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Increasing evidence has shown that tumor microenvironments are an important feature in clear cell renal cell carcinoma (ccRCC)
carcinogenesis and therapeutic efficacy. In this study, two subtypes of ccRCC, high- and low-immune groups, were identified
based on the immune gene datasets, of which the differential immune genes were identified accordingly. Furthermore, we
constructed a risk prognosis model using five immune genes, specifically, AQP9, KIAA1429, HAMP, CCL13, and CCL21. +is
model was highly predictive of ccRCC clinical characteristics and showed potential for use in immunotherapy. Furthermore, the
five identified genes were highly correlated with the abundance of B cells, CD4 Tcells, CD8 Tcells, macrophages, neutrophils, and
dendritic cells in the tumor microenvironments. Among them, AQP9, KIAA1429, and HAMP exhibited significant prognostic
potential. +ese findings indicate that monitoring and operating tumor microenvironments are of great significance for ccRCC
prognosis and precise immunotherapy.

1. Introduction

Renal cell carcinoma (RCC) accounts for more than 330 000
cases of cancer worldwide and 140 000 cancer-related deaths
each year. +e incidence of kidney cancer has been steadily
increasing over the past few decades. In the United States
alone, more than 14 000 kidney cancer-related deaths occur
each year [1]. While all types of RCC are nephron-derived
and receive similar clinical treatments, the various histo-
logical subtypes are highly heterogeneous in terms of biology
and susceptibility to therapy. Among these subtypes, clear
cell RCC (ccRCC) is the most common (70–80%) and is one
of the most aggressive subtypes [2].

+e tumor microenvironment is essential for the initi-
ation and maintenance of tumorigenesis [3]. It is composed
of tumor cells, extracellular matrix (ECM), signal molecules,
stromal cells (such as fibroblasts, vascular endothelial cells,
and pericytes), and immune cells [4, 5]. Numerous studies
have indicated that the tumor microenvironment is directly
involved in the development of drug resistance to targeted

therapies. Tumor-infiltrating cells can have either tumor-
suppressing or tumor-promoting effects depending on the
tumor type or model. For example, regulatory T cells (Treg
cells), bone marrow-derived suppressor cells, and tumor-
associated macrophages are associated with protumor
functions [6, 7]. Recently, there has been evidence showing
that T cell activation status is a key determinant of the
prognosis of ccRCC and may be a key factor in the response
to immunotherapy in highly invasive ccRCC tumors. Fur-
thermore, the levels of CD8+ T cells have been found to be
associated with improved clinical results and related to
immunotherapy response [8, 9].

+e lack of sensitivity of ccRCC to chemotherapy and
radiation therapy has prompted research into new treat-
ment options. Clinical knowledge has shown that ccRCC is
a tumor rich in blood vessels. +us, targeting the von
Hippel–Lindau (VHL) protein, which promotes angio-
genesis mainly by regulating vascular endothelial growth
factor, is an attractive method for the treatment of sporadic
ccRCC [10]. Furthermore, major breakthroughs in ccRCC
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treatment have been achieved with the development of
targeted therapeutic agents, including multitarget tyrosine
kinase inhibitors and mTOR inhibitors. Recently, other
treatment strategies, including immune checkpoint in-
hibitors, have also been found to be effective treatment
options for advanced ccRCC. In addition, the latest ad-
vancements in research on disease biology, tumor mi-
croenvironments, and drug resistance mechanisms have
laid the foundation for attempts to combine targeted
therapy with a new generation of immunotherapy, taking
advantage of a possible synergy.

In this study, we systematically explored the differences
in immune cells or signature infiltrations in ccRCC data. We
also studied the complex biological functions, immune
processes involved, and networks that regulate these mol-
ecules. In addition, we systematically studied epigenetic
characteristics related to the risk of developing ccRCC, such
as chemosensitivity, immunotherapy sensitivity, mutation,
and methylation. +is study aids in the promotion of precise
and personalized treatment strategies for patients with
ccRCC, providing clinical guidance.

