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Abstract

Many hereditary diseases are characterized by region-specific toxicity, despite the fact that disease-linked proteins are
generally ubiquitously expressed. The underlying basis of the region-specific vulnerability remains enigmatic. Here, we
evaluate the fundamental features of mitochondrial and glucose metabolism in synaptosomes from four brain regions in
basal and stressed states. Although the brain has an absolute need for glucose in vivo, we find that synaptosomes prefer to
respire on non-glycolytic substrates, even when glucose is present. Moreover, glucose is metabolized differently in each
brain region, resulting in region-specific ‘‘signature’’ pools of non-glycolytic substrates. The use of non-glycolytic resources
increases and dominates during energy crisis, and triggers a marked region-specific metabolic response. We envision that
disease-linked proteins confer stress on all relevant brain cells, but region-specific susceptibility stems from metabolism of
non-glycolytic substrates, which limits how and to what extent neurons respond to the stress.
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Introduction

Dysfunction of mitochondria (MT) is thought to be a primary

contributor to aging and neurodegenerative disease, but its role is

poorly understood [1,2]. Most if not all patients with neurode-

generation share the property that MT are, in general, not keeping

up with the energy demands of the cell [3], yet typically, only

particular regions are initially targeted for death [4]. For example,

in Alzheimer’s disease (AD), beta-amyloid toxicity is prominent in

the hippocampus (HIP) [5,6], while toxicity observed in spinocer-

ebellar ataxia type I (SCA1) manifests in the cerebellum (CBL)

[7,8] and Huntington’s disease (HD) primarily targets the striatum

(STR) [9,10]. Region-specific cell death implies that mitochondrial

dysfunction develops in response to a changing cellular metabo-

lism [11,12], but the metabolic basis for regional toxicity remains

one of the most puzzling features of neurodegenerative disease.

Glucose utilization is a requirement for brain function [12].

Low glucose is a prominent feature of patients with neurodegen-

eration [13] and in animal models [14]. However, it is not obvious

how a global suppression of glucose utilization accounts for the

region-specific susceptibility to death. In the R6/2 HD mouse

model, for example, glucose levels correlate directly with the

cerebral blood volume (CBV) in regions of the brain, except in the

affected STR and neocortex, where CBV is abnormally high [14].

Thus, affected brain regions in this model have equivalent or

greater access to glucose relative to regions more resistant to

toxicity. The mismatch between CBV and low glucose in R6/2

animals does not correlate with the degree of atrophy, or the cell

number in the affected regions [14]. Collectively, the results imply

that region-specific neuronal toxicity reflects inherent differences

in metabolism of glucose rather than its availability.

Defining inherent differences in glucose metabolism in disease

states is challenging since basal metabolism is poorly understood

and difficult to assess. Metabolites are in constant flux, and enter

and leave a region of interest by multiple routes, making it difficult

to quantitatively account for region-specific metabolism in vivo.

Isotopic labeling provides insight into the processing of individual

metabolites, but does not provide a global perspective [15] in

which substrates and products are generated and consumed

simultaneously as an integrated unit. In general, whole-organ

measurements using 2-deoxyglucose (2-DG) and positron emission

tomography (PET) provide powerful means to determine the

glucose requirements in each brain region [16–18]. However,

these measures do not reveal how glucose is processed in distinct

brain regions, or the basis for heterogeneous glucose utilization

among brain regions.

To address these issues, we have evaluated metabolism in four

regions of a normal mouse brain in the resting and stressed states.

We used mass spectrometry to develop a map of region-specific

metabolites, and a statistical approach that allows for single and
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simultaneous comparison among all four brain regions on a global

scale. We integrated the map with the synaptosomal bioenergetics,

and tested the underlying basis for region-specific differences in

glucose metabolism. Although the brain has an absolute need for

glucose, we report here that brain synaptosomes are not strongly

glycolytic. Rather, a remarkably distinct ‘‘signature’’ pool of non-

glycolytic substrates characterizes each brain region, and is used

during energy crisis. We envision that non-glycolytic substrates

equip each region with a unique capability for energy production,

that is, at least partially, independent of exogenous glucose

availability. Use of non-glycolytic substrates provides a basis for

differential glucose utilization and region-specific responses to

stress.

Results

To measure differences in metabolism, we dissected four regions

of the normal brain including cortex (CTX), STR, HIP, and CBL

from C57BL/6 mice of 12–16 weeks (Figure 1A). Brain regions

are complex and the number of neurons and glia vary dramatically

among brain regions, ranging from 5-fold excess of neurons to 11-

fold excess of glial cells [19]. Therefore, in this report, we

evaluated the bioenergetics of isolated synaptosomes to determine

whether there were intrinsic region-specific differences among

neurons, and, in parallel, measured the metabolic content of each

dissected region using gas chromatography-coupled mass spec-

trometry (GC-MS). Synaptosomes are ‘‘pinched off’’ nerve

terminals that harbor intact neuronal MT within a physiological

milieu [20]. The GC/MS provides a broad coverage of primary

metabolites and captures the complex metabolic microenviron-

ment to which the neurons respond. In all experiments, the

dissected brain regions were isolated and measured simultaneously

for robust comparison of their regional metabolic profiles and their

bioenergetic differences.

