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Background: Glycine is a dietary non-essential amino acid that is low in obesity and
increases following bariatric surgery. However, the exact mechanism responsible remains
unclear and it is unknown whether hypoglycinemia is a cause or consequence of
insulin resistance.

Objective: Using multiple isotopically labeled tracers, we aimed to determine the
underlying kinetic changes responsible for hypoglycinemia in obesity by: 1) Comparing
glycine kinetics between participants with morbid obesity (BMI ≥ 32.5 kg/m2) to those with
healthy weight (BMI < 25 kg/m2), and 2) Comparing glycine kinetic changes in participants
with morbid obesity after bariatric surgery.

Methods: [1,2-13C2] glycine, [2,3,3-
2H3] serine, and [2H5] phenylalanine were infused to

compare the glycine kinetic parameters between 21 participants with morbid obesity and
21 controls with healthy weight. Participants with morbid obesity then underwent bariatric
surgery and 17 were re-studied 6 months later. Data were analyzed by non-parametric
methods and presented as median (interquartile range).

Results: Compared to controls, participants with morbid obesity had significantly lower
plasma glycine concentrations at 163 (153-171) vs. 201 (172-227) µmol/L and
significantly reduced de novo glycine synthesis rate at 86.2 (64.5-111) vs.124 (103-
159) µmol·kg LBM-1·h1, p < 0.001. Following surgery, body weight and insulin resistance
decreased and this was accompanied by significant increases in plasma glycine
concentration to 210 (191-243) µmol/L as well as the de novo glycine synthesis rate to
127 (98.3-133) µmol·kg LBM-1·h-1, p < 0.001 vs. baseline.
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Abbreviations: 3-PG, 3-phosphoglycerate
Branched-chain amino acids; GSH, glutat
Assessment for Insulin Resistance; GCS,
Model Assessment for Insulin Resistance
body mass; MMTT, mixed-meal tolerance
SHMT, Serine hydroxymethyltransferase.
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Conclusion: Hypoglycinemia in participants with morbid obesity was associated with
impaired de novo glycine synthesis. The increase in plasma glycine concentration and de
novo glycine synthesis plus the marked improvement in insulin resistance after bariatric
surgery suggest that hypoglycinemia may be secondary to impaired glycine synthesis
because of obesity-induced insulin resistance.

Clinical Trial Registration: [https://tinyurl.com/6wfj7yss], identifier [NCT04660513].
Keywords: morbid obesity, bariatric surgery, de novo glycine synthesis, insulin resistancE, stable-isotope tracers,
metabolic flux, substrate kinetics, glycine
INTRODUCTION

Obesity is a risk factor for insulin resistance and is associated
with disturbances in the metabolism of not only glucose and
lipids, but also of certain amino acids. Branched-chain amino
acids (BCAAs), phenylalanine, and tyrosine are among the
commonly reported amino acids with elevated plasma
concentrations in individuals with obesity (1). Glycine, by
contrast, has a lower plasma concentration in patients with
obesity compared to those with a healthy weight (2) (3, 4).
Higher plasma concentration of BCAAs in obesity has been
attributed to either accelerated flux from protein breakdown (5,
6) or dysregulated BCAA clearance (7–9). However, the reasons
why plasma glycine concentration is decreased in obesity
constitute a metabolic enigma.

Compared to BCAAs, glycine is a nutritionally non-essential
amino acid. This means that the human body can obtain its
glycine requirement from dietary intake and through
endogenous de novo synthesis (10). Yet, blood glycine
concentration is lower in obesity, which is a state of
overnutrition. At the same time, glycine is required in large
quantities by the human body for the biosynthesis of
physiologically important biomolecules, maintenance of
oxidative and detoxification defenses, and growth and
development (11, 12). Since obesity is a state of heightened
metabolic demand, plasma glycine concentration can be low due
to an increase in glycine catabolism or the diversion of glycine to
utilization pathways (3, 4). However, the underlying kinetic
changes in the metabolic pathways responsible for obesity-
associated hypoglycinemia have not been well studied (3, 4).

Insulin resistance is the primary driver in the pathogenesis of
type 2 diabetes, and weight reduction remains the primary method
to lower insulin resistance in individuals with obesity. However,
conventional lifestyle interventions often fail in the real world (13),
and weight-loss medications can result in undesirable side effects
(14). Bariatric surgery is the most effective treatment for
individuals with morbid obesity, and patients also benefit from
significant improvements in insulin resistance, diabetes control,
; AUC, Area under the curve; BCAAs,
hione; HOMA-IR, Homeostatic Model
glycine cleavage system; Homeostatic
; IE, isotopic enrichment; LBM, Lean
testing; NOD, non-oxidative disposal;
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and cardiovascular health (15). That said, not all patients are
willing or suitable to undergo surgery. Therefore, a safe, effective,
and well tolerated treatment against insulin resistance is urgently
needed. Plasma glycine concentration correlates inversely with
insulin resistance, and it has been speculated that the lower plasma
glycine concentration in individuals with obesity worsens insulin
resistance. Conversely, correcting hypoglycinemia may improve
insulin resistance (3, 16). Hence, glycine-based treatment could be
explored as a novel alternative or adjunctive therapy against
insulin resistance.

To develop effective glycine-based treatments, there is a need to
understand why glycine metabolism in dysregulated in obesity. If
glycine “deficiency” is secondary to the body’s inability to synthesize
glycine, then hypoglycinemia could be corrected through simple
measures such as dietary supplementation. Conversely, if glycine
deficiency is due to accelerated glycine utilization by catabolic
pathways, an alternative approach to increase glycine availability
will be needed as glycine administered exogenously may be utilized
without increasing its availability for the biosynthesis of
physiologically/metabolically important biomolecules. Currently, it
is debatable whether obesity associated hypoglyciemia is a cause or
consequence of insulin resistance (3, 4). Plasma glycine increases
after bariatric surgery, returning to values within the normal range
by 6-months post-surgery (17, 18). By studying the glycine
metabolic pathways associated with the post-surgery increase in
plasma glycine, we can better understand the relationship between
abnormal glycine metabolism and insulin resistance and be more
informed regarding the therapeutic potential of glycine-
based treatment.