2. Materials and Methods

2.1. Data Processing. Kidney renal clear cell carcinoma
(KIRC) datasets were obtained from +e Cancer Genome
Atlas (TCGA) and ArrayExpress databases. RNA-seq data
(fragments per kilobase of transcript per million mapped
reads (FPKM)) from the 72 normal samples and 539 cancer
samples of the TCGA database, variant data of VarScan,
methylation data, and clinical information were downloaded
from UCSC Xena (https://xenabrowser.net/datapages/).
Gene expression values of samples that were taken from the
same patients were averaged. Finally, 530 patients were
included in the survival analysis. Two other datasets,
E-MTAB-1980 (101 cancer samples) and E-MTAB-3267 (53
cancer samples), were downloaded from the ArrayExpress
(https://www.ebi.ac.uk/arrayexpress/) database. +e En-
semble database (http://asia.ensembl.org/index.html) was
used for gene annotation.

2.2. KIRC Subtype, ESTIMATE, and CIBERSORT Analysis.
A total of 29 immune gene sets, including different immune
cell types, functions, and pathways, were used to represent
tumor immunity. Single sample gene set enrichment analysis
(ssGSEA) algorithms were performed on the KIRC samples
by the GSVA package to evaluate the immunological traits
using the R software.+e high- and low-immune subtypes of
KIRC were identified using the ConsensusClusterPlus
package (k-means clustering was used, with 50 iterations,
each using 80% of the samples).

+e ESTIMATE algorithm [11], using transcriptome
data, was used to infer tumor cell composition (Tumor-
Purity), infiltration status of stromal cells (stromal score),
and immune cell scores (ImmuneScore) of our samples.

CIBERSORT [12] is a deconvolution algorithm that is
based on the principle of linear support vector regression. It
was used in our study to calculate the abundance of 22

tumor-infiltrating immune cells in each sample of the ex-
pression matrix by using the corresponding immune gene
sets.

2.3. Differential Immune Gene Selection Based on the High-
and Low-Immune Groups. We used the limma package to
identify 1012 differential genes in the identified KIRC high-
immunity group in the TCGA cohort, with the identified
KIRC low-immunity group as a control. +e standard used
for the differential gene screening was |log2 FC| >1, and a P

value <0.05 was considered significant. +ese genes were
then intersected with the identified immune genes from the
IMMPORT database (https://www.immport.org/) and the
genes in the dataset E-MTAB-1980 to obtain a total of 132
differential immunity genes.

2.4. Immunity Gene-Associated Prognostic Model. To screen
for immune differential genes that significantly affect the
survival of KIRC patients, we performed a single-factor Cox
regression analysis, using a P value <0.05 to indicate sta-
tistical significance. From this, a total of 67 immunological
differential genes were obtained. To further narrow the gene
range for constructing the risk model, we used lasso re-
gression to reduce it to 8 immune differential genes. Finally,
we performed multifactor Cox regression analysis to further
narrow it down to 5 immune differential genes in the model
using P value <0.05 as the screening threshold.

2.5. Statistical Analysis. Fisher’s exact test was used for the
Tumor Immune Dysfunction and Exclusion (TIDE) im-
munotherapy response in the high- and low-risk groups of
the TCGA cohort, sunitinib response in the high- and low-
risk groups of the E-MTAB-3267 cohort, and the distri-
bution of the clinical characteristics of the high-and low-risk
combination. Kaplan–Meier survival analysis was per-
formed using the log rank-sum test. +e Kruskal–Wallis test
was used for comparing three groups, and the Man-
n–Whitney U test was used for comparing two groups. All
tests were two-sided, and the visualization of the data was
achieved using R (3.5.3) and GraphPad Prism 8.0.

3. Results

3.1. Exploration of KIRC Immunophenotypes and Tumor
Microenvironments. Based on datasets, each with more than
100 cancer samples, we used 29 immune gene sets that could
represent multiple immune cells, functions, and pathways,
using the ssGSEA algorithm to score each sample. Con-
sistent clustering was used to identify tumor samples from
the TCGA and E-MTAB-1980 databases. According to the
consistent cumulative distribution function and Delta Area
Plot, results showed that the optimal value was obtained
when K� 2. +rough a heat map analysis, we found that the
KIRC samples could be classified into two groups, high- and
low-immunity groups. We performed further analysis using
ESTIMATE to compare both groups. We found that the
high-immunity group had a higher stromal and immune
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score but had lower tumor purity (Figure 1). Next, we
measured the difference in human leukocyte antigen marker
levels between the high- and low-immunity groups. We
found that the high-immunity group had higher immu-
nogenicity than the low-immunity group.

