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Abstract: This paper presents and briefly discusses recent observations of dynamics associated with
isolated generalized bipolar transistor cells. A mathematical model of this simple system is considered
on the highest level of abstraction such that it comprises many different network topologies. The
key property of the analyzed structure is its bias point since the transistor is modeled via two-port
admittance parameters. A necessary but not sufficient condition for the evolution of autonomous
complex behavior is the nonlinear bilateral nature of the transistor with arbitrary reason that causes
this effect. It is proved both by numerical analysis and experimental measurement that chaotic motion
is miscellaneous, robust, and it is neither numerical artifact nor long transient motion.

Keywords: admittance parameters; bipolar transistor; entropy; chaos; Lypunov exponent; non-unilateral
two-port; strange attractors

1. Introduction

Chaos can be considered as long-time unpredictable behavior of a dynamical system
that is both nonlinear and, in the autonomous case, has at least three degrees of freedom.
Chaotic systems are very sensitive to the changes of initial conditions; this sensitivity
is caused by exponential divergency of neighborhood orbits but, at the same time, the
generated strange attractor is bounded into finite state space volume. The boundedness of
the strange attractor is due to the suitable nonlinearity of the vector field. Despite mature
observations, recent studies reveal that fixed points are not crucial for the evolution of
chaos. There are several mathematical models with equilibrium degenerated into higher-
dimensional geometric structures or chaotic systems without equilibrium. Additionally, a
wide variety of chaotic dynamical systems that exhibit the so-called hidden attractors are
available via internet search.

After its analytical, numerical, and experimental confirmation within a very sim-
ple fully analog circuit, famous Chua’s oscillator [1], chaos started to receive consider-
able attention, especially among circuit design engineers. Many interesting theories and
practical findings coupled with nonlinear dynamics in lumped circuits were discovered
and published; several examples can be found in papers [2–8]. By following subsequent
discoveries in chaos theory and by increasing the knowledge of the strange attractor´s
evolution, this kind of complex motion was detected in many electronic systems. Let us
mention a few cases of naturally non-chaotic building blocks of more complex systems
dedicated for analog signal processing. Robust chaos was reported in switched capacitor
circuits [9], switched regulators [10], power converters [11], different topologies of dc-dc
converters [12], and in power electronics in general. From the viewpoint of subsystems
of radio-frequency path, structurally stable chaotic oscillations were discovered in phase-
locked loops [13], multi-state memory cells [14,15], and standard structures of harmonic
oscillators such as Colpitts [16], Hartley [17], Wien-bridge [18] or other topology having
resistor-capacitor feedback [19] topology.

Recent papers [20,21] have revealed the existence of strange attractors in a fundamental
stage of class C amplifier with a single bipolar transistor. However, the bipolar transistor
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in this paper is assumed to have linear forward trans-conductance y21(v1), while work [20]
assumes a cubic polynomial for both functions y12(v2), y21(v1). Therefore, all seven distinct
chaotic cases revealed in this manuscript are algebraically simpler than the single example
proposed in paper [20]. In contrast, paper [21] deals with smooth nonlinear function
y21(v1) and presents strange attractors discovered for only two shapes of forward trans-
conductance. On the other hand, in the upcoming analysis, smooth polynomial nonlinearity
up to the fifth order that describes backward trans-conductance could be found within
the set of the ordinary differential equations. Of course, the different mathematical model
considered here leads to completely different numerical results as well as much simpler
circuitry implementation. From the practical perspective, the third-order deterministic
chaotic systems provided in this paper generate waveforms with different features. Readers
can pick and use our dynamical system that fits a specific application. In general, the
upcoming sections represent more comprehensive analysis of the class C amplifier than
case study [20]. Simple circuits with one or two transistors are analyzed in paper [22], again
from the viewpoint of the evolution of chaotic behavior. In these networks, the parasitic
properties of transistors are not considered for the numerical investigations.

Driven lumped electronic systems are subjects of chaotic dynamics as well. Moreover,
degrees of freedom can be lowered to two. The chaotic operational regime of a KHN
(Kerwin–Huelsman–Newcomb) filter (or state variable filters in general) is analyzed in
paper [23]. It is demonstrated that chaos occurs and disappears according to the frequency
and amplitude of input useful harmonic signal. Based on the observations presented
in this paper, a two-terminal electronic device marked as “chaotic admittance” can be
developed. While applied input voltage acts as a driving force, the chaotic waveform
measured at any independent internal node controls input current. The practical applica-
tion of such two-terminal can be discovered in noise generators, the testing of frequency
responses, analog and digital modulations, the masking of useful analog signals using
chaotic waveform [24], etc.

