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Gastric cancer is a complex multifactorial and multistage process that involves a large
number of tumor-related gene structural changes and abnormal expression. Therefore,
knowing the related genes of gastric cancer can further understand the pathogenesis of
gastric cancer and provide guidance for the development of targeted drugs. Traditional
methods to discover gastric cancer-related genes based on biological experiments are
time-consuming and expensive. In recent years, a large number of computational
methods have been developed to identify gastric cancer-related genes. In addition, a
large number of experiments show that establishing a biological network to identify
disease-related genes has higher accuracy than ordinary methods. However, most of the
current computing methods focus on the processing of homogeneous networks, and do
not have the ability to encode heterogeneous networks. In this paper, we built a
heterogeneous network using a disease similarity network and a gene interaction
network. We implemented the graph transformer network (GTN) to encode this
heterogeneous network. Meanwhile, the deep belief network (DBN) was applied to
reduce the dimension of features. We call this method “DBN-GTN”, and it performed
best among four traditional methods and five similar methods.

Keywords: gastric cancer, susceptibility gene, graph transformer network, deep belief network,
heterogeneous network
INTRODUCTION

Gastric cancer is a malignant tumor originated from gastric mucosal epithelial cells (1). At present,
due to the increase of work pressure, the change of diet structure, and Helicobacter pylori infection,
gastric cancer is gradually showing a younger trend (2, 3). Patients with early gastric cancer often
have no obvious symptoms, or only nonspecific symptoms such as abdominal discomfort and
flatulence (4). These symptoms are often similar to chronic gastric symptoms such as dyspepsia,
gastritis, and gastric ulcer (5). Most patients with early-stage cancer find their condition through
gastroscopy. Under reasonable medical measures, the 5-year survival rate of patients with early-
stage gastric cancer can reach 90% (6). However, most patients with gastric cancer are in the middle
and late stage of gastric cancer when they are diagnosed. The tumor has invaded the outside of the
stomach and is complicated by lymph node metastasis; thus, the odds of being cured is low.
Screening related genes closely related to gastric cancer can be used as molecular targets for
diagnosis (7). Different gene combinations can reflect the early diagnosis, incidence, effectiveness of
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treatment, and prognosis of gastric cancer. The early stage of
gastric cancer generally only contains a few gene changes. These
changes are potential molecular targets for early diagnosis (8). If
these changes can be detected, gastric cancer can be detected as
soon as possible, which can greatly improve the cure rate of
gastric cancer. The typing of gastric cancer susceptibility genes
and related genes can also provide some information for the
prediction of the disease (9), so as to take preventive measures as
soon as possible to prevent the deterioration of the disease. With
the continuous in-depth post-genome studies, more genotypes
will be found to be related to the occurrence, development, and
prognosis of gastric cancer. The final conclusion can provide a
new theoretical basis for the discussion of the molecular
mechanism of gastric cancer (10, 11).