Synaptosomes from Distinct Brain Regions have
Comparable Bioenergetics under Basal Conditions

Glycolysis and oxidative phosphorylation are the two major

energy-producing pathways in the cell [12]. Thus, we measured

whether there was differential usage of either bioenergetic pathway

in synaptosomes from distinct regions of the brain [21]. In the first

experiment, we supplied the synaptosomes with glucose as the

exogenous substrate, added the glycolytic inhibitor, 2-DG [16–18],

and tested whether glycolysis differed among synaptosomes in any

of the brain regions. Glycolysis was inferred by the extracellular

acidification rate (ECAR) when glucose is converted into lactic

acid (Figure 1B) [22]. Because glycolysis dominates ECAR [23],

we anticipated that it would decrease with 2-DG treatment

(Figure 1C, glycolysis). Indeed, the addition of 2-DG resulted in

comparable decrease of ECAR in all four regions of the brain

(Figure 1D,F). As judged by GC/MS, there were no consistent

intensity patterns among the glycolytic substrates or products,

implying that the intermediates of the glycolytic pathway in each

brain region were similar (Figure S1).

As a complementary approach, we supplied synaptosomes with

glucose and measured ECAR after blocking oxidative phosphor-

ylation with the addition of oligomycin (Oligo), an inhibitor of

ATP synthase (Figure 1B,C) [24]. Oligomycin treatment leads to

an increase in ECAR as the use of glycolysis increases to

compensate for the loss of ATP generation from oxidation

phosphorylation (Figure 1C, glycolytic reserve). ECAR doubled

in the STR, HIP, and CTX (Figure 1E,F), and increased

approximately 60% in the CBL (Figure 1E,F). Thus, with the

exception of the CBL, glycolytic activity was similar in neuronal

synaptosomes from each brain region under basal conditions.

Oxidative phosphorylation also did not distinguish regional

synaptosomes when glucose was the exogenous substrate. Actively

respiring MT consume oxygen as ADP is converted into ATP, and

the oxygen consumption rate (OCR) correlates with the activity of

the electron transport chain (Figure S2) [12,23,25]. However, in

the presence of glucose, neither ATP turnover nor proton leak

[25,26](defined in Figure 2A and Figure S2) distinguished

synaptosomes from the CBL, STR, CTX, and HIP

(Figure 2B,C). Inhibiting ATP synthase with oligomycin resulted

in a decrease in OCR, but the decrease was similar among regions

(Figure 2B,C). As measured by GC/MS, there were no region-

specific patterns for tricarboxylic acid (TCA) intermediates in the

brain extracts (Figure S3). Thus, purified synaptosomes from all

four regions were equally capable of substrate oxidation under

basal conditions, and had comparable precursors to do so.

The Majority of Mitochondrial Metabolism in Brain
Synaptosomes Arises in the Basal State from Oxidation of
Non-glycolytic Substrates

Synaptosomes in the four brain regions displayed similar

glycolytic activity and mitochondrial respiration under basal

conditions. To test whether glucose served as the primary energy

source, we supplied synaptosomes with exogenous glucose, but

blocked its utilization with 2-DG. Under these conditions, OCR

depends entirely on endogenous non-glycolytic substrates. We

anticipated that OCR would decrease, and the degree of the

decrease would reflect the dependence on glycolysis. However, the

decrease in OCR was unexpectedly modest in synaptosomes from

all four brain regions (Figure 2D). OCR decreased to roughly half

of its basal rate in the CBL, by only 30% in the STR and CTX,

and we observed no significant reduction in the HIP (Figure 2D).

The large residual OCR after the 2-DG block implied that most of

the ATP production in the basal state arose from oxidation of non-

glycolytic substrates. Although the OCR overall was similar

among the STR, CTX and HIP, blocking with 2-DG differen-

tiated the regions.

MT from Functionally Defined Brain Regions have
Signature Non-glycolytic Pools as Substrates for Energy
Production

To test whether and what types of non-glycolytic metabolites

might differentially contribute to region-specific metabolism, we

extended our GC/MS profiling to identify a broad range of

primary metabolites in the four regions of the normal brain (Table

S1 in File S1). Indeed, region-specific differences in non-glycolytic

substrates were evident by multivariate statistics (Figure 3).

We applied Hierarchical clustering analysis (HCA) using

Spearman rank correlation [27] and average linkage methods

[28] to evaluate the chemical classification of the region-specific

metabolic pools (Figure 3B). Since they are functionally distinct, no

one brain region can be taken as a ‘‘reference’’ point for the other

regions. Thus, we developed a three-pronged quantile-based

statistical strategy to identify significance of the region-specific

substrate pools from a global perspective. In the first step, we

pooled the metabolites from all four of the brain regions as a single

group. Second, to generate a ‘‘global Gaussian distribution’’ we

quantile-normalized the four groups of distribution to each other,

without a reference distribution (Figure S4) using an open source

software, geWorkbench [29]. In the third step, the region-specific

signal intensities were calculated relative to the global distribution

using Significance Analysis of Microarray (SAM) (Figure S5). The

Brain Regional Specificity
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relative increases and decreases were assigned as red (high) or blue

(low), respectively (Figure 4) (Figure S6, S7, S8, S9). Using this

approach, each region was considered as a distinct component of

the whole brain, and the unique features of the CTX, for example,

could be deduced without the need for multiple pair-wise

comparisons.

The region-specific metabolic pools were displayed using the

published strategy based on MetaMapp [30,31], a biochemical

graphing approach that sorts according to biochemical reaction

pair information and chemical similarity (Figure 4A). The

reconstructed network consisted of six unique expression modules:

fatty acids, steroids, carbohydrates, organics acids, amino acids,

and nucleic acids (Figure 4B). The red and blue metabolite

intensities in each brain region, which typically ranged from 2–6,

were superimposed to generate a metabolic map, as illustrated for

each brain region (Figure 4B) (enlarged with annotation in Figure

S6, S7, S8, S9).