To identify the specific differences in the tumor mi-
croenvironments between the high- and low-immunity
groups, we used the CIBERSORT algorithm to measure the
differences between the 22 human immune cells of the two
groups. +e high-immunity group showed significantly
higher levels of CD8 T cells, plasma cells, CD4 T cells, T
follicular helper cells, regulatory T cells (Tregs), and M0
macrophages, while the low-immunity group had higher
levels of monocytes, M1 macrophages, M2 macrophages,
and resting mast cells (Figure 2).

3.2. Identification of Differential Immune Genes Based on the
High- and Low-Immunity Groups. After identifying the
heterogeneity of ccRCC tumors, we performed differential
analyses on the high- and low-immunity groups to further
explore this difference. A total of 360 downregulation and
652 upregulation differences were identified. +ese genes
were then intersected with the identified immune genes from
the IMMPORT database (https://www.immport.org/) and
the genes in the E-MTAB-1980 dataset, resulting in a total of
132 differential immune genes.

To screen for immune genes that affect patients with
KIRC, a single-factor Cox analysis was performed, yielding
67 prognostic immune genes. Functional enrichment
analysis of gene ontology (GO) and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) revealed that these 67 genes
are involved in Tcell activation, leukocyte cell-cell adhesion,
cytokine activity, chemokine activity, +1, +2, and
+17 cell differentiation, the NF-kappa B signaling pathway,
the T cell receptor signaling pathway, the JAK-STAT sig-
naling pathway, PD-L1 expression, and the PD-1 checkpoint
pathway in cancer (Supplementary Figure 2).

3.3. Construction and Validation of an Immunity-Based Risk
Signature. To further screen the above genes, lasso regres-
sion was used to prevent overfitting between the genes.
Finally, a risk regression model based on the immunity-
related genes was constructed using multifactor Cox anal-
ysis, with the results shown in Table 1. +e risk score of each
KIRC patient was based on the following formula:

risk score � 0.11893 × CCL13expression + 0.01586

× AQP9expression + 0.00636×

CCL21expression + 0.26158 × HAMP

− 0.17781 × KIAA1429expression.

(1)

Each dataset was based on the risk score of the sample,
and the median values were used as the basis for division
into the high-and low-risk groups.

+e TCGA cohort was randomly divided into training
and test groups according to the sample size. We found that
in all data sets, the survival rate of KIRC patients in the low-

risk group was higher than that in the high-risk group
(TCGA, median survival 1137 days (low-risk) versus 970
days (high-risk); TCGA-Train, median survival 1203 days
(low-risk) versus 1150 days (high-risk); TCGA-Test, median
survival 1120 days (low-risk) versus 911 days (high-risk);
E-MTAB-1980, median survival 1530 days (low-risk) versus
1455 days (high-risk); E-MTAB-3267, median survival 365
days (low-risk) versus 349 days (high-risk)). To test the
predictive power and accuracy of the constructed risk model,
ROC curve analysis was used to measure the 1-, 3-, and 5-
year survival rates of each dataset. +e corresponding 1-, 3-,
and 5-year area under curves (AUCs) in the TCGA cohort
were 0.656, 0.668, and 0.676, respectively; in the TCGA-
Train cohort, they were 0.753, 0.728, and 0.705, respectively;
in the TCGA-Test cohort, they were 0.580, 0.615, and 0.643,
respectively; in the E-MTAB-1980 cohort, they were 0.745,
0.675, and 0.719, respectively; and in the E-MTAB-3267
cohort, they were 0.562, 0.620, and 0.585, respectively
(Figure 3).

