with 400 mM mannitol and 250 mM NaCl, respectively, and cultivated under a
16 h light/8 h dark cycle at 22 ◦C. A total of eight treatment time points were used (1, 3,
6, 12, 24 h, abiotic stress removal 1 and 12 h), along with CK (“CK” indicates 0 h). Under
ABA stress, the seedlings were moved to a specific nutritional condition with 10 µM ABA,
and a total of four time points were sampled (CK, 1, 3, and 12 h). Furthermore, the whole
seedling was harvested under a cold environment, and the root tip was harvested for

http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://www.alfalfatoolbox.org
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the ABA, drought, and salt treatments. Every sample contained six seedlings, and these
samples were quick-frozen in liquid nitrogen and stored at −80 ◦C.

2.8. Quantitative Real-Time PCR Analysis

A total of nine MsZFPs were selected as candidates for abiotic resistance genes. With
reference to the manufacturer’s instructions, the TRIzol method (Sangon Biotech, Shanghai,
China) was used to extract the total RNA, in which cold stress RNA was extracted from the
whole seedling and the other three stresses (ABA, drought, and salt) were extracted from
the root tips of alfalfa. These RNAs were reverse-transcribed into single-stranded cDNAs
according to the manufacturer’s protocol using the FastKing RT Kit with gDNase (Tiangen
Biotech, Beijing, China). Subsequently, a NanoDrop ND1000 spectrophotometer (Thermo
Scientific, Waltham, MA, USA) was used to determine the concentration of each sample.
qRT-PCR was performed on all of the selected genes with the CFX96TM Real-Time PCR
Detection System (Bio-Rad, Los Angeles, USA). Every 10 µL reaction volume consisted of
5 µL of 2 × SG Fast qPCR Master Mix, 1 µL of cDNA, 1 µL of DNF buffer, 0.2 µL of each
of the forward and reverse primer at 10 µM, and 2.6 µL of sterilized ddH2O. The reaction
process was set as follows: denaturation (95 °C/30 s) and 40 cycles at 95 ◦C /5 s and
60 ◦C /30 s. Every reaction consisted of three replicates, and according to the expression
of the Medicago actin gene (AA660796) [35], the relative expression level of MsZFP genes
was normalized with the 2−∆∆Cq method. According to the genome data of XinJiangDaYe
alfalfa, all MsZFP gene primer pairs were designed using Primer 6 software; the lengths of
the PCR products are listed in Table S1.

3. Results
3.1. Identification and Physicochemical Properties of MsZFPs

A total of 58 MsZFP genes were obtained from the alfalfa genome after screening
domains and removing redundant genes, and MsZFP01 was rewritten to MsZFP58 based
on the order of occurrence of the genome data (Table S2). In addition, the quantity of
amino acids, molecular weight (MW), pI, GRAVY and subcellular localization of these
MsZFP proteins were analysed (Table S3). These 58 putative MsZFP proteins ranged
from 126 (MsZFP14) to 1633 amino acids (AA) (MsZFP40) in length. The MWs of these
proteins were varied from 14000.01 Da in MsZFP14 to 184189.9 Da in MsZFP40, and their
predicted pI ranged from 4.83 (MsZFP31) to 10.03 (MsZFP06). In addition, the GRAVY of all
MsZFP proteins were negative (<0), varying from −1.194 (MsZFP106) to −0.169 (MsZFP40),
suggesting that they were soluble hydrophilic proteins. Moreover, all these Q-type ZFPs
were nuclear-localized according to the results of subcellular localization analysis.