Gastric cancer is a complex and multifactorial disease.
Environmental and genetic factors play an important role in
the occurrence of gastric cancer (12, 13). MiRNA precisely
regulates the occurrence of gastric cancer by participating in a
network system composed of a series of important biological
processes such as cell proliferation, apoptosis, and differentiation
(14). A large number of studies have shown that according to the
difference in expression level, specific miRNAs have become a
potential biomarker of malignant cancer and have an impact
similar to carcinogenic or tumor suppressor genes. For example,
the expression of miR-21 and miR-155 is usually increased in
gastric cancer, which can promote cell proliferation and induce
the occurrence of malignant cancer (15), and the expression of
mir-449 is usually reduced. It can inhibit cell proliferation and
inhibit the further development of gastric cancer (16). To a large
extent, miRNA is almost involved in the whole process of gastric
cancer pathogenesis. Therefore, with the deepening of research,
it can enrich the biological function of miRNA, show a new
vision for the in-depth study of the molecular mechanism of the
occurrence and development of gastric cancer, and show a
broader platform for the medical field. The application of gene
chips can further extend the research on gastric cancer into the
gene regulation network, making it possible to explore the gene
expression profile of gastric cancer in different pathological
stages. Gene chips have become a powerful tool to study the
molecular regulation mechanism and pathway of gastric cancer
progress, and they have been widely used in the field of gastric
cancer research. In recent years, tumor genomics and proteomics
have been widely used in biomedical and clinical research. Since
the rise of gene chips and microarray technology, people have
used these technologies to find new disease subclasses (17, 18),
identify new tumor markers (19, 20), distinguish tumor grades
(21), and predict the prognosis of the disease. For example,
Wang et al. found that the increased expression of INHBA was
related to the low survival rate of patients with gastric cancer
through gene enrichment analysis (22). Liu et al. confirmed that
extracellular matrix receptors and cell cycle signaling pathways
may play an important role in gastric cancer (23). Wnt signaling
pathway may lead to carcinogenesis by stimulating the migration
and invasion of gastric cancer cells (24). b-Catenin is frequently
mutated in gastric cancer (25). Fze3 is overexpressed in 75% of
gastric cancer tissues and hsfrp is downregulated in 16% of
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gastric cancer tissues, indicating that the expression of fze3 and
hsfrp in this pathological tissue is often changed (26). Highly
recombinant Shh induces the migration and invasion of gastric
cancer cells by regulating tissue growth factor (TGF), which plays
a role in the alk5–smad3 pathway (27). LOXL2 can promote
tumor invasion through the Src/FAK signaling pathway, and its
expression in gastric cancer is significantly increased (28). The
loss of embryonic liver cell lining protein (ELF) can destroy
the TGF-mediated signal pathway by interfering with the
localization of Smad3 and Smad4 and lead to gastric cancer
(29). The increase of BMP-2 concentration can significantly
improve the motility and invasiveness of gastric cancer cells
(30). The upregulation of cycox-61 may lead to the progression
of gastric cancer. Interleukin-6 induces the invasion of gastric
cancer cell line AGS cells through the activation of the c-Src/
RhoA/ROCK signaling pathway (31).

Although the cost of large-scale sequencing data is decreasing
and the speed is increasing, the number of clear gastric cancer-
related genes remains small. A large number of multi omics data
of gastric cancer have been accumulated. It is an important
means to fully understand the genetic mechanism of gastric
cancer to preliminarily screen potential genes through large-scale
data mining algorithms and then verify them one by one through
biological experiments. Systems biology aims to study the
interaction of various molecules with different structures and
functions at the overall level of organisms, and then add
computational methods to describe and predict biological
functions (32, 33), phenotypes, and behaviors. Most of these
methods are based on networks (34, 35). These computational
methods have been widely used in the discovery of disease-
related genes (33, 35–39), genetic mechanism (40, 41), gene
expression (37, 40), protein function (42, 43), metabolic
association (44, 45), and drug target (46, 47). Therefore, in this
paper, we developed a novel method named “DBN-GTN” to
identify gastric cancer-related genes in a large scale. This method
is based on the thought of systems biology. It used multiple
features of genes and gastric cancer to identify the patterns of
gastric cancer-related genes, which can be used to find more
gastric cancer-related genes.
METHOD

Workflow
We firstly constructed a disease similarity network and a gene
interaction network. We connected the two networks together
based on the known relationship between diseases and genes. For
example, the public databases have shown that the EGFR gene
has a relationship with gastric cancer. Then, the node “gastric
cancer” can be connected to the node “EGFR”. Finally, we can
obtain a heterogeneous network. Then, we should extract the
features of diseases and genes, respectively. We used the
relationship between miRNAs and both diseases and genes as
the features. Therefore, gene feature is the regulatory relationship
between the gene and all miRNAs. Disease feature is the known
relationship between the disease and all miRNAs. Then, the deep
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belief network (DBN) was applied to reduce the dimension of
features. Finally, the graph transformer network was
implemented to train the model and predict gastric cancer-
related genes. The workflow is shown in Figure 1.