3.4. Correlation between the Risk Model and Clinical
Characteristics. To test the relationship between the risk
model and clinical characteristics, we used Fisher’s test to
measure the differences between the distribution of risk
scores and common clinical characteristics. +e results of
this analysis are shown in Tables 2 and 3. We found that the
high- and low-risk groups showed significant differences in
grade, disease stage, tumor size (T), metastases (M), and
lymph node involvement (N).+e risk model was also highly
predictive of these common clinical features. Fisher’s test on
the age and sex showed no statistical significance, but the
survival rates of patients in the low-risk group were sig-
nificantly higher than those in the high-risk group in men
and women aged ≤65 and > 65 years. In the early stage I + II,
late stage III + IV, grade I + II, and grade III + IV, as well as
T1, T2 + 3 + 4, M0, and N0 of the TMN system, the survival
rates of the patients in the low-risk group were also sig-
nificantly higher than those in the high-risk groups. How-
ever, these findings may have been limited by the sample
size. Furthermore, M1 and N1 did not show significant
differences between the high- and low-risk groups
(Figure 4).

Next, we conducted single-factor and multifactor Cox
analyses on the risk score and clinical characteristics and
discovered the potential of the score as an independent
prognostic factor for KIRC patients (Supplementary
Figure 2).

3.5. Omics Characteristics of the High- and Low-Risk Groups.
Several studies have shown that immune checkpoint in-
hibitor (ICI) treatment benefits some patients with meta-
static cancer, and findings in certain cancer types indicate
that tumor mutation burden (TMB) may predict the clinical
response to ICI [13–15]. To explore the omics characteristics
of the high- and low-risk groups and look for potential
treatment targets, we constructed a panoramic view of the
mutations in both groups and performed an immune ex-
amination using the TIDE algorithm [16] for ICI treatment
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Figure 1: Continued.
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Figure 1: Identification of the immunophenotypes and tumor microenvironments of samples from patients with clear cell renal cell
carcinoma (ccRCC). Heatmap of the immune characteristics and tumor microenvironment in the (a) TCGA and (b) E-MTAB-1980 cohorts
determined by the ssGSEA algorithm. Consensus clustering analysis, distribution of immune score, stromal score, and tumor purity of the
low- and high-immunity groups in the (c–e) TCGA and (f–h) E-MTAB-1980 cohorts. Differences in immunogenicity between high-
immunity and low-immunity groups in (i) TCGA and (j) E-MTAB-1980 cohorts. ∗∗∗P< 0.001; ns: no significance.
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Figure 2: Differences in the tumor microenvironments between the high- and low-immunity groups. (a) Differences in the 22 tumor-
infiltrating immune cells between the high- and low-immunity groups. Blue represents the low-immunity group, and red represents the
high-immunity group. Correlations between the immune cells in the (b) low-immunity and (c) high-immunity groups.

Table 1: Coefficients of the five immune genes used to construct the risk signature, as identified from the multivariate Cox regression
analysis in the TCGA cohort.

Gene Coef HR HR.95L HR.95H P value
CCL13 0.118931 1.126292 1.043501 1.215651 0.002265
KIAA1429 −0.177806 0.837105 0.734482 0.954066 0.007707
AQP9 0.015864 1.015991 1.002345 1.029822 0.021474
CCL21 0.006363 1.006384 1.002058 1.010728 0.003784
HAMP 0.261579 1.298979 1.155972 1.459678 1.10E− 05
Coef: coefficient; HR: hazard ratio.
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Figure 3: Continued.
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Figure 3: Construction and validation of an immunity-based risk signature. Distribution of the risk score, survival time, and survival
status of the patients with KIRC in the (a) TCGA, (b) TCGA-Train, (c) TCGA-Test, (d) E-MTAB-1980, and (e) E-MTAB-3267
cohorts. Kaplan–Meier survival curves based on the risk model in the (f ) TCGA, (g) TCGA-Train, (h) TCGA-Test, (i) E-MTAB-1980,
and (j) E-MTAB-3267 cohorts. Receiver operating characteristic curve and the corresponding AUCs of the risk model in the (k)
TCGA, (l) TCGA-Train, (m) TCGA-Test, (n) E-MTAB-1980, and (o) E-MTAB-3267 cohorts.
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Table 2: Clinical features of the low- and high-risk groups in the TCGA cohort.

Clinical parameters Total High risk Low risk
P value530 265 265

Sex Female 186 91 95 0.7848238Male 344 174 170

Age ≤65 348 176 172 0.7837531>65 182 89 93

Grade
G1+G2 241 97 144

0.1655402G3+G4 281 164 117
Gx or unknown 8 4 4

Stage
Stage I + II 322 138 184

9.18E− 05Stage III + IV 205 124 81
Unknown 3 3 0

T T1 271 115 156 0.0005092T2 + 3 + 4 259 150 109

M
M0 420 195 225

0.0048623M1 78 51 27
Mx or unknown 32 19 13

N
N0 239 119 120

0.0088965N1 16 14 2
Nx 275 132 143

T, tumor; M, metastasis; N, lymph nodes. P values were obtained by Fisher’s test.