Our study had two main objectives: 1) to identify the glycine
metabolic pathways that are dysregulated in obesity, and 2) to
quantify the changes in these pathways when plasma glycine
increases after bariatric surgery. For the first objective, we infused
multiple isotopically labelled tracers to compare the rates of
glycine flux, its oxidation, de novo synthesis, release from protein
breakdown, and rate of disposal between participants with
morbid obesity and participants with healthy weight (controls).
As these kinetic parameters are the determinants of plasma
glycine concentration, the differences between participants with
morbid obesity and controls would allow us to identify the
glycine metabolic pathways that are dysregulated by obesity.
For the second objective, the participants with morbid obesity
underwent bariatric surgery, and the glycine kinetic
measurements were repeated 6-months post-surgery. This
June 2022 | Volume 13 | Article 900343
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allowed us to confirm that these pathways were initially
dysregulated in the obese state and to examine the temporal
relationship between glycine metabolism and insulin resistance.
METHODS

Study Participants
This study received approval from the SingHealth Centralized
Institutional Review Board (CIRB Ref: 2018/2714), and all
participants provided written informed consent. We recruited two
groups of participants (n = 21 in each group). The first group
consisted of individuals with morbid obesity who were scheduled
for bariatric surgery, while the second group had individuals with
healthy weights. Participants with morbid obesity were recruited
from patients attending the Singapore General Hospital’s obesity
clinic who were scheduled for bariatric surgery. They were recruited
if they were between 21- and 65-years and had a BMI ≥ 32.5 kg/m2

with obesity-related complications. They were excluded if received
insulin treatment, consumed excessive alcohol (> 1drink/day for
females or > 2 drink/day for males), received systemic corticosteroid
treatment, or had existing cardiovascular, kidney, or liver disorders.
Individuals with healthy weight (BMI < 25 kg/m2) were recruited
from our healthy volunteer database. These participants were age-
and sex-matched and excluded if they had diabetes mellitus or any
significant chronic medical illness. The full list of inclusion and
exclusion criteria is listed in Supplementary Table 1.

At baseline, all participants underwent metabolic studies
consisting of mixed-meal tolerance testing (MMTT), body
composition analysis, and stable-isotope tracer infusion studies.
As part of routine medical care, all participants with morbid
obesity were seen by a dietician, and they were given dietary
advice to reduce total energy intake by ~ 500 kcal/day while
maintaining a balanced diet with 55% energy from carbohydrate,
15% from protein and 30% from fat. Participants with healthy
weight did not receive any nutritional advice and were asked to
maintain their habitual diet.

Participants with morbid obesity then underwent bariatric
surgery and those who remained in the study were invited to
returned at 6 months to evaluate the post-surgery changes in
glycine kinetics and related metabolic parameters. Post-surgery
dietary management was determined by the dietician and was in
accordance with standard clinical guideline (19). Dietary energy
requirements were individualized based on the subject’s post-
surgery weight and estimated using the Harris-Benedict equation.
Subjects were asked to consume adequate protein from healthy
sources with a target of at least 1 g/kg/day, avoid consumption of
simple carbohydrates, and increase the consumption of food rich
in dietary fibers. In addition, subjects were prescribed elemental
calcium 1000 mg/day, Vitamin D3 1000 IU/day, multivitamin
tablets 2 capsules/day, and elemental iron 100 mg/day.

Screening
All participants underwent a standard medical examination,
anthropometric measurements, and blood sample collection
after an 8-hour overnight fast. Screening blood test included
Frontiers in Endocrinology | www.frontiersin.org 3
Participants who fulfilled the recruitment criteria were then
asked to return for the stable-isotopes infusion study on a
separate day. Participants were also given a food diary to
record their food intake prospectively for 5-days before their
study visit, and the recordings were verified by a single clinical
research coordinator. Total energy and macronutrient intakes
were analyzed based on the local food database using the nutrient
analysis software (Dietplan7, Frestfield Software, UK).

Mixed-Meal Tolerance Testing
MMTT was performed to calculate indices of insulin sensitivity.
During MMTT, a liquid meal (Ensure©Plus, Abbott Nutrition)
was given at 6 kcal/kg (max 360 kcal). The liquid meal consisted
of approximately 30% of energy from fat, 15% energy from
protein, and 55% energy from carbohydrates. Blood samples
were collected before and at 30, 60, 90, and 120 minutes after
MMTT for plasma glucose and insulin measurements.

Body Composition
Lean body mass (LBM), fat-free mass (FFM), and fat mass were
measured using dual-energy X-ray absorptiometry (Hologic
Discovery Wi densitometer, Hologic, Inc, Massachusetts, USA).

Stable-Isotope Infusion Protocol
Stable isotope tracers: [1,2-13C2] glycine (99 atom% 13C),
[2,3,3-2H3] serine (98 atom% 2H), [2H5] phenylalanine (98
atom% 2H), and NaH13CO3 (99 atom% 13C) were purchased
as sterile and pyrogen free compounds (Cambridge Isotope
Laboratories, MA), and reconstituted within 24-hours of
the infusion.

Participants were asked to maintain their usual dietary habits
and physical activity during the study period. They were asked to
refrain from coffee, smoking, alcohol intake, and vigorous
exercise (more than 1 hour of high-intensity physical activity)
during the 24-hour before the study visit. To further limit
variability in the duration of fasting and physical activity, all
participants were admitted on the evening before the study visit
and ate dinner prepared by the hospital’s kitchen (meal energy
composition: 55% from carbohydrate, 33% from fat %, and 15%
from protein). Participants subsequently fasted from 10.00 PM
until the completion of the study protocol.

Following an 8-h overnight fast, stable isotope tracers were
infused as depicted in Figure 1. Two intravenous blood cannulas
were first inserted on opposite arms: one for the infusion of
tracers and the other for blood draws. A hand warmer was used
to arterialize the venous blood collected. Fasting blood samples
were collected for metabolite analyses and for background
isotopic enrichments (IEs) of glycine, serine and phenylalanine.
Breath samples were also collected for background IE of carbon
dioxide. A bolus dose of NaH13CO3 (4 umol·kg FFM-1) was then
injected to prime the bicarbonate pool with H13CO3 followed by
a primed-constant infusion of [13C2] glycine (8 μmol·kgFFM-1, 8
μmol·kgFFM-1·h-1) for the next 7-hours. At the third hour of the
infusion, intravenous primed-constant infusions of [2H3] serine
(4 μmol·kgFFM-1, 4 μmol·kgFFM-1·h-1) and [2H5] phenylalanine
(4 μmol·kgFFM-1, 4 μmol·kgFFM-1·h-1) were started and
maintained for the next 4 hours. Additional blood and breath
June 2022 | Volume 13 | Article 900343
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samples were taken simultaneously hourly from the 4th to 6th

hours, then every 15 minutes during the last hour of the infusion
(Figure 1). Carbon dioxide exhalation rate (VCO2) was
measured using an indirect calorimeter (Quark RMR, Cosmed)
between the 5.5 and 6th hour of the infusion.