Construction of Heterogeneous Network
Firstly, we need to calculate the similarity of diseases. Disease
ontology (DO) was applied to explore the relationship between
different diseases. Every disease term in DO is related to some
molecular components (such as genes, proteins, small molecules,
and drugs), which are usually called annotation entities of diseases.
The similarity between the two diseases is also related to their
common ancestors. The similarity of two diseases from the same
ancestor node is usually greater than that of two diseases that do
not belong to the same ancestor node. Therefore, the similarity of
two diseases can be calculated by calculating the amount of
information of two disease ancestor nodes. Similarly, in DO,
each disease is related to its annotation entity. The similarity
between the two diseases can also be calculated by calculating the
relationship between their annotation entities.

Then, we need to obtain gene interaction information. We
downloaded gene interaction information from HumannetV2.0
(48). The genes that can interact with each other can be
connected in the gene network.

Finally, we need to connect these two networks based on the
known relationship between diseases and genes. The DisGeNet
database (49) was used to obtain the associations between diseases
and genes. Based on the information reported by DisGeNet, we
can build a heterogeneous network of diseases and genes.

Feature of Diseases and Genes
DIANA-TarBase v8 (50) collected decade-long experimentally
supported miRNA–gene interactions. Using this database, we
obtained the relationship between genes known to be related to
disease and miRNAs. Each miRNA is one dimension of a gene
feature. If a gene is reported to be regulated by the miRNA, the
feature value of this gene in this characteristic dimension is 1.

Mir2disease (51) contains 349 miRNAs, 163 diseases, 3,273
miRNAs, and the association information between diseases.
Using this database, we obtained the relationship between
miRNAs and diseases similar to gastric cancer. Each miRNA is
one dimension of a disease feature. If a disease is reported to be
related to the miRNA, the feature value of this disease in this
characteristic dimension is 1.

Dimensionality Reduction by
Deep Belief Network
In order to reduce the feature dimension of miRNA, we
constructed a DBN network architecture based on Restricted
Boltzmann Machine (RBM) for miRNA feature encoding. Each
RBM is a layer in the DBN network architecture, and the DBN-
based miRNA feature encoding method contains a total of 3
layers of RBMs.

First, the variables in RBM are divided into hidden
variables and observable variables. Among them, the observable
variables are the features of miRNAs. The observable and hidden
Frontiers in Oncology | www.frontiersin.org 3
variables are represented by the observable layer and the hidden
layer, respectively. The nodes in the RBM layer are not connected,
and all the nodes in the adjacent RBM layers are connected to
each other. This connection method is consistent with the fully
connected neural network.

Unsupervised learning is difficult because the distribution of
input miRNA features is unknown. Based on the conclusions of
statistical mechanics, we describe the probability distribution
with an energy-based model. An RBM is composed of miRNA
features and latent variables, whose energy function is defined as:

E(v, h) = −o
i
aivi−o

j
bjhj−o

i
o
j
viwijhj =

− aTv − bTv − vTWh (1)

Where the feature of genes can be represented v = [v1, v2,…vm]
T ;

h is the random vector h = [h1, h2, …hn]
T W is the matrix of

weight. Both a and b are bias.

With the energy function, the joint probability between the
original feature of a gene and the feature after dimensionality
reduction can be defined, and the conversion from the visualized
node to the hidden node can be realized. Denote the joint
probability distribution as p(v, h), which is calculated as follows:

p(v, h) =
1
Z
exp ( − E(v, h))

=
1
Z
exp (aTv) exp (bTh) exp (vTWh) (2)

Where Z =o
v,h

exp ( − E(v, h))

i s the par t i t ion funct ion and can a l so be ca l l ed
normalization coefficient.

Prediction of Gastric Cancer-Related
Genes by the Graph Transformer Network
Since our network is a heterogeneous network of diseases and
genes, there are multiple types of meta-paths in it. The first step
is to select edge types from the adjacency matrix A. Then, we
need to do matrix multiplication of two selected adjacency
matrices to learn a novel meta-path network A(1). This new
adjacency matrix can be calculated as the sum of candidate
adjacency matrices based on weight. The addition process is
based on 1*1 convolution with the activation function softmax.