Remarkably, each brain region had a distinct metabolic

signature (Figure 4B). For ease of comparison, we individually

magnified the six chemical groups from each region (Figure 4B)

and enlarged with annotation (Figure S6, S7, S8, S9), and directly

compared them in a visual table (Figure 5). For example, various

fatty acids were statistically higher in the STR and the HIP, were

lower in the CTX, and could not be distinguished as different

relative to the global distribution in the CBL (Figure 5) (Figure S6,

S7, S8, S9). The STR and HIP were, in many ways, similar, but

the STR was enriched in the pool size of steroids and nucleic acids

(Figure 5). A marked enrichment in amino acids and polyamines

characterized the CBL, without obvious changes in other chemical

groups (Figure 5). Although glucose is a requirement for brain

metabolism, the products of glucose metabolism were strikingly

region-specific, resulting in discrete pools of non-glycolytic

substrates as resources for energy production (Figure 5, Figure

S6, S7, S8, S9).

Non-glycolytic Substrates Serve as a Region-specific
Energy Source in Synaptosomes under Stress

Mitochondrial dysfunction confers a regional susceptibility to

neuronal toxicity [1–4]. Thus, we tested whether use of the non-

glycolytic pools conferred a region-specific response in mitochon-

drial metabolism in purified synaptosomes.

We artificially created an energy deficit by blocking oxidative

phosphorylation with fluoro-carbonyl cyanide phenylhydrazone

(FCCP) [32](Figure 2A and Figure S2). FCCP destroys the proton

gradient in MT, which fails to convert electron flow into ATP, and

OCR increases in response to the imposed stress (Figure 2A). The

rise in OCR after FCCP treatment (referred to as mitochondrial

spare respiratory capacity, SRC) reflects the maximum ability of

MT to maintain energy production in response to the stress [33]

(Figure 2A). OCR from STR, HIP, and CTX increased

approximately 3–6 fold with SRC being the highest in the HIP

(Figure 2B,C). The region-specific rise in OCR was reversible.

Treatment with antimycin A (AA) [34] a blocker of complex III

restored OCR to baseline, and all of the region-specific differences

Figure 1. Synaptosomes from distinct brain regions have comparable capacity for glycolysis under basal conditions. (A) Schematic
representation of the dissected regions of the brain for synaptosomal isolation. Cerebellum (CBL), hippocampus (HIP), striatum (STR), and cortex (CRT)
are indicated by color. (B) A simplified pathway for glucose metabolism. Glucose is converted to pyruvate and pyruvate is converted to lactate, which
is measured by the extracellular acidification rate (ECAR). (C) A schematic diagram defining the measurement of the glycolysis and glycolytic reserve
by ECAR. 2-DG is an inhibitor of the glycolytic pathway (blue diamonds) and oligomycin (Oligo) an inhibitor of ATP synthase (green circles). ECAR
decreases upon 2-DG addition and defines glycolytic activity. The remaining ECAR represents non-glycolytic acidification. The glycolytic reserve,
which is drawn upon during the oligomycin block, is obtained by complete inhibition of mitochondrial respiration with oligo. (D,E) Representative
glycolytic rates of brain regional ECAR under basal conditions and upon injections of 2-DG (D) and oligomycin (E). Each profile represents one
independent biological experiment analyzed in triplicate. Data are means 6 SEM (n= 3). The arrows indicate the injection of inhibitors. Three
independent experiments were performed to obtain quantification of glycolytic parameters presented in (F). (F) Changes in ECAR after addition of 2-
DG and oligo. Isolated synaptosomes from CBL, HIP, STR, and CRT exhibit low and comparable rates of glycolysis while the synaptosomes from CBL
exhibit lower glycolytic reserve relative to HIP, STR, and CRT. Color key is indicated. Three independent experiments were performed, and each was
performed with two mice that were analyzed in triplicate. Data are mean 6 SEM (n = 3). **P,0.0008 with one-way ANOVA and Fisher’s LSD.
doi:10.1371/journal.pone.0068831.g001
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disappeared (Figure 2B). These findings indicated that the

mitochondrial response to crisis was intrinsically different among

synaptosomes. While synaptosomes were equally capable of

substrate oxidation under basal conditions, the mitochondrial

response to energy crisis was region-specific even under the

condition of saturating glucose.

We tested whether non-glycolytic substrates supplied the energy

source during stress. Synaptosomes were treated with 2-DG

followed by addition of FCCP (Figure 6). Under these conditions,

glucose is excluded as a substrate for oxidative phosphorylation,

and OCR relies exclusively on endogenous non-glycolytic

substrates (Figure 6A). When both glycolysis and oxidative

phosphorylation were inhibited simultaneously for approximately

8 minutes (Figure 6B,C, 2-DG+FCCP, 8 minutes), OCR in the

HIP, STR and CTX increased substantially relative to basal state

or to 2-DG alone (Figure 6B,C, basal and +2-DG). Thus, the

region-specific compensation for the FCCP-induced energy deficit

did not depend on glycolysis under these conditions (Figure 6A).

Moreover, the rise in OCR in synaptosomes treated with both 2-

DG and FCCP displayed the same region-specific pattern as that

of 2-DG (Figure 6B,C) or FCCP (Figure 2B,C) alone. These

findings implied that the same pools of non-glycolytic substrates

were used in both the basal and stressed states. Since the majority

of ATP production was attenuated by the combined 2-DG and

FCCP block, OCR decreased by 16 minutes after addition of

FCCP, as the internal substrates were consumed (Figure 6B,C, 2-

DG+FCCP, 16 minutes). Thus, use of non-glycolytic pools in

synaptosomes conferred a region-specific response during crisis.