Sample Collection
Blood samples collected during screening were dispatched
immediately for analysis at the clinical laboratory. Samples
collected during the stable-isotope tracer studies were
stored for batch analysis. The samples were first collected into
pre-chilled EDTA tubes, immediately centrifuged at 4°C, and the
plasma stored at -80°C. Breath samples were collected in a breath
bag with a one-way valve, immediately transferred to a 10 mL
evacuated glass tube, and stored at room temperature.

Biochemical Analysis, Insulin, and Amino
Acid Concentrations
Biochemical analyses were conducted at the Singapore General
Hospital Clinical Biochemistry Laboratory, which is accredited by
the College of American Pathologists. Standard biochemistry
(creatine, liver panel, lipid profile, and insulin) were measured
using immunoassay method (Abbott Architect i200; Abbott
Diagnostics). HbA1c was measured using immunoassay (Roche
Cobas c501 analyzer; Roche Diagnostics); this method is accredited
by the National Glycoprotein Standardization Program and
standardized to the Diabetes Control and Complications Trial
assay. Plasma glucose concentration was measured using the
glucose oxidase method (YSI Glucose Analyzer; YSI). Plasma
amino acid concentrations were measured by ultra-performance
liquid chromatography (ACQUITY H-Class System,
Waters Corporation, MA, USA) using pre-column derivatization
with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (Waters
AccQ×Tag™ assay kit, MA, USA) using norvaline (Sigma Aldrich,
MO, USA) as internal standard. Plasma samples were
deproteinized with 10% sulfosalicylic acid dihydrate, and
Frontiers in Endocrinology | www.frontiersin.org 4
derivatized using AccQ-Fluor™ derivative reagent. The
derivatized AA were separated using gradient based ACQUITY
UPLC BEH C18 column (130 Å, 1.7 μM, 2.1 mm x 150 mm) with
ACQUIT UPLC Tunable UV (TUV) detector (6).

Isotopic Enrichment (IE)
The IE of breath carbon dioxide was measured by isotope ratio
mass spectrometry on a ThermoQuest Finnigan Delta + XL IRMS
coupled with Gasbench-II. The plasma glycine, serine and
phenylalanine isotopic enrichments were measured by liquid
chromatography-tandem mass spectroscopy (LC-MS/MS).
Briefly, plasma glycine, serine, and phenylalanine were converted
into their DANS [5-(dimethylamino)-1-napthalene sulfonamide]
derivatives and analyzed using a Kinetex C18 2.6μ 100 × 2.1 mm
column (Phenomenex, Torrance, CA) on a triple quadrupole mass
spectrometer (TSQ Vantage; Thermo Scientific, San Jose, CA),
equipped with a HESI (heated-electrospray ionization) source, a
Accela pump (Thermo Scientific) and a Thermal PAL autosampler
(Thermo Scientific). The ions were then analyzed by SRM (selected
reaction monitoring) mode. The transitions observed were
precursor ions m/z 309, 310, and 311 to product ion m/z 170 for
glycine, precursor ion m/z 339, 340, 341, 342 to product ion m/z
170 for serine and precursor ion m/z 399 and 404 to product ion
m/z 120 and 125 for phenylalanine. Instrumental control, data
acquisition, and analysis were performed by the XCalibur (version
2.1) software package (Thermo Scientific).

Calculations
Insulin Resistance
Insulin resistance was calculated based on the Homeostatic
Model Assessment for Insulin Resistance (HOMA-IR) (20),

fasting   glucose   mmol=L  ð Þ     x   fasting   insulin   mU=mLð Þ
22:5

Insulin sensitivity was calculated using post-MMTT glucose
and insulin values as the Matsuda index (21).
FIGURE 1 | Schematic diagram of the stable-isotope infusion protocol for the measurement of glycine and serine kinetics.
June 2022 | Volume 13 | Article 900343
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10, 
fasing   glucose   mg=dL½ �   x   fasting   insulin   mU=mL½ �  ð Þ(MMTT  mean   glucose   mg=dL½ �

  x  MMTT  mean   insulin     mU=mL½ �   )

s

The area under the curves (AUCs) for glucose and insulin
following MMTT were also quantified using the trapezoidal rule.

Total Glycine or Serine Flux (Q)
Total glycine or serine flux (Q) represent turnover rates of
glycine (QGly) or serine (QSer) and was calculated using the
standard isotope dilution equation:

Total QGly or Ser   =   Ei=Ep
� �

    x I

Where Ei is the isotopic enrichment of the infused [13C2] glycine
or [2H3] serine tracer, Ep is the plateau isotopic enrichment of M
+2 glycine or M+3 serine in plasma, and I is the infusion rate of
the glycine or serine tracer. Endogenous glycine or serine flux
was derived by subtracting the tracer infusion rate from total
flux. The description of substrate flux in this article will refer to
endogenous flux unless stated otherwise. Kinetic parameters
were normalized to total body weight (mmol·kg-1·h−1) and
LBM (mmol·kgLBM−1 ·h−1). Interpretation of kinetic
parameters was the same regardless of how the data are
expressed. Hence, kinetic data were presented in the main
body of the paper as mmol·kg LBM−1 ·h−1 and in the
supplemental files as per total body weight (mmol·kg-1·h−1).

Glycine Oxidation
Whole-body glycine oxidation was calculated based on the rate
of 13CO2 excretion following constant infusion of [13C2] glycine
tracer from the following equation:

Glycine Ox = VCO2 x ECO2 x 44:6 x 60ð Þ= Weight x 0:78 x EGly M+2 x 2
� �

Where VCO2 is the rate of CO2 exhalation (ml/min), ECO2 is the
increase in isotopic enrichment over baseline of carbon dioxide
in breath at steady state, and 0.78 corrects for bicarbonate that is
not excreted during the experiment (22). EGly is the

13C (M+2)
isotopic enrichment of plasma glycine. The terms 44.6 and 60
convert mL/min to mol/h; and the term 2 compensates for the
formation of two 13CO2 molecules from the oxidation of one
[13C2]-glycine molecule.

Glycine Non-Oxidative Disposal (NOD)
Glycine NOD represents the rate of glycine exiting the metabolic
pool to enter proteins and biomolecules syntheses and
conjugation pathways. It was calculated by subtracting the rate
of glycine oxidation from total QGly:

Glycine NOD = Total QGly −  Gly Ox

De Novo Glycine or Serine Synthesis
During fasting, the flux of a dietary non-essential amino acid is
comprised of its release from whole-body protein breakdown
plus its de novo synthesis. Thus, de novo synthesis of glycine or
serine was estimated by subtracting the contribution of whole-
body protein breakdown from endogenous glycine or serine flux
(End QGly or Ser).
Frontiers in Endocrinology | www.frontiersin.org 5
De novo glycine or serineð Þsynthesis =  End QGly or Ser −  PBGly or Ser

where PBGly or Ser represent the flux of glycine or serine from
whole-body protein breakdown (calculated below). This was
estimated by multiplying QPhe by 1.48 for glycine and 1.08 for
serine, representing the estimated ratio of glycine or serine to
phenylalanine released during whole-body protein breakdown.
Our calculation takes into account amino acid flux from not only
skeletal muscles but also from collagen and other organs, based
on their relative contribution to whole-body protein turnover
and the average content of glycine and serine per 100g of protein
(23–25). The inclusion of amino acid flux from non-skeletal
muscle organs is important as every 3rd molecule of collagen is a
glycine molecule, and collagen makes up 30% of whole-
body protein.