Q = F(A,W) = s (A,    softmax(W)) (3)

s() represents a convolutional layer and W is the weight of it.
In this way, GTN can generate new meta-path adjacency

matrices (52). Then, we can implement graph convolutional
network (GCN) on these adjacency matrices. Each GCN layer
can be calculated as:

H(l+1) = s (D−1
2AD−1

2HlWl) (4)

Finally, each node in GTN can be encoded as:

Z = ∥s (D−1AXW) (5)
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RESULTS

Compare With Traditional Methods
We obtained a total of 435 genes that are reported to be related to
gastric cancer. We randomly selected 435 genes as the positive
samples and selected part of the remaining genes as negative
samples to train the model. We compared DBN-GTN with several
traditional methods, which include support vector machine
(SVM), back-propagation artificial neural networks (BP-ANN),
naive Bayes, and random forest. Since these methods do not have
the ability to encode a network, we simply combined the features
of genes and diseases to construct a disease–gene pair. We input
these disease–gene pairs into these traditional methods and build
models to predict gastric cancer-related genes. The performance of
these methods is shown in Table 1.

As we can see in Table 1, DBN-GTN performed best among
these methods. The main reason why the accuracy of our analysis
of DBN-GTN is significantly higher than other methods is that it
considers the association between diseases and the interaction
between genes, while other traditional methods are limited by
their own shortcomings and cannot incorporate this information
into the models.
Frontiers in Oncology | www.frontiersin.org 4
Compare With Similar Methods
Two methods make up the DBN-GTN, and we try to replace the
two methods with similar methods to test whether the accuracy
of the method is the highest. DBN mainly plays the function of
dimensionality reduction, and principal component analysis
(PCA) and t-distributed stochastic neighbor embedding
(t-SNE) have a similar function. Therefore, we try to use these
two methods to replace DBN and test the performance. In
addition, GCN can be used to encode a homogeneous network.
To compare the difference between encoding a heterogeneous
network and encoding two homogeneous networks separately,
we used GCN to replace GTN. GCN was implemented to encode
a gene interaction network and a disease similarity network,
respectively. Then, the features of genes and diseases are
combined together to train the GCN model. The experimental
results are shown in Figure 2.

As we can see from Figure 2, DBN-GTN performed best
among these methods and t-SNE-GCN performed worst. From
the impact of dimensionality reduction on accuracy, DBN
outperforms t-SNE and PCA, and t-SNE has the worst accuracy.
This is because PCA can manually select the amount of
information contained after dimensionality reduction, while
t-SNE can only reduce the data to 2 to 3 dimensions. From the
perspective of the influence of the coding network method on
accuracy, the performance of GTN is better than that of GCN. This
is because GTN can encode heterogeneous networks and obtain
more information than two homogeneous networks by GCN.
CONCLUSION

Biologists discovered some genes related to gastric cancer
through large-scale transcriptome and genome sequencing.
These results suffer from sample heterogeneity and insufficient
sample size. At the same time, these experiments also cost a lot of
time and money. Therefore, from the perspective of systems
biology, this paper mines the association patterns between
diseases and genes, and establishes a model through deep
learning algorithms to identify large-scale gastric cancer-related
genes. Although a large number of previous studies have used
computational methods to identify gastric cancer-related genes,
most of these methods focus on extracting information from
homogeneous networks and cannot fully incorporate the
association between diseases and genes into the model. In this
paper, we established a disease similarity network and a gene
interaction network, and connected the two networks through
the known correlation between the two to form a disease–gene
heterogeneous network. At the same time, we extracted the
features of the disease and gene based on their relationship
with miRNAs. In other words, a bridge between diseases and
genes is established through miRNAs. We employ deep belief
networks for feature dimensionality reduction and GTN for
heterogeneous network encoding. We call this method DBN-
GTN. We compare the accuracy of this method with four
traditional methods and five similar methods. Experimental
results show that DBN-GTN outperforms our chosen
TABLE 1 | AUC and AUPR of traditional methods and DBN-GTN.

Method AUC AUPR

DBN-GTN 0.93 0.86
SVM 0.78 0.68
BP-ANN 0.80 0.73
Naive Bayes 0.72 0.63
Random Forest 0.75 0.69
FIGURE 1 | Workflow.
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traditional method and similar methods, which shows that DBN-
GTN is superior in the task of large-scale identification of gastric
cancer genes. This paper provides support to further explain the
genetic risk, susceptibility, and drug screening of gastric cancer.
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