Discussion

It has been extraordinarily difficult to establish how glucose is

processed among brain regions, why glucose utilization in MT

differs among brain regions in the resting state, and the basis for

region-specific susceptibility in disease states. Our results provide

fundamental insight into these long-standing issues. First, we

demonstrate here that purified regional synaptosomes inherently

differ in their metabolism (Figures 1 and 2). Non-glycolytic sources

fuel the majority of OCR in the basal state of purified

synaptosomes, even when glucose is saturating (Figure 2). This

property predicts that glucose metabolism will differ among brain

regions, as observed. Second, glucose metabolism results in

discrete non-glycolytic pools that are ‘‘signatures’’ for the regions

Figure 2. Oxidation of non-glycolytic substrates is prominent in brain synaptosomes in the basal state. (A) Schematic diagram
delineating functional effects of electron transport chain inhibitors on mitochondrial respiration. A typical experiment involves measuring the OCR at
the resting state (basal respiration) followed by injection of oligo (inhibitor of ATP synthase), and the drop in the OCR represents ATP turnover.
Subsequent injection of FCCP dissipates the proton gradient and allows maximum respiration. The rise in OCR (relative to the basal respiration) upon
FCCP addition represents mitochondrial spare respiratory capacity (SRC). Finally, a cocktail of rotenone (Rot) and antimycin A (AA) are added to
completely disable the electron transport chain and inhibition of the total mitochondrial respiration. The remaining OCR after complete inhibition of
mitochondrial respiration represents non-mitochondrial respiration. The OCR difference between oligo- and Rot and AA-responsive OCR reflects
proton leak. (B) Representative profiles of brain regional OCR under basal conditions and upon injections of mitochondrial inhibitors. Each profile
represents one independent biological experiment analyzed in triplicate. Data are means 6 SEM (n= 3). The arrows indicate the injection of
mitochondrial inhibitors. Three independent experiments were performed to obtain quantification of mitochondrial functional parameters presented
in (C). (C) Quantification of mitochondrial functional parameters. Basal respiration, ATP turnover, and proton leak do not significantly differ among
the four regions, but SRC is the highest in the HIP, comparably moderate in the STR and CTX, and the lowest in the CBL. Three independent
experiments were performed. Data are means 6 SEM (n= 3). **P,0.0003 with one-way ANOVA and Fisher’s LSD. (D) Representative profiles of brain
regional OCR under basal conditions and upon injections of 2-DG. Each profile represents one independent biological experiment analyzed in
triplicate. Data are means6 SEM (n= 3). The arrows indicate the injection of the glycolytic inhibitor 2-DG. The dotted line indicates 100% loss of OCR.
Quantification of independent experiments is presented in Figure 6C.
doi:10.1371/journal.pone.0068831.g002
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and are poised to fuel distinct responses. The mapping provides

one of the first integrated views of glucose processing among brain

regions (Figure 5). Third, OCR is similar in synaptosomes from all

four brain regions in the resting brain, but heterogeneous

contributions from non-glycolytic sources are unmasked during

an energy crisis (Figures 2 and 6). Differences in basal metabolism

provide a plausible basis for priming region-specific responses to

an altered state.

Why distinct brain regions maintain different substrate pools is

unknown. In vivo, astrocytes provide lactate to neurons as a major

source of energy, and replenish the neuronal pool of glutamine

and recycle glutamate [35–37]. However, we find that metabolism

of purified synaptosomes is region-specific in the absence of

astrocytes, implying that their differential respiration depends on

internal non-glycolytic stores. MT simultaneously oxidize gluta-

mate, pyruvate, as well as metabolites of the TCA cycle such as

malate and succinate in activated neurons [38], but because

glycolytic activity in neurons is low, other mechanisms to increase

TCA intermediates are required. Thus, non-glycolytic stores are

poised to play key roles in restructuring metabolism to meet the

new demand. In cardiomyocytes, metabolic fluctuations stimulate

gene expression of glycolytic enzymes that enhance the efficiency

of glucose oxidation [39]. Specifically, expression of a new

hexokinase isoform shifts the intracellular distribution of the

enzyme from the cytosol to the MT. The translocation of

hexokinase to the MT increases the kinetic efficiency of glycolysis

and significantly increases ATP production and its delivery by

phosphocreatine shuttling. All of this occurs despite a reduction in

total glycolytic capacity in these cells. We have only incomplete

information on the transcriptomes or the proteomes that operate

in regions of the of mouse brain. However, such a model poises

‘‘signature’’ substrate pools as part of a highly adaptable glycolytic

remodeling network to discharge ATP, and to supply substrates for

maintenance of brain regions with different energetic competence

[40,41]. Differential substrate pools imply that metabolic restruc-

turing is tailored to meet the needs of each region.