Table 3: Clinical features of the low- and high-risk groups in the E-MTAB-1980 cohort.

Clinical parameters Total High risk Low risk
P value101 50 61

Sex Female 24 12 12 1Male 77 38 39

Age ≤65 57 35 22 0.01168567>65 44 15 29

pT pT1 68 32 36 0.6215551pT2-4 33 18 15

N N0 94 45 49 0.4175018N1-2 7 5 2

M M0 89 43 46 0.7307897M1 12 7 5

Fuhrman grade
1 + 2 72 35 37

0.95949343 + 4 27 14 13
Undetermined 2 1 1

pT, pathological tumor; M, metastasis; N, lymph nodes. P values were obtained by Fisher’s test.

p=1.186e-04
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prediction. We found that in the top 20 most frequently
mutated genes, the mutation rates of the tumor suppressor
gene VHL in the high- and low-risk groups were 51% and
42%, respectively, of PBRM1, 44% and 35%, respectively, of
TTN, 16% and 12%, respectively, and of SETD2, 10% and
13%, respectively. In addition, BAP1 (14%) and MTOR
(10%) had higher mutation frequencies in the high-risk
group (Figures 5(a) and 5(b)).

+e total number of somatic mutations identified was
normalized to the corresponding exon coverage of the
KIRC-VarScan panel in megabases. +e low-risk group had
higher TMB and MSI scores than the high-risk group.
However, in terms of actual TIDE prediction results, the
high-risk group had a higher response rate to immune
checkpoint inhibitors, but lower dysfunction and exclusion
scores than the low-risk group, reflecting the tumor escape
mechanisms. In terms of the three cell types that restrict
T cell infiltration in tumors, the high-risk group had higher
scores for myeloid-derived suppressor cells (MDSCs), tu-
mor-associated fibroblasts (CAF), and tumor-associated
macrophages (TAM) than the low-risk group. Furthermore,
in the sunitinib drug trial cohort of E-MTAB-3267, the
disease progression of patients in the low-risk group was
significantly lower than that of patients in the high-risk
group (Figures 5(k) and 5(l)).

3.6. Correlation between Genes and Immune Cells in the Risk
Model. To further explore the regulatory relationship be-
tween the previously described immune genes and immune
cells in the risk model, we used TIMER to verify the cor-
relation between the five immune genes and the purity of the
main immune cells and tumors. +e results showed that
KIAA1429, HAMP, AQP9, CCL13, and CCL21 were sig-
nificantly negatively correlated with tumor purity, and
KIAA1429 was highly correlated with B cells, CD8 T cells,
CD4 T cells, macrophages, neutrophils, and dendritic cells.
HAMP was also highly correlated with B cells, macrophages,
neutrophils, and dendritic cells, while AQP9 was highly
correlated with macrophages and neutrophils. Lastly, CCL21
was highly correlated with CD4 T cells and neutrophils
(Figure 6).

3.7. Kaplan–Meier Survival Validation of Genes in the Risk
Model. Multivariate Cox regression analysis revealed that
the five immune genes in the risk model are independent
prognostic factors for ccRCC. We conducted Kaplan–Meier
survival analysis for each gene and found that AQP9,
KIAA1429, and HAMP had a significant impact not only on
the overall survival of ccRCC patients, but also on pro-
gression-free survival. Among them, the high expression of
AQP9 and HAMP indicates a poor prognosis for ccRCC.�,
whereas KIAA1429 is a protective factor for ccRCC, and its
high expression indicates a good prognosis of ccRCC.
Moreover, we also found that these five immune genes have
different degrees of methylation in the cancer tissues of
ccRCC patients compared to that in the corresponding
normal tissues. AQP9 and KIAA1429 were upregulated, and

CCL13, CCL21 and HAMP were downregulated (Supple-
mentary Figure 3).