3.2. Phylogenetic Analysis of the Selected MsZFPs

To clearly explore evolutionary relationships, a phylogenetic tree was constructed
with 58 Q-type MsZFPs and 58 Arabidopsis ZFPs (Table S4) by MEGA6 with the NJ method.
All these MsZFPs were grouped into three different groups (Figure 1). Furthermore, these
alfalfa MsZFPs were closely clustered with Arabidopsis ZFPs (Figure 1), and many of the
functions of these Arabidopsis ZFPs were known, suggesting that some of these alfalfa gene
functions could be inferred according to Arabidopsis. Based on clades and bootstrapping,
the resulting phylogenetic trees were divided into twelve subclasses, including C1-I to IV,
C2-I to III, and C3-I to V. According to these results, the same phylogenetic clades may
represent the most intimate homologous gene pair of alfalfa and Arabidopsis. In addition,
58 MsZFPs were divided into different groups. Groups C1, C2, and C3 possessed 16,
6, and 36 MsZFPs, respectively. Furthermore, the main clades, C1 and C3, had 4 and
5 subclasses, respectively.
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Figure 1. Phylogenetic analysis of Q-type MsZFPs; the phylogenetic tree was created using the MEGA
6.0 program (bootstrap value set at 1000 with neighbour-joining). The phylogenetic tree represents
the relationship between 58 Q-type C2H2-ZFP genes of alfalfa and 58 Q-type C2H2-ZFP genes of
Arabidopsis. All C2H2-ZFP genes were clustered into five clades and twelve groups, distinguished
here by different colours.

3.3. Gene Structure and Motif Composition Analysis of the MsZFPs

We could predict the evolutionary process by analysing the gene structures. To better
understand the structural diversity of MsZFPs, we analysed the number of exon and intron
structures of all MsZFPs (Figure 2B). The results showed that the number of introns varied
from zero to four. According to the number of introns, 50 MsZFPs (86.20%) were intronless,
six MsZFPs had one intron (10.34%), and the other two MsZFP genes contained at least
three introns.

We identified ten conserved motifs in MsZFPs with the MEME tool, with variable
lengths from 8 to 36 amino acids (Figure 2C, Table S5). Among these motifs, motif 1 was
widely discovered in all MsZFPs except MsZFP41 and MsZFP54, matching up with the Cys-
X2-Cys-X12-His-X3-His single structure. Interestingly, motif 5 was present at the C-terminal
region of all the MsZFPs except MsZFP13, which is the most dominant transcriptional
repression motif in plants [10]. Moreover, some motifs were specific to specific groups. For
example, motifs 2 and 10 existed only in Group C1. Motifs 4, 8, and 9 were unique to clade
C3-III.
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Figure 2. Phylogenetic relationship, gene structure, and motif compositions of alfalfa Q-type C2H2-
ZF genes. The phylogenetic tree was constructed using MEGA 6.0 with the neighbour-joining
method. (a) Multiple alignments of 58 protein sequences of alfalfa MsZFPs executed by ClustalW.
(b) Exon/intron structures of alfalfa C2H2-ZFP genes. Exon/intron structures were analyzed by the
Gene Structure Display Server. Exons/introns of each subgroup are represented by green boxes and
black lines, respectively. (c) Schematic representation of the conserved motifs, as identified by MEME;
each coloured box represents a motif.

3.4. Chromosomal Distributions and Gene Duplications in MsZFPs

Based on the alfalfa genome data and chromosomal (Chr.) annotation, all MsZFP
genes were unevenly distributed on 22 Chr. except MsZFP58, which was located on
unmapped scaffolds. There were no MsZFPs located on Chr. 6. As shown in Figure 3, a
total of ten MsZFPs were located on Chr. 1.2, which had the largest number of MsZFPs.
Only one MsZFP gene was distributed on chromosomes 1.3, 2.1, 2.3, 3.2, 4.4, and 7.1. In
addition, there were two MsZFP genes located on chromosomes 1.1, 1.4, 4.2, 5.2, 7.3, 8.2,
and chromosome 8.3. Three MsZFPs were located on chromosomes 3.1, 3.3, 3.4, 4.1, 4.3, 5.3,
and chromosome 5.4.
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Figure 3. Genomic distributions of 58 MsZFP genes across the 32 alfalfa chromosomes. In the “MsZFP
gene distribution map” of 22 alfalfa chromosomes, the green bars represent each chromosome, and
the black lines indicate the position of each MsZFP gene.