To our knowledge, the GC-MS approach described here

includes the largest number of authentically identified metabolites,

and yields one of the first comprehensive snapshots of region-

specific brain metabolism on a global scale. The unique

‘‘signature’’ features of each brain region are obvious in the

images (Figure 5). The chemical grouping technique provides an

Figure 3. Partial least squared (PLS) statistics and clustering analysis of region-specific brain indicate differences in metabolomes.
(A) PC 1 (t1) and PC 2 (t2) shows the separation of the metabolome among four different brain regions. PC 1 (30.5% total explained variance)
discriminated metabolite profiles of STR and HIP from CRT and CBL. PC 2 (6.0% total explained variance) primarily separated clusters between STR
and HIP (n = 5 or 6). Red circle indicates 36S.E. (B) Hierarchical clustering analysis showing chemically/biochemically classifies metabolites clustered
according to different brain regions (n = 5 or 6). The color code; CBL: teal, HIP: blue, STR: red, CTX: light green.
doi:10.1371/journal.pone.0068831.g003
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immediate picture of not only the metabolites but also the

metabolic pathways that distinguish brain regions. For example,

fatty acid metabolism characterizes the HIP (Figure 5). Further-

more, our statistical approach maximizes efficiency of the analysis

by reducing the number of pair-wise comparisons among the four

brain regions from six to one. The approach provides a useful

baseline from which to evaluate any altered state (e.g., cancer,

diabetes, or other metabolic disorders), and is applicable to any

tissue.

The unique metabolic profiles generate testable hypotheses for

how distinct brain regions might function. For example, the basal

OCR of the CBL is similar to the other regions, yet the response of

cerebellar synaptosomes to stress is strikingly different. Indeed, the

GC-MS profiling reveals that the metabolic hallmark of the CBL is

a high abundance of amino acids, a signature that is not shared

with other brain regions (Figure 4, 5 and Figure S9). In the CBL,

the need for glucose oxidation to meet basal respiration is higher

(Figure 2D), but the ability of glycolysis to ‘‘fill-in’’ for oxidative

phosphorylation (Figure 1E) is more limited relative to the other

regions. From the viewpoint of bioenergetics, amines and amino

acids provide carbon skeletal backbones suitable for both glucose

and ketone bodies synthesis [42]. The high abundance of amino

acids increases the glutamine pool size [43], spermine and

spermidine are broken down to acetyl-CoA, and metabolism of

N-acetylaspartate (NAA) leads to eventual metabolic conversion of

NAA to a-ketoglutarate [44], all of which provide substrates that

can be directly used in the TCA cycle. Thus, the CBL has multiple

stable sources for ATP production, which by-pass glycolysis and

do not depend on the slow breakdown of fats.

Many other factors will contribute to region-specific neuronal

metabolism. Due to the large variation in glia-neuron ratios

among regions, we focused only on region-specific neuronal

metabolism. Thus, we cannot, as yet, precisely assign metabolites

to cell types within a brain region. In our initial stages, we have

limited the analysis to discrimination among well-defined brain

structures. Finer dissection or separation techniques will be needed

to distinguish, for example, the CA1 from the CA3 layers of the

HIP. Nonetheless, we find that basal metabolism and unique pools

of non-glycolytic substrates provide fundamentally different

abilities of regional synaptosomes to mount a response to energy

crisis. In disease states, we envision a model in which region-

specific susceptibility stems from metabolism of non-glycolytic

substrates, that limits the extent to which neurons respond to the

stress. Glucose levels vary daily before and after meals, are low

during a starvation [45], and are often diminished in disease states

[46–48]. Thus, substrate diversity is likely to provide an inherent

advantage in maintaining energetic consistency under variable

conditions.

Methods

Animals
We used C57BL/6 mice. All procedures involving animals were

performed in accordance with the National Institutes of Health

Guide for the Care and Use of Laboratory Animals. Protocols

were approved by the Lawrence Berkeley National Laboratories

Animal Welfare and Research Committee.

Preparation of Brain Regional Synaptosomes
Brain regional synaptosomes were isolated as described

previously [20,21] with slight modifications. Briefly, after rapid

decapitation using a guillotine, the mouse brain was quickly

Figure 4. Distinct brain regions harbor discrete ‘‘signature’’ pools of non-glycolytic substrates for energy production. (A) Schematic
representation of chemical classes grouping of metabolites from MetaMapp analysis. (B) Metabolic networks of biochemical reaction pairs (dark blue
edges) and chemical similarity (light blue edges) show the regulation of all identified metabolites in four brain regions. Blue = down regulated
metabolites, red = up regulated metabolites with a median false discovery rate,0.5% from SAM (n= 5 or 6). Ball sizes reflect magnitude of differential
metabolite expression. Metabolites that were not significantly different were left unnamed in order to keep visual clarity.
doi:10.1371/journal.pone.0068831.g004
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extracted, rinsed with fresh ice-cold homogenization buffer

(320 mM sucrose, 1 mM EDTA, 5 mM Tris, 0.25 mM dithio-

threitol, pH 7.4). The cerebellum, hippocampus, striatum and

cortex were obtained after immediate dissection on a homogeni-

zation buffer-filled petri dish laid on an ice bath. Dissected brain

regions were quickly transferred to a 15 mL pre-chilled Dounce

glass containing 1 mL (for striatum, hippocampus, and cerebel-

lum) or 3 mL (for cortex) of homogenization buffer and gently

homogenized with 8–10 up-and-down strokes. The homogenate

was centrifuged at 1,0006g for 10 minutes at 4uC. The

supernatant was carefully layered on a freshly prepared discon-

tinuous Percoll gradient of 3%, 10%, and 23% (from top to

bottom) and centrifuged at 32,5006g for 8 minutes at 4uC (JA-17

fixed angle rotor, Beckman). Synaptosomes were obtained as the

band between the 10% and 23% Percoll interface. The

synaptosomal fraction was then diluted in the homogenization

buffer and centrifuged at 15,0006g for 15 minutes at 4uC to

remove the Percoll solution and obtain the final synaptosomal

pellet. Protein concentration of the synaptosomal pellet was

determined using the Bio-Rad Bradford assay (BioRad Laborato-

ries).