4. Discussion

With the rapid development of high-throughput sequenc-
ing, it is easier for researchers to explore and identify new
therapeutic targets for disease or cancer management.
However, most current research focuses on analyzing the
differential markers between cancer cells and adjacent or
normal tissues. +is line of thinking does not take into
account the differences between the various classifications of
cancer cells and tumor microenvironments. In this study, we
classified patients with ccRCC into either high- or low-
immunity groups and identified 132 differential immune
genes between them. Finally, through multivariate Cox
regression analysis, we identified five genes, AQP9,
KIAA1429, HAMP, CCL13, and CCL21, for use in a risk
prognosis model, which was found to be highly predictive of
clinical features and response to immunotherapy.

Aquaporin-9, the protein encoded by the AQP9 gene,
has been found to be carcinogenic in many tumors [17]. It is
a membrane channel protein that allows the penetration of
small solutes, including glycerol, urea, and nucleobases.
However, its prognostic value in patients with ccRCC still
needs to be clarified. In glioblastomas, the expression of
AQP9 mRNA is mainly caused by the infiltration of AQP9-
expressing leukocytes into tumor sites. Jelen et al. [18] and
Vogl et al. [19] confirmed that AQP9 mRNA is coregulated
with transcripts encoding natural immune response com-
ponents, such as complement components and molecules
that mediate response to bacterial lipopolysaccharide. +e
expression of AQP9 also appears to be highly correlated with
the expression of calcin A and B (MRP8/S100A8 and
MRP14/S100A9, respectively). +ese mRNAs encode pro-
teins that form calmodulin A-calmodulin B dimers, which
act as ligands for the toll-like receptor 4. In our study, AQP9
was mainly associated with macrophage, centrocyte-related
cytokine, and chemokine activity in ccRCC. +erefore, we
speculate that the mechanism of AQP9 expression in ccRCC
is similar to that in acute leukemia.

HAMP is a gene that encodes hepcidin, a protein that is
involved in the maintenance of iron homeostasis, which is
necessary for regulating iron storage in macrophages and
iron absorption in the intestines [20]. Wang et al. [21] re-
ported that the regulation of iron metabolism plays an
important role in promoting cell proliferation in ovarian
cancer. Changes in many functional genes affect the process
of iron metabolism, such as an increase in the expression of
TFR1, DMT1, and HAMP (Supplementary Figure 1) and a
decrease in the expression of FPN. +is leads to high in-
tracellular iron concentrations and high FTL content,
promoting the development of advanced tumors. +e iron
chelator deferoxamine is used to inhibit tumors by depleting
the intracellular iron pool in tumor cells and preventing
stem cell growth. Although the specific regulatory mecha-
nism of HAMP in ccRCC is unknown, the abovementioned
therapies provide useful insight into the treatment of ccRCC
in the future.
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KIAA1429 is a gene that encodes the M6A methyl-
transferase-related protein, which is also known as the vir-
like m6 methyltransferase-related protein (VIRMA). +is
protein is known to be important for the establishment of
the cell m6A spectrum.+is gene has also been reported to
be associated with the development of various cancers
[22–25]. It is known to have different regulatory mech-
anisms in different cancers. At the cellular level, VIRMA
inhibits the cell viability and proliferation of PC-3 cells
and inhibits malignant phenotypes by reducing its mi-
gration and invasion activities [22]. In hepatocellular
carcinoma, GATA3 has been identified as a direct
downstream target of the KIAA1429-mediated m6A
modification. In this process, KIAA1429 induces m6A
methylation on the 3’UTR of the GATA3 pre-mRNA,
leading to the separation of the RNA-binding protein HuR
and the degradation of the GATA3 pre-mRNA, inducing
tumor growth and metastasis [23]. In breast cancer,
KIAA1429 also regulates downstream target genes such as
CDK1, which encodes the protein cyclin-dependent ki-
nase 1, a protein that exhibits a carcinogenic effect [25].
While its overexpression in cancer tissues is typically
associated with poor prognosis in patients with cancer, we
have found that its overexpression is associated with a
good prognosis in ccRCC patients. +is shows the com-
plexity of its role in various types of cancers.