Whole-Body Protein Breakdown
Phenylalanine is not synthesized endogenously; hence,
phenylalanine flux during fasting was used to estimate whole-
body protein breakdown as follows:

QPhe = I x  Ei=Ep Phe
� �

− 1
� �

Where Ei and Ep represent phenylalanine isotopic enrichment in
the infusate and plasma, respectively. I is the tracer infusion rate,
and the term -1 corrects for the contribution of the tracer
infusion to the flux.

Serine Hydroxymethyltransferase (SHMT) Flux
Glycine and serine metabolism are closely linked through the
interconversion of both amino acids by the enzyme SHMT. Both
glycine synthesis from serine (QSer->Gly) and serine from glycine
(QSer->Gly) contribute significantly to their de novo synthesis (12,
26, 27). QSer->Gly was estimated by monitoring the transfer of 2H
label from the M+3 serine tracer to the metabolic product M+1
glycine:

QSer−>Gly =  TotalQGly x  EGly M+1= ESer M+3

� �
Where ESer M+3 is the IE of the infused [2H3] serine tracer in
plasma and EGly M+1 the IE of glycine derived from [2H3] serine
in plasma.

Similarly, serine can be synthesized from glycine through
SHMT either: 1) directly from glycine, producing M+2 serine
from the [13C2] glycine tracer, or 2) indirectly to produce M+1
serine after the [13C2] glycine tracer is first converted to 5,10-
methylenetetrahydrofolate (5,10-13CH2-THF) via the glycine
cleavage system (GCS) reaction (27).

QGly−>Ser M+2 = QSer x  ESerM+2= EGly M+2

� �

QGly−>Ser M+1 = QSer x  ESerM+1= EGly M+2

� �
Where Q Gly->Ser M+2 represents serine synthesis from the direct
conversion of M+2 glycine to M+2 serine and E Ser M+2 is the
isotopic enrichment of M+2 serine in plasma. Q Gly->Ser M+1

represents serine synthesis from singly labeled glycine and
ESer M+1 is the isotopic enrichment of M+1 serine in plasma.
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Total serine synthesis from glycine is the sum of Q Gly->Ser M+2

and Q Gly->Ser M+1

Statistics
Our study’s primary outcome measurements were kinetic
parameters of glycine metabolism. Therefore, we designed this
study based on the assumption that any changes in plasma
glycine concentration will be reflective of whole-body glycine
kinetic parameters. Based on data from our earlier studies, we
calculated that bariatric surgery increases plasma glycine
concentration by 26 mmol/L (standard deviation = 26) (6, 17, 18).
To obtain a power of 80% at a 0.05 significance level, a total sample
size of 17 participants with morbid obesity undergoing bariatric
surgery will need to be recruited. We recruited 21 subjects with
morbid obesity (assuming a possible 20% drop out rate) to compare
the changes in glycine kinetics before and after bariatric surgery. To
compare the differences in baseline glycine kinetic parameters with
controls, 21 participants with healthy weight were recruited.

As our data did not follow a normal distribution, non-
parametric methods were selected for statistical testing and
continuous data were presented as medians with interquartile
range (IQR). Statistical differences between participants with
morbid obesity and healthy weight were sought using the
Mann–Whitney U test for continuous data and Fisher’s exact
test for categorical data. Significant changes in glycine kinetic
parameters after bariatric surgery were tested using Wilcoxon’s
Signed Rank test. To examine the relationship between de novo
glycine synthesis and plasma glycine concentration, we
performed linear regression with log-transformed plasma
glycine as the dependent variable and log-transformed de novo
glycine synthesis as the independent variable. Since this study
has two primary objectives, Bonferonni correction was used to
Frontiers in Endocrinology | www.frontiersin.org 6
account for the multiple comparisons and only two-tailed P
values < 0.025 were considered statistically significant. Statistical
testing was performed using STATA version 17 (StataCorp) and
Prism version 9 (GraphPad Software Inc.).
RESULTS

Baseline Characteristics of Study
Participants
Details of subject recruitment are summarized in Supplementary
Figure 1. Four participants with morbid obesity (3 females and 1
male) were lost to follow-up and were excluded from the post-
surgery statistical analyses. As shown in Table 1, there was no
difference in themedian age of participants with morbid obesity and
those with healthy weight. In participants with morbid obesity, 6
(28.6%) had type 2 diabetes, 10 (47.6%) hypertension, and 7 (35%)
hyperlipidemia. All patients with diabetes were treated with
metformin and half the patients with diabetes were taking 3 or
more oral diabetes medications. In the patients with hypertension,
calcium channel blockers were most used (60%), and 60% were
taking two or more blood pressure lowering medications. The
majority of patients with hyperlipidemia were taking statins (71%)
and 57% were taking more than 1 lipid lowering medications
(Table 2). None of the participants with healthy weight had any
medical illness or consumed long-term medications. Participants
with morbid obesity were placed on a reduced energy diet as part of
routine clinical care (median 2.3 weeks) and there were no
significant differences in their median total daily calorie intake at
1420 (882- 1660) kcal/day compared to the those with healthy
weight at 1510 (1280- 1660) kcal/day, p = 0.5134. Similarly, dietary
TABLE 1 | Baseline characteristics of participants with healthy weight and with morbid obesity.