According to the duplication events of the MsZFP gene family, we can analyse the
MsZFP gene duplication event in alfalfa. The substitution rate of non-synonymous (Ka)
and synonymous (Ks) is the basis for assessing the selection pressure of duplication events.
A Ka/Ks value of 1, <1, or >1 indicates neutral selection, purification selection, and positive
selection, respectively. [10]. TBtools was used to visualize the collinearity relationship
between these MsZFPs in alfalfa. In this research, a total of ten pairs of MsZFP genes (16/58,
27.59%) were confirmed as segmental duplications, which were randomly distributed on
twelve chromosomes (Figure 4, Table S6). The Ka/Ks of duplicated MsZFPs varied from
0.2482 to 0.9344, which means that these synteny genes evolved under purifying selection.

To better understand the evolutionary relationship of these MsZFP genes, we selected
two model plants, Arabidopsis and M. truncatula, in order to analyse their synteny rela-
tionship. In our research, we identified 29 pairs of orthologues between Arabidopsis and
M. sativa (Figure 5A and Table S7), and the ratio of Ka/Ks varied from 0.1170 to 1.4973. In
addition, we identified 42 pairs of orthologues between M. sativa and M. truncatula with
synteny relationships (Figure 5B, Table S8); the ratio of Ka/Ks varied from 0.0453 to 2.4149.
Furthermore, comparing the above results, it is easy to conclude that the M. sativa genes
have higher similarity with M. truncatula.
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3.5. Analysis of MsZFP Gene Promoter Cis-Regulatory Elements

Cis-regulatory elements can regulate transcription for precise initiation and efficiency
of genes by binding to transcription factors. Therefore, we explored the composition of ten
cis-regulatory elements (ABREs, AREs, CGTCA motifs, DREs, G-boxes, TGACG motifs,
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MBSs, LTRs, TC-rich repeats, and TCA elements) in the promoter regions of the 58 induced
MsZFPs under abiotic stress (Figure S1, Table S9). This study aimed to systematically
analyse these regulatory elements, aiming to be assist in the discovery of antistress genes.
AREs had the largest number of cis-regulatory elements, with 140. However, the DREs
only had two cis-regulatory elements in these MsZFPs. In addition, according to Figure S2,
we found that only MsZFP11 had nine cis-regulatory elements, while MsZFP58 did not
contain any of these ten cis-regulatory elements.

3.6. Expression Patterns of the MsZFPs in Different Tissues

Tissue-specific expression is usually related to the specular function of MsZFP genes
in alfalfa. According to the downloaded alfalfa B47 genotype expression database, we
evaluated the transcript abundance pattern of the MsZFP-encoding genes in a total of
six different tissues: leaf, flower, pre-elongated stem, elongated stem, root, and nodule;
42 MsZFP genes were detected in the database. A heatmap was then constructed to
visualize these expression patterns with TBtools. According to their expression patterns,
42 MsZFPs were clustered into six clades, named A to F (Figure 6). Cluster A contained
three genes, which displayed the highest expression level in root tissues. Additionally,
subgroups C, D, and E showed high expression levels in root, nodule, and flower tissues,
respectively. Clade B included four genes that exhibited variable expression profiles in
these six tissues. In contrast, subclade F showe no expression in the six plant tissues.

3.7. Expression Analysis of the MsZFPs in Abiotic Stress

To probe the transcript abundance of MsZFP genes under cold, drought, salt and
ABA stress, we used BLASTP against transcriptome datasets constructed by our laboratory.
A total of 57 MsZFPs were induced under four stresses; these expression patterns are
displayed in Figures S2–S5. For the cold treatment, all 57 induced MsZFPs were divided
into seven groups based on their expression pattern at five time points. The expression
of Group C was highly upregulated at 0–2 h and rapidly declined at the subsequent time
points. In contrast, clade F displayed the opposite results, in which expression levels were
severely downregulated at 0–2 h and remained relatively stable. Interestingly, subgroup E
displayed light expression levels at 2 h and gradually peaked at 24 h. Groups A, B, and D
MsZFPs showed variable expression profiles at all five time points. Group G showed no
expression at any time under cold stress.

For the ABA treatment, all the induced genes were divided into seven categories.
Group A was severely and continually downregulated with the extension of treatment.
Genes of Groups B and D were highly upregulated at 3 h and were inhibited or unexpressed
at other time points. Group C revealed variable expression levels at four time points. The
expression levels of clades E, F, and G were slightly upregulated at 3 h and reached their
maximum values at 12 h.