Quality Control of Brain Regional Synaptosomes
To ensure quality and consistency of the brain regional

synaptosomes preparations, we instituted the following protocols.

All the four brain regions were processed from the same animal,

and the synaptosomes from each region were isolated in parallel

on the same day. Bioenergetic parameters from synaptosomes of

all four regions were measured together on the same instrument at

the same time using the same reagents in each run. Thus, any

prep-to prep variation was normalized. All measures were made in

at least three independent preparations. Data are never used

unless they were reproducible in three experiments. The

synaptosomal protein concentrations were determined each time

to track the consistence of preparation for each region. The same

amount of synaptosomes (6 mg/well) was plated in each experi-

ment, and we checked protein levels to ensure equal numbers from

each region. To further evaluate the viability and consistency, we

checked the isolated synaptosomes with Mitotracker DeepRed

staining to establish that the preparations were viable and the MT

were active. Using a plate reader, we observe no detectable

difference in MitoTracker DeepRed signal intensity in synapto-

somes among the four brain regions.

Figure 5. Magnified visual table of the observed six chemical classes in each region of the brain. The metabolic network is sub-
categorized according to the resultant network topology. The clustered sub-network provides unique expression pattern of each brain region.
Columns indicate six sub-clusters of the metabolic network and rows represent the four brain regions analyzed. Blue = down regulated metabolites,
red =up regulated metabolites at a median false discovery rate ,0.5% from SAM (n= 5 or 6). Ball sizes reflect magnitude of differential metabolite
expression. Metabolites that were not significantly different were left unnamed in order to keep visual clarity.
doi:10.1371/journal.pone.0068831.g005
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Measurement of Extracellular Acidification Rate (ECAR)
and Oxygen Consumption Rate (OCR)

ECAR and OCR were obtained by using a Seahorse XF96

Extracellular Flux Analyzer (Seahorse Bioscience, Billerica, MA)

[49]. Freshly isolated synaptosomal pellets were immediately and

gently re-suspended in the synaptosomal assay solution (SAS,

3.5 mM KCl, 120 mM NaCl, 1.3 mM CaCl2, 0.4 mM KH2PO4,

1.2 mM Na2SO4, 2 mM MgSO4, 15 mM D-glucose, and 4 mg/

ml BSA, pH 7.2 at 37uC) on ice. 150 mL suspensions of

synaptosomes (6 mg protein/well) were plated on a pre-chilled

Seahorse PS 96-well microplate (Seahorse Bioscience, Billerica,

MA) [49]. The plate was centrifuged at 3,2206g for 50 minutes at

4uC, subsequently incubated in 37uC (without CO2) for 15

minutes, and then transferred to the XF flux analyzer for

respiration measurement. The measurement cycle consisted of a

3 minutes mixing time and a 4 minutes measurement time. After

four basal measurements, 2 mg/mL oligomycin (inhibitor of ATP

synthase) or 100 mM 2-deoxy-glucose (2-DG) was injected and

three measurement cycles were performed. Subsequently, 4 mM

carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) (an

optimized concentration to give maximum respiratory capacity)

was injected followed by an addition of a cocktail of 2 mM

rotenone and 2 mM Antimycin A. Two measurement cycles were

performed for each compound injection. Each experimental point

is an average of a minimum of three replicate wells and each

experiment was performed with a minimum of three biological

replicates. In each individual experiment, two mice per group

were utilized.

GC-TOF MS Analysis for Metabolites
Following decapitation, the brain regions (cortex, striatum,

hippocampus, cerebellum) were isolated, snap-frozen with liquid

nitrogen, and freeze-dried until analysis [50,51]. Briefly, lyophi-

lized cells were disrupted using a single 5 mm i.d. steel ball,

followed by the addition of 0.75 mL extraction solvent of

methanol:isopropanol:water (3:3:2) and vortexing. After 5 min

centrifugation at 16,100 g, 0.70 mL extracts were collected and

concentrated to dryness for further analysis. A mixture of internal

retention index (RI) markers was made using fatty acid methyl

esters of C8, C9, C10, C12, C14, C16, C18, C20, C22, C24, C26,

C28 and C30 in chloroform at a concentration of 0.8 mg/ml (C8–

C16) and 0.4 mg/ml (C18–C30). One microliter of this RI

mixture was added to ten microliters of a solution containing

40 mg/ml of 98% methoxyamine hydrochloride (CAS No. 593-

56-6, Sigma, St. Louis, MO) in pyridine (silylation grade, Pierce,

Rockford, IL), and incubated at 30uC, 800 rpm for 90 min

(ThermoStat plus, Eppendorf North America Inc, San Diego CA).

Ninety microliters of MSTFA containing 1%TMCS (1 ml bottles,

Pierce, Rockford, IL) was added and shaken at 37uC for 30 min.