Healthy weight (n = 21) Morbid Obesity (n = 21) P value

Age (years) 39.4 (31.3-47.2) 40.2 (32.2-46.3) 0.7462
Females, n (%) 16 (76.2%) 16 (76.2%) 1.00
Weight (kg) 55.4 (49.3- 61.1) 100 (93.4-114) < 0.0001
BMI (kg/m2) 20.6 (19.4-22.5) 38.5 (35.3-43.3) < 0.0001
Fat mass (kg) 17.9 (16.4-21.2) 48.6 (43.0-52.9) < 0.0001
Lean body mass (kg) 35.1 (29.9- 38.1) 54.2 (44.4-64.6) < 0.0001
Fat free mass (kg) 37.6 (32.1- 39.9) 55.9 (46.5- 67.2) < 0.0001
Fat mass (%) 35.1 (28.4- 37.2) 45.7 (42.1- 50.7) < 0.0001
Waist circumference (cm) 76 (74-82) 117 (112-122) < 0.0001
Hip circumference (cm) 94 (90- 98) 126 (120-134) < 0.0001
SBP (mmHg) 112 (102- 118) 121 (112-139) 0.0060
DBP (mmHg) 72 (65-75) 72 (69-81) 0.8371
Total cholesterol (mmol/L) 4.70 (4.12-5.49) 4.48 (3.85-5.61) 0.5010
HDL-C (mmol/L) 1.55 (1.35-1.72) 1.13 (0.99-1.24) < 0.0001
Triglyceride (mmol/L) 0.60 (0.49- 0.90) 1.47 (1.23-1.81) < 0.0001
LDL-C (mmol/L) 2.92 (2.34-3.45) 2.52 (2.19-3.71) 0.8276
Creatinine (µmol/L) 56 (50-67) 54 (47-62) 0.4427
Albumin (G/L) 39 (38-41) 38 (37-40) 0.4681
Bilirubin (umol/L) 13 (11-18) 11 (10-13) 0.0413
Alanine transaminase (U/L) 13 (10-19) 26 (17-38) 0.0013
Aspartate transaminase (U/L) 19 (18-22) 20 (18-64) 0.6934
Gamma-glutamyl transferase (U/L) 13 (12-21) 28 (24-37) < 0.001
June 2022 | Volume 13 | Articl
Values are median (inter-quartile range). The Mann–Whitney U test was used to test the statistical differences between participants with healthy weight and with morbid obesity. P value <
0.025 is considered as statistically significant. SBP, systolic blood pressure, DBP, diastolic blood pressure.
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protein intake at 68.8 (52.3-76.4) vs. 60.7 (53.2- 76.6) g/day was not
significantly different (p = 0.8116).

Compared to participants with healthy weight, participants
with morbid obesity had significantly higher total body weight,
BMI, fat mass, waist circumference, and hip circumference. Systolic
blood pressure, serum alanine transaminase concentration, and
triglyceride were higher, but HDL cholesterol lower in those with
morbid obesity. Fasting blood glucose, HbA1C, and insulin
concentrations were significantly higher in the participants with
morbid obesity and they were significantly more insulin resistant
with higher values of HOMA-IR and lower Matsuda index. In
addition, AUC for insulin and glucose following MMTT were
both significantly greater in the participants with morbid
obesity (Table 3).
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Baseline Plasma Amino Acid
Concentrations and Substrate Kinetics
Compared to participants with healthy weight, those with
morbid obesity had significantly lower plasma concentrations
of glycine and serine (Table 4). By contrast, plasma
concentrations of 6 of the 9 dietary essential amino acids
(leucine, isoleucine, valine, phenylalanine, methionine, and
lysine), and 5 non-essential amino acids (alanine, aspartate,
glutamate, tyrosine, and cysteine) were higher in the
participants with morbid obesity (Table 4).

As shown in Figure 2A, participants with morbid obesity had
significantly slower endogenous glycine flux at baseline at 165
(153-186) μmol·kg LBM-1·h-1 than those with healthy weight at
201 (173 -234), p = 0.0018 and this was associated with
significantly slower de novo glycine synthesis at 86.2 (64.5-111)
vs. 124 (103-159) μmol·kg LBM-1·h1, p = 0.0001(Figure 2B). In
addition, glycine oxidation rate at 41.9 (37.5-46.0) vs. 54.7 (48.4-
64.9) μmol·kgLBM-1·h-1, p < 0.0001 (Figure 2C) and NOD rate
at 132 (121-152) vs. 157 (130 -184) μmol·kg LBM-1·h-1,
p = 0.0108 (Figure 2D) were significantly slower in the
participants with morbid obesity than those with healthy weight.

The direction of serine kinetics followed those of glycine.
Endogenous serine flux was lower in participants with morbid
obesity than those with healthy weight at 224 (197-283) vs. 278
(248-336) μmol·kg LBM-1·h-1 but this difference was not
statistically different (p = 0.0336) (Figure 2E). Nonetheless, de
novo serine synthesis (Figure 2F) was significantly slower with
values of 174 (136-219) vs. 218 (177-284) μmol·kg LBM-1·h-1, p =
0.0093. Interpretation of serine and glycine kinetics were similar
when these kinetic parameters were expressed as per total body
weight. But, endogenous serine flux was significantly slower in
participants with morbid obesity (Supplementary Table 2). No
difference in phenylalanine flux was found between participants
with morbid obesity and healthy weight, 53.5 (48.2-59.6) vs. 52.0
(47.0-57.6) μmol·kg LBM-1·h-1, p = 0.663.

Post-Surgery Changes in
Clinical Parameters
Among the 17 participants who remained in the study, 15
underwent sleeve gastrectomy and 2 Roux-en-Y gastric bypass.
These participants returned for their post-surgery metabolic
evaluation after a median of 6.4 (5.9-8.1) months, and their total
energy intake at 784 kcal/day and protein intake at 50.2 g/day
represent significant reductions compared to their baseline values (p
TABLE 2 | Metabolic co-morbidities and medications in participants with healthy
weight and with morbid obesity.

Healthy weight Morbid obesity

(n = 21) Pre-surgery
(n = 21)

Post-surgery
(n = 17)

Diabetes, n (%) 0 6 (28.5) 1 (5.9)
Metformin, n 0 6 1
Sulphonylurea, n 0 3 0
DPP-IV inhibitor, n 0 2 0
GLP-1 agonist, n 0 0 0
SGL2 inhibitor, n 0 2 1

Alpha-glucosidase inhibitor, n 0 1 0
1 medication, n 0 3 0
2 medications, n 0 1 1
3 medications, n 0 1 0
≥ 4 medications, n 0 1 0

Hypertension, n (%) 10 (47.6) 6 (35.3)
Beta-blockers, n 0 3 2
ACE inhibitors/angiotensin II
receptor blocker, n

0 6 3

Thiazide, n 0 2 1
Calcium channel blocker, n 0 7 4
1 medication, n 0 4 5
2 medications, n 0 5 0
≥ 3 medications, n 0 1 1

Hyperlipidemia, n (%) 7 (35) 2 (11.8)
Statins, n 0 5 2
Ezetimibe, n 0 1 0
Fibrates, n 0 1 0
1 medication, n 0 2 2
2 medications, n 0 4 0
3 medications, n 0 0 0
TABLE 3 | Mixed-meal tolerance testing, insulin resistance indices in participants with healthy weight and with morbid obesity.