Under drought treatment, all these genes were induced at different levels. According
to Figure S4, Group A exhibited a process of upregulation and reached its maximum level
after drought removal 24 h. The expression levels of Groups C and D fluctuated after
treatment and were higher after rehydration than before treatment. Groups E and G were
upregulated at the beginning of treatment at 1 h and 24 h, respectively, and gradually
downregulated with the extent of processing time, suggesting that the genes of Group E
can more rapidly respond to drought stress than the genes of Group G. The expression
profile of clade F gradually decreased under the treatment of drought stress from 1 to 24 h,
and reached its minimum level after drought removal 12 h, suggesting positive regulation.
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Figure 6. Heatmap representation of the expression patterns of MsZFPs among different tissues.
Lower and higher levels of transcript accumulation are indicated by red and blue, respectively,
and the median level is indicated by light yellow. Microarray data were downloaded from the
CADL-Gene Expression Atlas database, and the heatmap was constructed using TBtools. Subgroups
A to F displayed the highest transcript accumulation level in different tissues.

According to Figure S5, it is not difficult to speculate that all 57 MsZFPs were positive
to salt stress, with variable expression levels. The expression of Group A exhibited a
dynamic change before removal of salt stress for 12 h and suddenly reached a peak. In
addition, the genes of subgroup B were highly sensitive to salt stress and rapidly reduced
after treatment for 1 h. Group C reached its maximum minimum level at 3 h and 12 h after
removal, respectively. Similar to Group C, Group D reached these two peak values at 6 h
and 12 h after removal, respectively. Group D displayed a negative response to salt stress,
with the expression level not significantly upregulated until treatment for 6 h, and rapidly
reduced after stress removal. Groups F and G were highly sensitive to salt stress; however,
their expression levels did not change significantly after stress treatment.
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3.8. Validation of qRT-PCR

Using the RNA-seq data on abiotic stress, qRT–PCR was performed to validate the
nine MsZFPs that were significantly induced (Figures S3–S7), under drought, salt stress
and ABA treatment; their primer sequences for qRT-PCR are listed in Table S1. Based
on the qRT-PCR analysis, the selected MsZFP genes were induced to varying degrees by
different stresses. Notably, most of these MsZFP genes were significantly upregulated
under all abiotic stresses, suggesting positive regulation. At the same time, the expression
trend of the selected Q-type C2H2 genes was consistent with the RNA-seq analysis results.
For example, MsZFP19, and MsZFP51, whose expression levels were rapidly upregulated
with time under ABA treatment, showed results similar to the RNA-seq data (Figure 7).
Interestingly, the variation trend of the expression of MsZFP41 under ABA treatment
initially decreased and then increased, which was different from the variation trend of the
expression of MsZFP41 under drought treatment.
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Values represent the average ± SD of root tips. Error bars represent the standard errors of the means
(n = 3). The relative expression level was normalized according to the values in the control (0 h). And
a to i means the results of qRT-PCR of selected MsZFPs “*” indicates significance at the 0.05 level,
and “**” indicates significance at the 0.01 level.

4. Discussion

Q-Type ZFPs are a subfamily of C2H2-ZFPs, which play crucial roles in plant response
to abiotic stress. Previous studies have identified many Q-type C2H2 ZFPs in plants such
as Arabidopsis, rice, wheat, poplar, and potato [9,10,36–38]. However, there have been few
studies on the molecular function of MsZFPs under abiotic stress conditions in alfalfa.
Therefore, this research aimed to analyse this gene family in depth, hoping to be assist in
the mining of antistress genes. In this research, we investigated the features of Q-type C2H2
ZFPs using previous studies of other plants; a total of 58 Q-type MsZFPs were identified
through genome-wide identification. Then, the physical and chemical properties, gene
structure, conserved motifs, phylogenetic relationships, chromosomal mapping, synteny
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analysis, cis-regulatory element composition, specific expression of tissues and expression
pattern under abiotic stress were all investigated. The results provided significant and
valuable information to aid in better exploring the evolutionary relationship and function
of these MsZFPs.