The derivatized sample was managed using a Gerstel automatic

liner exchange system with multipurpose sample MPS2 dual rail

controlled by Maestro software for injection of the 0.5 ml sample to

a Gerstel CIS cold injection system (Gerstel, Muehlheim,

Figure 6. Energy deficits induce region-specific OCR that depends on use of non-glycolytic substrates in synaptosomes. (A)
Schematic representation of experimental design for bioenergetics analysis of mitochondrial respiration on exogenous glucose and endogenous
non-glycolytic substrates on various conditions. (B) Representative profiles of brain regional OCR under basal conditions and upon injections of 2-DG
and FCCP. Each profile represents one independent biological experiment analyzed in triplicate. Data are means 6 SEM (n= 3). The arrows indicate
the injection of the inhibitors. Three independent experiments were performed to obtain quantification of OCR presented in (C). (C) Synaptosomal
OCR under basal condition and upon inhibitions with 2-DG and FCCP. Upon inhibition with 2-DG, glycolysis is inhibited and energy arises only from
endogenous pyruvate and non-glycolytic substrates. OCR is highest in the hippocampus, moderate in the striatum and cortex, and the lowest in the
cerebellum. Upon FCCP injection after 2-DG, the same OCR pattern is observed. The OCR increase was short-lived and decreased at approximately 16
minutes upon FCCP treatment. Three independent experiments were performed. Data are means 6 SEM (n= 3). *P,0.05, **P,0.01 with one-way
ANOVA and Fisher’s LSD.
doi:10.1371/journal.pone.0068831.g006
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Germany). The injector was operated in splitless mode; the split

vent was opened after 25 s. Samples were injected into the 50uC
injector port, which was ramped to 250uC in 12uC/min and held

for 3 min. Volatilized metabolites were separated using an Agilent

6890 gas chromatograph (Santa Clara, CA), managed by Leco

ChromaTOF software (St. Joseph, MI). The GC was equipped

with a 30 m long, 0.25 mm i.d. Rtx5Sil-MS column (Restek,

Bellefonte, PA, USA), 0.25 mm 5% diphenyl film and additional

10 m integrated guard column). The temperature was held at

50uC for 1 min and then ramped at 20uC min21 to 330uC where

it was retained for 5 min. Mass spectrometry was performed by a

Leco Pegasus III time of flight mass spectrometer (St. Joseph, MI)

with 250uC transfer line temperature, electron ionization at

270 eV and an ion source temperature of 280uC. Mass spectra

were acquisitioned from m/z 85 to 500 at 17 spectra s21 and

1850 V detector voltage. Result files were preprocessed directly

after data acquisition and stored as ChromaTOF-specific *.peg

files, as generic *.txt result files and additionally as generic ANDI

MS *.cdf files [31,50]. Metabolite identifications were made based

on spectral similarity and retention time index using BinBase and

were matched against the Fiehn mass spectral library of ,1,200

authentic metabolite spectra using retention index and mass

spectrum information or the NIST05 commercial library (http://

fiehnlab.ucdavis.edu/Metabolite-Library-2007/) [51]. Identified

metabolites were reported if present within at least 50% of the

samples per study design group [52].

Statistical Data Analysis
Brain tissues were isolated and extracted (cerebellum: hippo-

campus : striatum : cortex, 0.5:1:1:0.1 volume). We normalized the

data set by using quantile normalization method (see text) [53,54],

which is frequently used in microarray data analysis, to transform

the identical distributions of datasets (Figure S4). Following the

normalization procedure, we validated the region-specific metab-

olites using two independent approaches referred to as statistic one

and statistic two. In the first approach, we evaluated the individual

metabolites that deviated from the global Gaussian distribution

using two group-Significance Analysis of Microarray (SAM)

(statistics one, Figure S5 and Table S2 in File S1). Each brain

region was independently evaluated for statistically different

metabolites to form a profile for the region. This analysis provided

comparison of the unique metabolic pool in each region. In

statistics two, metabolites in any one region were aligned based on

intensity, and the top 35 most significantly different metabolites

were selected based on SAM [55], built in MultiExperimental

Viewer (MeV 4.8.1 version) [56], generating a pool of metabolites

that were significantly higher or significantly lower than the

average (Table S3 in File S1). The analysis creates a list of

metabolites with a threshold in which (0%,median false discovery

rate ,0.5%). The analysis resulted in the overview of the basal

expression pattern of endogenous metabolites, indicated by the

‘‘out bounds’’ metabolites that characterized a particular region

(Figure S5). The analyses were crosschecked for overlap to provide

insight into the degree of false positives. Interestingly, the

membership detected by the analysis in statistics one and statistics

two was very similar, indicating that the metabolic features were

robust (84% identity). In a one-way ANOVA, group A might be

distinct from Group B but similar to group D, and expressing this

relationship graphically is difficult. Thus, for visualization of

significant metabolites, we did not need to express the fold change

and p-value based on one specific brain region. The strategy

provided statistical significance without the need for relative

comparisons. The method also facilitated the graphical efficiency

in the network structure.

For general statistics, the analyses were performed on all

continuous variables using the Statistica software vs. 8.0 (StatSoft,

Tulsa OK). Univariate statistics for multiple study design classes

was performed by t-tests and one-way analysis of variance. Data

distributions were displayed by box-whisker plots, giving the

arithmetic mean value for each category, the standard error as box

and whiskers for 1.96 times the category standard error. Clustering

analysis was performed by hierarchical clustering analysis within

Multi Experimental Viewer (TIGR) and multivariate statistics was

performed by supervised partial least square (PLS) statistics within

the Statistica data miner 8.0 vs software. The metabolic features of

each brain region were separated by the combination of two linear

discriminant vectors by Partial Least Squares (PLS) analysis.

Vectors in the supervised linear dimension were ordered by the

degree of variance in metabolite abundance. Vector 1 (30.5% total

explained variance) discriminated metabolite profiles of STR and

HIP from CTX and CBL (Figure 3A), while vector 2 (6.0% total

explained variance) primarily separated clusters between STR and

HIP.

Metabolic Network
The metabolic network was constructed following methods

developed by Fiehn and coworkers [30]. Briefly, Molefile [57]

encoded chemical structures of all the identified metabolites were

retrieved from PubChem Compound database [58] using com-

pound identifiers (CIDs) and the NCBI Batch Entrez utility [59].