Healthy weight (n = 21) Morbid Obesity (n = 21) P value

Fasting glucose (mg/dL) 87 (85- 89) 103 (90.7-127) 0.0017
HbA1C (%) 5.3 (5.1-5.5) 5.9 (5.6- 6.2) < 0.0001
Fasting insulin (mU/L) 3.2 (2.8-4.7) 19.5 (13.6- 22.8) < 0.0001
HOMA-IR 0.71 (0.55- 1.04) 4.70 (3.18-5.78) < 0.0001
Matsuda Index 9.76 (7.71-12.30) 1.66 (1.34-2.52) < 0.0001
Post-MMTT Insulin AUC 4530 (3840-5230) 12400 (9130-18200) < 0.0001
Post-MMTT Glucose AUC 14500 (13300-17200) 19400 (16600-21400) 0.0001
June 2022 | Volume 13 | Articl
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0.025 is considered as statistically significant. MMTT, mixed-meal tolerance testing, AUC, area under curve.
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< 0.001 for both). Post-surgery total body weight, BMI, fat mass,
waist circumference, and hip circumference were all significantly
lower than baseline values (p < 0.0001) (Supplementary Table 3).

Plasma triglyceride and alanine transaminase concentrations
were lower post-surgery while HDL cholesterol was higher than
baseline (p < 0.01 for all) (Supplementary Table 2). Fasting
plasma glucose and HbA1C reduced significantly after bariatric
surgery (p < 0.005 for both). These post-surgery changes were
accompanied by significant improvements in insulin resistance,
as demonstrated by the higher post-surgery Matsuda index,
lower HOMA-IR, and a decrease in post-MTT glucose AUC (p
< 0.01 for all) (Supplementary Table 4). The number of
participants requiring medications and types of medications
given for diabetes, blood pressure, and lipid treatment were
decreased after surgery (Table 2).

Post-Surgery Changes in
Plasma Amino Acid Concentrations
and Substrate Kinetics
Following surgery, plasma glycine and serine concentrations
increased significantly to 210 (191-243) μmol/L, p < 0.0001
and 113 (101-134) μmol/L, p = 0.0056 respectively. By
comparison, the blood concentration of 6 dietary essential
amino acids and 5 non-essential amino acids deceased
significantly (Supplemental Table 5). Importantly, glycine flux
TABLE 4 | Plasma concentrations of amino acids in participants with healthy
weight and with morbid obesity at baseline.

(µmol/L) Healthy weight (n = 21) Morbid Obesity (n = 21) P value

Non-essential
Glycine 201 (172-227) 167 (153-172) 0.0018
Serine 123 (112-135) 108 (89.4-120) 0.0079
Glutamine 443 (392-449) 453 (425-523) 0.1844
Cysteine 277 (231-300) 324 (306-362) 0.0001
Tyrosine 50.9 (44.6-54.9) 66.8 (61.5-69.4) < 0.0001
Arginine 78.1 (67.5-89.4) 79.1 (72.8-97.1) 0.5333
Proline 129 (104-163) 148 (132-172) 0.1530
Alanine 226 (191-258) 315 (289-336) < 0.0001
Asparagine 35.8 (30.3-37.9) 34.3 (30.2-38.0) 0.8813
Aspartate 1.93 (1.46-2.39) 2.61 (2.10-3.58) 0.0052
Glutamate 26.3 (17.2-34.4) 50.3 (43.3-73.3) 0.0003
Essential
Leucine 109 (99-116) 139 (116-146) 0.0002
Isoleucine 50.0 (46.9-72.8) 67.2 (59.6-72.8) < 0.0001
Valine 205 (182-229) 243 (221-288) 0.0016
Methionine 18.9 (17.4-21.2) 21.1 (20.1-24.3) 0.0028
Phenylalanine 57.1 (52.7-58.9) 64.6 (60.2-69.9) < 0.0001
Threonine 105 (89-116) 116 (96.4-134) 0.1762
Lysine 161 (144-192) 195 (176-232) 0.0004
Histidine 76.6 (70.7-78.4) 68.6 (65.7-74.4) 0.0240
Tryptophan 38.2 (34.4-41.1) 39.0 (35.4-43.7) 0.7088
Values are median (inter-quartile range). The Mann–Whitney U test was used to test the
statistical differences between participants with healthy weight and with morbid obesity.
P value < 0.025 is considered as statistically significant.
A B

D

E F

C

FIGURE 2 | Glycine flux (A) de novo glycine synthesis (B) glycine oxidation (C) and glycine non-oxidative disposal (D) serine flux (E); and de novo serine synthesis
(F) in participants with healthy weight (n = 21) and with morbid obesity at baseline (n = 21). The Mann–Whitney U test was used to test the statistical differences
between participants with healthy weight and participants with morbid obesity. NOD = non-oxidative disposal. P value < 0.025 is considered as statistically
significant.
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increased significantly from 156 (150-186) to 203 (188-222)
μmol·kg LBM-1·h-1, p < 0.001 and de novo glycine synthesis
increased significantly from 86.2 (62.5-111) to 127 (98.3-133)
μmol·kg LBM-1·h-1, p < 0.001 (Figures 3A, B). Glycine oxidation
rate at 46.7 (37.9-53.9) μmol·kg LBM-1·h-1 was not significantly
higher than the pre-surgery value of 41.6 (36.3-46.0) μmol·kg
LBM-1·h-1, p = 0.1454 (Figure 3C). However, glycine NOD rate
was higher at 165 (154-175) μmol·kg LBM-1·h-1 than the baseline
value of 129 (121-145) μmol·kg LBM-1·h-1, p < 0.001
(Figure 3D). Post-surgery, serine flux also increased
significantly from 221 (183-280) to 296 (239-311) μmol·kg
LBM-1·h-1, p = 0.0026 (Figure 3E) and this was associated with
an increase in de novo serine synthesis rate from 162.7 (125-223)
to 234 (197-254) μmol·kg LBM-1·h-1, p < 0.0011 (Figure 3F).
Similar results were obtained when glycine and serine kinetics
were expressed as per kg total body weight, but the post-surgery
glycine oxidation rate was significantly higher (Supplementary
Table 6). Post-surgery phenylalanine flux at 57.2 (51.6 – 61.7)
μmol·kg LBM-1·h-1 was not significantly different than baseline
p = 0.3529. Regression analysis using the combined baseline and
post-surgery parameters showed that the concentration of
plasma glycine was significantly associated with the rate of
glycine de novo synthesis (b = 0.50, p < 0.001, and model
R2 = 0.56) (Figure 4).