In our research, 58 Q-type C2H2 ZFPs were identified in alfalfa, more than were
identified in Triticum aestivum [39], but fewer than the number identified in potato [10] and
rice [40]. The lengths of these protein sequences were between 126 and 1633 amino acids
(Table S3). Phylogenetic analysis showed that 58 MsZFPs were divided into 12 groups,
which were similar to StZFPs in Solanum tuberosum L. [10]. Moreover, some of the se-
lected Arabidopsis Q-type C2H2 ZFP genes and the MsZFPs were clustered into the same
clade, suggesting that they may have similar functions under abiotic stress and a close
evolutionary relationship. Changes in their intron–exon numbers can affect the function of
genes during evolution, and previous studies have shown that the fewer introns the genes
possess, the easier the function of genes during environmental challenge [41]. In this study,
all the MsZFPs were divided into six groups, and most of the MsZFPs were intron-less. In
addition, motif 1 was widely distributed in MsZFPs. Notably, motif 5 was usually located at
the end of these proteins, and among them, 56 (56/58, 96.55%) MsZFP genes had at least the
“LxLxL” type of EAR motif, suggesting that the MsZFPs are rich in potential transcriptional
inhibitors. In addition, previous research has identified many transcriptional repressors in
plants [42]. For example, the LATE FLOWERING (LATE) gene in Arabidopsis [43] and the
KNUCKLES (KNU) [44], a transcriptional repressor of cellular proliferation in Arabidopsis,
were clustered in the same subclade as MsZFP51 and 58, suggesting that these two MsZFPs
have functions similar to transcriptional repressors.

Chromosomal mapping analysis showed that all Q-type MsZFP genes were dispersed
on 22 chromosomes. In addition, all of the copies of chromosomes 1, 3, and 4 (M. sativa is
an autotetraploid plant, and each chromosome has four copies) with Q-type MsZFPs were
caused by its complex genetic background. Gene duplication events usually contribute
to the emergence of members of gene families as new functions are produced in plant
genome evolution [45]. In our study, a total of ten pairs of MsZFP genes (16/58, 27.59%)
were identified as segmental duplications, and most syntenic MsZFPs were located in the
middle of chromosomes. MsZFP25 is collinear with three genes, and all four genes are
clustered in the C3 group, suggesting that they may have a similar origin. Therefore, it is
important to investigate their duplication relationship in order to further research on the
evolutionary relationship of this gene family.

Cis-regulatory elements are located upstream of genes and influence gene functions
by binding with TFs. In the current study, the promoter regions of MsZFPs had many
response elements, mainly hormone-related elements, light-related elements and stress
response elements. Among these, AREs were most widely present in the MsZFPs, followed
by ABREs and G-boxes. In addition, only MsZFP11 and MsZFP13 had DRE regulatory
elements, while MsZFP58 did not have any cis-regulatory elements among the investigated
regulatory elements. A previous study confirmed that many important cis-regulatory
elements already existed in the promoter regions of stress response genes in MYBs, WRKYs,
and MADS-boxes [35,40,46]. Furthermore, many of these elements, such as ABREs and
DREs, have been reported to widely participate in abiotic stress responses in Artemisia
annua, Arabidopsis and wheat [47–49]. However, no study has investigated these key
regulatory elements in alfalfa. Therefore, according to these results, which provide many
candidate genes for anti-abiotic stress, their specific functions need to be confirmed by
further study.

Specific expression of MsZFP genes in different tissues could provide a clear study
direction for plant growth development. Gene expression patterns can provide significant
supportive data to better understand the function of MsZFPs. According to Figure 6, a total
of 36 MsZFPs were expressed in different tissues to variable degrees; each group displayed
tissue-specific expression patterns, especially in Groups C, D and E, which showed higher
expression levels in roots, nodules, and flowers, respectively. Therefore, we can speculate
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that these may become the key regulatory TFs in regulating plant growth and flowering
According to these tissue-specific expression patterns, MsZFP genes widely participate in
the process of growth development with the related tissue, which provides insight into
how we can promote special tissue growth and development by changing the expression
level of these MsZFPs using biotechnology.