Chemokines are a homologous group of proteins with
different functions. +ey directly mediate the migration
and activation of leukocytes and play a role in angiogenesis
regulation. +ey are also involved in the maintenance of
immune homeostasis and structures of the secondary
lymphoid organs. CCL13, also known as the monocyte
chemotactic protein, is a chemokine that induces various
activities in its target cells. +is protein plays an important
role in the innate immune response. When epithelial cells
are activated by cytokines or pathogen-associated molec-
ular patterns through toll-like receptors, CCL13 is released
together with other chemokines through NFκB activation
[26]. +e secretion of these chemokines leads to inflam-
mation-related events, such as the overexpression of en-
dothelial cell adhesion molecules [27]. For example, in
fibroblasts and smooth muscles, CCL13 induces cell pro-
liferation related to remodeling [28] and dendritic cell
activation [29]. +erefore, CCL13 can be used as a key
molecule to allow selective recruitment and activation of

certain cell lineages to inflammatory tissues. +is suggests
that blocking the effects of CCL13 may be used as a new
strategy for the development of drugs with anti-inflam-
matory activity.

CCL21 has been identified as a lymphatic chemokine
that is expressed constitutively by high endothelial venules,
lymph nodes, lymph vessels, and interstitial cells of the
spleen and appendix [30]. +is protein binds to the che-
mokine receptor CCR7 and acts as a chemoattractant for
mature DCs, naive Tcells, and memory Tcells. +rough the
activation of the G protein-coupled CCR7 transmembrane
receptor, CCL21 mediates the recruitment of the above-
mentioned cells to the T cell area of secondary lymphoid
organs, promoting T cell activation. CCL21 also cos-
timulates the expansion of CD4+ and CD8+ T cells and
induces +1 polarization. +e immunosuppressive cell
population, consisting of CD4+, CD25+, and regulatory
T cells, is less responsive to CCL21-induced migration and
unresponsive to CCL21 costimulation [31]. +ese CCL21
functions attract as well as costimulate the proliferation,
differentiation, and activation of naive T cells. +is indi-
cates that CCL21 is a key molecule that triggers T cell
responses and may have therapeutic significance in ccRCC
treatment.

In this study, we focused on exploring the heterogeneity
of the tumor microenvironments from patients with ccRCC,
identified two immune subtypes of ccRCC, and identified
five immune genes (AQP9, KIAA1429, HAMP, CCL13, and
CCL21) from the high and low subgroups that were used to
construct a risk model.

Furthermore, a new immune subtype of ccRCC was
identified based on the TCGA cohort, which was also
verified in other cohorts. A risk prognosis model consisting
of five immune genes, AQP9, KIAA1429, HAMP, CCL13,
and CCL21, was also constructed based on the identified
subtypes. +e activities of cytokines and chemokines, in-
cluding the recruitment of immune cells, such as B cells,
dendritic cells, macrophages, and neutrophils, the presen-
tation of antigens, and the activation of T cells, may provide
possible targets for the development of new immunotherapy
methods in the future.

We recognize several limitations in our study. First, in
the process of screening immune genes for the risk model
construction, other important immune genes may have been
missed. Second, the sample size of our risk model was still
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Figure 6: Correlation between genes and immune cells in the risk model. Correlation of (a) KIAA1429, (b) HAMP, (c) AQP9, (d) CCL13,
and (e) CCL21 with tumor purity and the levels of B cells, CD8 T cells, CD4 T cells, macrophages, neutrophils, and dendritic cells.
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limited. Based on our in-depth analysis of ccRCC micro-
environment transcriptome data, further in vivo and in vitro
experiments are needed to verify the biological functions and
mechanisms of the genes in our developed signature of
ccRCC immune heterogeneity.

5. Conclusions

In summary, by using TCGA data to evaluate the immune
genes of 530 patients with ccRCC, we developed an effective
risk score based on five immune genes that has clinical
potential in the prognosis of ccRCC. In addition, these five
immune genes reveal the huge inherent heterogeneity of the
ccRCC tumor microenvironment, as well as the potential
and possibility of treatment with immune checkpoint in-
hibitors. Furthermore, in the clinical trial of the E-MTAB-
3267 cohort involving sunitinib treatment of metastatic
ccRCC, our risk score also shows the ability to predict
whether the disease will progress or not, which will promote
the practical application of precision medicine, as well as
provide new insights for the current treatment of ccRCC.
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