Substrate Flux via SHMT
At baseline, the rate of glycine flux derived from serine (QSer->Gly)
per kg total body weight was significantly lower (p =0.0016) in
Frontiers in Endocrinology | www.frontiersin.org 9
the participants with morbid obesity compared to those with
healthy weight (Supplementary Table 7), but statistical
significance was lost when data was expressed per kg LBM
(p = 0.1196). Rates of conversion of glycine to serine, either
directly via SHMT (QGly->Ser M+2) or indirectly via 5,10-13CH2-
THF (QGly->Ser M+1), were also significantly slower in participants
with morbid obesity compared to those with healthy weight
(p < 0.001 for both) (Supplementary Table 7).
A B

D

E F

C

FIGURE 3 | Glycine flux (A) de novo glycine synthesis (B) glycine oxidation (C) and glycine non-oxidative disposal (D) serine flux; and (E) de novo serine synthesis in
with morbid obesity at baseline before (n = 17) and 6-months after bariatric surgery (n = 17). Wilcoxon’s Signed Rank test was used to determine the post-surgery
changes. P value < 0.025 is considered as statistically significant.
FIGURE 4 | Relationship between plasma glycine concentrations with rates
of glycine de novo synthesis. Data were log-transformed, and their
association tested using the linear regression model.
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Among the 17 participants who returned for their 6-month
follow-up, post-surgery QSer->Gly increased significantly (p < 0.005).
QGly->Ser M+2 and QGly->Ser M+1 were also significantly faster at
following surgery (p <0.005) (Supplementary Table 8).
DISCUSSION

Abnormal plasma amino acid concentrations in obesity have been
proposed as a predictor of poor cardiometabolic outcomes (28),
propagator of insulin resistance (1), and potential therapeutic
target (29). Recent scientific developments have focused on
amino acids and metabolites that are elevated in the obese and
insulin resistant states (30). By contrast, our current study focused
on glycine - the simplest and smallest amino acid in the human
body, but one that is consistently and paradoxically lower in
individuals with obesity (3, 4). Plasma glycine may be low in
obesity due to reductions in dietary intake, flux from protein
breakdown, or de novo synthesis. Alternatively, obesity is a state of
heightened metabolic demand, and there may be an increase in
glycine catabolism or diversion of glycine to pathways of
utilization. This paper presents the novel discovery that de novo
glycine synthesis was impaired in participants with morbid obesity
and that the increase in plasma glycine concentration after
bariatric surgery was accompanied by a concordant increase in
its endogenous synthesis. To the best of our knowledge, this is the
first study that used stable-isotope tracers to measure glycine
kinetics in individuals with morbid obesity directly and tracked
the changes in metabolic flux through the glycine biosynthetic and
disposal pathways after bariatric surgery.

Obesity is a risk factor for insulin resistance, and our study
found that participants with morbid obesity had a higher
HOMA-IR and lower Matsuda index than those with healthy
weight at baseline. Furthermore, participants with morbid
obesity had higher blood glucose values after consuming a
mixed-meal, indicating significant impairment in insulin-
mediated glucose uptake and utilization. Our study also
showed significant differences in the baseline amino acid
profiles between morbid obesity and healthy weight. The
elevated plasma amino acids in the group with morbid obesity
included the BCAAs, aromatic amino acids, methionine, alanine,
and glutamate which are known metabolic signatures of insulin
resistance (31). Similarly, the lower plasma glycine and serine
concentrations in this group are recognized features associated
with poor metabolic health (3, 4, 31). Following bariatric surgery,
participants with morbid obesity lost weight and experienced
significant improvements in insulin resistance and clinical
indicators of glucose regulation. Importantly, plasma
concentrations of amino acids elevated in the pre-surgery
obese state decreased, while plasma glycine and serine
concentrations increased significantly post-surgery. This
pattern of changes in amino acids following bariatric surgery is
consistent with reports in other lifestyle (32), surgical (33), and
pharmacologic studies (34) that have targeted insulin resistance.

In the current study, participants with morbid obesity
consumed the same amount of daily dietary protein as those
Frontiers in Endocrinology | www.frontiersin.org 10
with healthy weight at baseline, but they still had lower plasma
glycine concentration. Hence, dietary protein intake is
an unlikely explanation for hypoglycinemia. Further, the
plasma concentrations of most dietary essential and many
dietary non-essential amino acids were higher in the
participants with morbid obesity. Importantly, despite a
decrease in daily total dietary protein intake 6 months after
bariatric surgery, plasma glycine concentrations increased
significantly. Glycine flux from body protein breakdown was
also unlikely a significant determinant of the final plasma glycine
concentration as there were no differences in whole-body protein
turnover rates between the groups at baseline or post-surgery.

As a nutritionally non-essential amino acid, it has been generally
assumed that the daily metabolic demands for glycine can be met by
its endogenous synthesis from various precursors. Hence,
impairment of its de novo synthesis is usually not considered as
an explanation for obesity-associated hypoglycinemia (3, 4). Indeed,
studies have found that endogenous glycine synthesis can maintain
glycine flux in children with severe protein energy malnutrition (35)
and men consuming suboptimal amounts of dietary protein (36).
However, because de novo glycine synthesis contributes as much as
80% of glycine flux in the fasting state (37), any compromise in its
endogenous synthesis will have a quantitatively significant impact
on its plasma concentration. In the current study, we found
significantly slower de novo glycine synthesis in participants with
morbid obesity compared to those with healthy weight. The reason
why endogenous glycine synthesis was reduced in the participants
with morbid obesity is unclear, but the increase in plasma glycine
concentration and de novo glycine synthesis following bariatric
surgery led us to speculate that this may be linked to insulin
resistance and impaired glucose metabolism.

In humans, the major source is its synthesis from serine via
the enzyme SHMT. Serine, in turn, can be derived from 3-
Phosphoglycerate (3-PG), an intermediate of glucose metabolism
(3, 4, 12). By tracing the transfer of stable-isotope labels between
serine and glycine, we estimated the glycine synthesis from serine
and confirmed that participants with morbid obesity had
impaired glycine synthesis from serine via the SHMT reaction.
The same was true for serine, whose de novo synthesis rate was
significantly slower in participants with morbid obesity. We did
not directly measure glycolysis, but impaired flux through the
glycolytic pathway is a well-recognized feature of insulin
resistance (38). This led us to speculate that 3-PG production
was impaired in the participants with morbid obesity. Herein, we
propose the hypothesis that obesity-induced insulin resistance
disrupts cellular glucose uptake and hence, glycolytic flux
thereby decreasing the production of 3-PG required for
endogenous serine synthesis. In turn, the reduced serine
synthesis compromises SHMT-mediated de novo glycine
synthesis resulting in an overall reduction in glycine
production relative to its rate of utilization and ultimately a
lower plasma concentration (Figure 5).