Environmental stresses can affect the growth of plants and crop productivity [50].
A previous study explored many C2H2-ZFPs, which are widely related to abiotic stress
responses, in various plants such as Arabidopsis [51], petunia [52], and potato [53]. For
example, ZAT10 is a transcriptional repressor in Arabidopsis, and overexpression of ZAT10
can enhance the tolerance of plants to abiotic stress [54]. The expression level of StZFP1 in
potato can be induced by salt stress, drought stress and exogenously applied ABA, and
ectopic expression of StZFP1 in tobacco can increase tolerance to salt [53]. In Oryza sativa,
ZFP179 has been implicated in plant development and stress responses induced by salt,
drought, and ABA treatments at the seedling stage. Overexpression of ZFP179 in rice can
increase salt tolerance and shows high sensitivity to exogenous ABA in seedlings [36].
In our study, a total of 57 MsZFP expression patterns were explored using RNA-Seq
data previous obtained in our laboratory. Most of these MsZFPs were induced under
different abiotic stresses. According to the expression profiles in Figures S2–S5, we found
that MsZFP20, MsZFP26, MsZFP37, MsZFP42, MsZFP44, MsZFP51, and MsZFP58 were
induced under ABA, salt, and drought stress. However, these genes were negatively
associated with cold stress in alfalfa. In the current study, we verified the expression levels
of nine MsZFPs under abiotic stress using qRT-PCR. However, some of the fold changes
between the RNA-Seq data and qRT-PCR results were different, which was also found in
prior research [40,55,56] and may be caused by the difference in genetic diversity among
alfalfa individuals, or by differences in sampling time [57]. In conclusion, the expression
patterns of MsZFP genes under various abiotic stresses will provide many new candidate
genes for further exploration of the mechanisms of resistance in alfalfa.

5. Conclusions

In the current research, we provided a comprehensive analysis of 58 Q-type C2H2-
ZFPs in the alfalfa genome. These MsZFPs were divided into twelve groups, with most
of the MsZFPs closely related to known antistress genes in Arabidopsis. We explored their
physiochemical properties, phylogenetic relationships, gene structures, motif composition,
and cis-regulatory elements. Chromosomal mapping and collinearity analysis revealed
the duplication relationship of alfalfa MsZFPs. In addition, the tissue expression patterns
showed that many of the MsZFPs were expressed in specific tissues at different levels.
We selected nine candidate genes that were highly induced under abiotic stress and used
qRT-PCR to validate their expression patterns. Our study contributes to understanding of
the roles of MsZFP genes under abiotic stress and provides resources for further molecular
and functional analysis in alfalfa. It may also contribute to the improvement of abiotic stress
tolerance using molecular biology techniques such as RNA interference, overexpression,
and CRISPR/Cas9 technology in future research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12121906/s1, Additional file 1: Table S1. Information of the selected MsZFP primers
used in quantitative real-Time PCR. Table S2. The putative58 MsZFP protein sequences in Medicago sativa
L. Table S3. Summary of the Q-type C2H2 transcription factor gene in alfalfa. Table S4. The putative
58 Q-type C2H2 ZFP protein sequences in Arabidopsis thalia. Table S5. MEME motif sequences in
predicted MsZFP proteins. Table S6. Ka/Ks ratios of the syntenic relationships between MsZFPs.
Table S7. Ka/Ks ratios of the syntenic relationships between alfalfa and Arabidopsis. Table S8. Ka/Ks
ratios of the syntenic relationships between alfalfa and Medicago truncatula. Table S9. The description
of the selected cis-regulatory elements. Additional file 2: Figure S1. Analysis of cis-regulatory
elements of the promoter regions of MsZFP genes of alfalfa. Figure S2. Expression of 57 MsZFP genes
in response to cold treatment. Figure S3. Expression of 57 MsZFP genes in response to ABA treatment.
Figure S4. Expression of 57 MsZFP genes in response to drought stress. Figure S5. Expression of
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57 MsZFP genes in response to salt stress. Figure S6. Expression analysis of nine genes under drought
treatment, revealed by qRT-PCR. Figure S7. Expression analysis of nine MsZFP genes under salt
treatment, revealed by qRT-PCR.
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