The retrieved structures were clustered using an online structural

clustering tool at PubChem website. The tool uses Tanimoto

chemical similarity co-efficient [60](range 0.0 to 1.0, where high

score means high similarity between two metabolites) for similarity

computation. The similarity matrix and the list of associated

metabolites that were found in the KEGG biochemical database

were incorporated as an input into the MetaMapp software for

generation of Cytoscape [61] network files in simple interaction

format (.SIF). A threshold of 0.7 Tanimoto score was used to

define the similarity cut-off among metabolites. A KEGG Rpair

[62] reaction network graph was created using a single-metabolic

step neighbor finding algorithm in MetaMapp. The final network

graphs were imported into Cytoscape and merged into a single

network graph. Results of differential statistics were converted into

Cytoscape node attribute files, and were imported into Cytoscape.

The graph was visualized using an organic layout algorithm in

Cytoscape. Fold change was mapped to node size, and direction

(up/down) was visualized to node color (red/blue resp.). Metab-

olites not passing the statistical criteria remained invisible size.

Metabolic mapping and its visualization are provided in supple-

ment section as Cytoscape session file.

Supporting Information

Figure S1 GC/MS profiles of glycolytic intermediates.
The abundance of glycolytic intermediates among four different

brain regions is measured using gas-chromatography mass

spectrometry (GC/MS) (n = 5 or 6) (cerebellum: till, hippocampus:

blue, striatum: red, cortex: light green). Data are displayed by box-

whisker plots, giving the arithmetic mean for each category, the

standard error as a box, and whiskers for 1.96 times the category

standard error to indicate the 95% confidence intervals.

(TIF)

Figure S2 Simplified diagram of glycolysis and oxida-
tive phosphorylation and inhibitors. Glycolysis converts

glucose to cytosolic pyruvate, which is either converted to lactic

acid or enters the mitochondrial matrix as a substrate for oxidative

phosphorylation, measured as oxygen consumption rate (OCR,
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red). Rotenone, antimycin A, and oligomycin are the inhibitors of

Complex I, Complex III, and ATP synthase, respectively. Fluoro-

carbonyl cyanide phenylhydrazone (FCCP) is an ionophore, which

allows re-entry of the protons into the mitochondrial matrix and

dissipates the proton gradient. OCR is determined by using the

Seahorse XF Flux Analyzer.

(TIF)

Figure S3 GC/MS profiles of TCA cycle intermediates.
The abundance of TCA cycle intermediates among four different

brain regions is measured using gas-chromatography mass

spectrometry (GC/MS) (n = 5 or 6) (cerebellum: till, hippocampus:

blue, striatum: red, cortex: light green). Data are displayed by box-

whisker plots, giving the arithmetic mean for each category, the

standard error as a box, and whiskers for 1.96 times the category

standard error to indicate the 95% confidence intervals.

(TIF)

Figure S4 Mass spectrometry data transformation. (A)
The distribution of metabolite intensities after logarithmic

normalization. (B) The distribution of metabolite intensities

following quantile normalization. X and Y-axis indicate frequency

and normalized abundances of metabolites respectively.

(TIF)

Figure S5 Identification of metabolites with significant
differences in abundance using Significance Analysis of
Microarray. Scatter plot of the observed relative difference

versus the expected relative difference. The solid line indicates the

line for the condition, where the observed relative difference is

identical to the expected relative difference. The two dotted lines

display the region within +/2 delta units from the ‘‘observe-

d = expected’’ line. Delta is a vertical distance from the solid line of

slope 1. The metabolites whose plot values are represented by

black dots are regarded non-significant, those colored red have

positive significance, and the green ones have negative signif-

icance.

(TIF)

Figure S6 Relative pool size of primary metabolites of
the cortex region. The metabolic network shows relative

abundance of primary metabolites of the cortex compared to

those of other brain regions. Blue = down regulated metabolites,

red = up regulated metabolites at a median false discovery rate

,0.5% from SAM (n = 5 or 6). Ball sizes reflect magnitude of

differential metabolite expression. Metabolites that were not

significantly different were left unnamed in order to keep visual

clarity.

(TIF)

Figure S7 Relative pool size of primary metabolites of
the hippocampus region. The metabolic network shows

relative abundance of primary metabolites of the cortex compared

to those of other brain regions. Blue = down regulated metabolites,

red = up regulated metabolites at 0%,median false discovery rate

,0.5% from SAM (n = 5 or 6). Ball sizes reflect magnitude of

differential metabolite expression. Metabolites that were not

significantly different were left unnamed in order to keep visual

clarity.

(TIF)

Figure S8 Relative pool size of primary metabolites of
the striatum region. The metabolic network shows relative

abundance of primary metabolites of the cortex compared to those

of other brain regions. Blue = down regulated metabolites,

red = up regulated metabolites at 0%,median false discovery

rate ,0.5% from SAM (n = 5 or 6). Ball sizes reflect magnitude of

differential metabolite expression. Metabolites that were not

significantly different were left unnamed in order to keep visual

clarity.

(TIF)

Figure S9 Relative pool size of primary metabolites of
the cerebellum region. The metabolic network shows relative

abundance of primary metabolites of the cortex compared to those

of other brain regions. Blue = down regulated metabolites,

red = up regulated metabolites at 0%,median false discovery

rate ,0.5% from SAM (n = 5 or 6). Ball sizes reflect magnitude of

differential metabolite expression. Metabolites that were not

significantly different were left unnamed in order to keep visual

clarity.

(PDF)

File S1 Contains: Table S1, S2, S3.

(XLSX)
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