Plasma glycine concentration in participants with morbid
obesity can also be low due to an increase in glycine catabolism
or the diversion of glycine to utilization pathways. An increase in
glycine oxidation could cause hypoglycinemia, but our findings
June 2022 | Volume 13 | Article 900343
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indicate that glycine oxidation rate was reduced in participants
with morbid obesity than those with healthy weight. We believe
that the lower glycine oxidation rate was consequent to the lower
availability of glycine in the obese state. Increased conversion of
glycine to serine can also lead to a decrease in circulating glycine.
Our experimental data did not support this, as we found that the
glycine-to-serine flux was lower in participants with morbid
obesity compared to those with healthy weight.

Glycine is required in large quantities as a substrate to
support the synthesis of body proteins. It constitutes 33% of
structural proteins and several critical biomolecules necessary to
maintain metabolic functions (e.g., purines, pyrimidines, GSH,
porphyrin, and creatine). It is also a primary donor of 1-carbons
and forms conjugates with potentially toxic metabolites such as
endogenous (and xenobiotic) organic acids, derivatives of
BCAAs, b-oxidation derived fatty acid intermediates, and
metabolites of polyphenols (3, 4, 11, 12, 39). In obesity,
hypoglycinemia can develop if large amounts of glycine are
consumed for the biosynthesis of GSH or the conjugation and
disposal of potentially toxic metabolites. Our method of
measuring glycine NOD is not specific to any utilization
pathway, but a significant increase in glycine consumption in
these utilization pathways should result in higher glycine NOD
rates which returns to normal post-bariatric surgery. Instead, we
found that the opposite was true as whole-body glycine NOD
rate was lower in participants with morbid obesity at baseline
and increased post-surgery.
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We did not design this study to provide a definitive answer to
whether hypoglycinemia is a cause or consequence of insulin
resistance in the obese state. Nonetheless, we found a potential
metabolic link between impaired glucose metabolism with slower
glycine synthesis. In addition, the trajectory of kinetic parameters
in participants with morbid obesity after bariatric surgery plus
results from recent Mendelian randomization studies suggest
that hypoglycinemia is more likely a consequence of obesity-
induced insulin resistance (40, 41). This finding may argue
against developing a glycine-based treatment for clinical care.
However, glycine remains a key molecule necessary for the
maintenance of physiological and metabolic homeostasis in
human health. Thus, regardless of the reason for why plasma
glycine concentration is low in obesity, hypoglycinemia will
adversely impact multiple bodily functions.

In obesity, lipolysis and lipid oxidation rates are increased, which
leads to the generation of reactive oxidative species and oxidative
stress (42). Various anti-oxidative defenses are activated in response,
including the production of the principal intracellular anti-oxidative
peptide glutathione to regulate systemic inflammation, redox
homeostasis, and nitrosative stress. However, these defenses can
be overwhelmed. Individuals with morbid obesity have lower
plasma concentrations of glutathione and antioxidant enzyme
activities, which is associated with a shift in redox status towards
oxidation, and the accumulation of products of peroxidation
damage and nitrosative stress (43). Such changes can disrupt
normal physiology, including interfering with insulin signaling,
glucose homeostasis, and contribute to the pathogenesis of
obesity-related metabolic complications (42). Glycine, cysteine,
and glutamate are precursors for glutathione synthesis, but only
glycine was deficient in our study. Recent studies have identified low
glycine availability as a rate-limiting factor for glutathione synthesis
in humans and rodents with non-alcoholic fatty liver disease
(NAFLD) (44, 45). Importantly, this was associated with the
downregulation of genes involved with endogenous glycine
synthesis and lipid oxidation, but the upregulation inflammation
and fibrosis-related genes (44). Similarly, glycine supplementation
of humans without morbid obesity but with low plasma glycine
values improved glutathione availability and lowered systemic
inflammation, oxidative, and nitrosative stress markers (46–49).
In addition, glycine receptors are present in various inflammatory
cells, and the activation of these receptors could result in additional
anti-inflammatory, immunomodulatory and anti-apoptotic effects
(50). Finally, glycine forms conjugates with potentially toxic
endogenous and xenobiotic metabolites, and this pathway serves
as an integral component of the human body’s detoxification
system, which may be compromised when glycine availability is
limited (1, 32).

Our study has several limitations. Based on the post-surgery
reduction in insulin resistance and improvement in glycine
metabolism, we argued that hypoglycinemia is a metabolic
consequence of insulin resistance. However, some investigators
have speculated that weight-independent factors also contribute
to the post-bariatric surgery improvement in insulin resistance
(51, 52). We could not be sure if the increase in glycine
availability after bariatric surgery played a role as insulin
resistance improved contemporaneously with other factors
FIGURE 5 | Mechanism for obesity-associated hypoglycinemia. This model
proposes that obesity-induced insulin resistance impairs glucose uptake
and results in high plasma glucose concentration. Consequently, glucose
flux along the glycolytic pathway decreases, lowering the production of
3-phosphohydroxypyruvate, a major precursor for de novo serine synthesis.
Since glycine is mainly synthesized from serine in human, a decreased
supply of serine compromises SHMT-mediated de novo glycine synthesis.
With time, the overall reduction in glycine production relative to its rate of
utilization results in a lowering of its plasma concentration.
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such as weight, body composition, and dietary carbohydrate
intake. This uncertainty can be clarified by raising plasma glycine
values directly and examining its effect on insulin resistance.
Several human studies using dietary glycine supplementation
have demonstrated promising results (46–48), but similar trials
have not been conducted in individuals suffering from morbid
obesity. As discussed earlier, pathways related to the utilization
of glycine to synthesize glutathione and to form acylglycine
conjugates may be affected by hypoglycinemia and exacerbate
insulin resistance. However, we did not examine these pathways.
Our study investigates glycine metabolism, including its kinetic
interrelationships with serine metabolism at the whole-body
level. It does not provide any information on the alteration in
metabolism at a specific tissue/organ level. Dysregulated glycine
metabolism at the tissue level would be important when
considering cardiometabolic disorders such as NAFLD. Several
subjects with morbid obesity did not return after bariatric
surgery but were still included in the baseline comparison with
controls. However, similar findings were obtained when the 4
participants who were lost to follow-up were excluded from the
baseline statistical analyses.

In conclusion, we found that low plasma glycine concentration
in participants with morbid obesity was associated with impaired de
novo glycine synthesis. This finding implies that glycine can be
regarded as a conditionally essential amino acid in obesity, and that
plasma glycine concentration can be raised by simple measures such
as dietary supplementation. However, the increase in plasma glycine
concentration and its de novo synthesis after bariatric surgery plus
similar changes in serine metabolism suggest that hypoglycinemia is
a consequence of impaired glycolysis secondary to obesity-induced
insulin resistance. As such, the metabolic benefit from correction of
hypoglycinemia in individuals with obesity can be challenged and
should be investigated in future intervention studies.
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