2. Single Transistor Stage

Assume the lumped electronic equivalent of a single transistor that is characterized by
arbitrary bias point and connected as indicated in Figure 1a. For a useful signal, a simplified
small-signal calculation model provided in Figure 1b can be derived. Describing a set of
ordinary differential equations can be expressed in matrix form as:

d
dt

x = A·x ↔ d
dt

 v1
v2
i`

 =

 −
y11
c1
− y12

c1
0

− y21
c2
− y22

c2
− 1

c2

0 1
` 0

·
 v1

v2
i`

, (1)

where yjk are admittance parameters of a bipolar transistor considered as two-port in a
common emitter configuration and the state vector is x = (v1, v2, i`)

T. Symbol c1 rep-
resents a parasitic base-emitter capacitance and c2 is a sum of parasitic collector-emitter
capacitance and working capacitance of the parallel resonant tank. Resistor R2 given in
the schematic could contain both the output admittance of transistor y22 and inductance
resistive losses. In practice, entries of 2 × 2 transistor´s admittance matrix could be com-
plex numbers, especially if high-frequency applications are addressed. It is necessary to
realize that the word “high” is relative—it could be tens of MHz depending on the type of
bipolar transistor. Coefficients of the transistor´s admittance matrix could also be nonlinear
functions, specifically in the case of power amplifiers or if signals with high amplitudes
are processed.

Of course, numerical values of admittance parameters depend significantly on biasing
circuitry. These are not specified in the analyzed schematic. However, to maintain the
maximum universality of final remarks, the input and output admittance of a bipolar
transistor is supposed to be linear, i.e., constant real number independent of the amplitude
of a processed signal. The fundamental amplification capability of a bipolar transistor
characterized by trans-admittance y21 will be scalar constant as well, which is a linear
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function of input voltage v1 without offset. Therefore, a characteristic polynomial associated
with the isolated system (1) and evaluated at the fixed point xe =

(
v0

1, v0
2, i0`

)T is:

det(γ·E−A) = γ3 +
c2·y11 + c1·y22

c1·c2
·γ2 +

1
c1·c2·`

(
c1 + `·y11·y22 − `·y21·

∂y12

∂v2

∣∣∣∣
v0

2

)
·γ +

y11

c1·c2·`
= 0 , (2)

where E is the unity matrix. A partial derivative of backward trans-conductance of a bipolar
transistor is evaluated at equilibrium structure dx/dt = 0, where 0 is a vector of zeroes.
Note that, at this moment, accumulation elements are normalized with respect to time and
impedance. This fact is emphasized by utilization of the small letters c1, c2, ` throughout
this manuscript.
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Figure 1. General circuit concepts analyzed in this paper: (a) fundamental cell of class C amplifier, (b) equivalent schematic
of class C amplifier for useful small-amplitude AC (Alternating Current) signals.

2.1. Local Polynomial Backward Trans-Conductance

Let us rewrite the matrix system of differential Equation (1) into the more general
form that considers the possible fractional-order nature of the individual accumulation
elements and a polynomial backward trans-conductance of a bipolar transistor. New
ordinary differential equations will be:

dα

dtα v1 = − y11
c1

v1 − 1
c1

(
a·v2 + b·v2

2 + c·v3
2 + d·v4

2 + e·v5
2
)
,

dβ

dtβ v2 = − y21
c2

v1 − y22
c2

v2 − 1
c2

i`, dγ

dtγ i` = 1
` v1 ,

(3)

where orders α, β, and γ are real numbers between zero and one. In this case, system (1)
has one fixed point located at the origin. Firstly, let us consider cases where coefficient a = 0.
Eigenvalues, i.e., solutions of cubic polynomial (2) associated with xe = (0, 0, 0)T, imply
that the origin is a non-repelling fixed point, at least for reasonable values of transistor cell
components, i.e., nonzero positive c1, c2, ` and positive system dissipation, i.e., y11 > 0 and
y22 > 0.

γ1 = −y11

c1
, γ2,3 = − 1

2·c2
·
(

y22 ∓
√

y2
22 − 4

c2

`

)
, (4)

Therefore, all nontrivial solutions including sought strange attractors belong to the
so-called hidden attractors [25]. The local vector field near to the origin is spanned by the

eigenvector
→
ε1 and the eigenplane defined by −→ε2,3 written in the following symbolic form:

→
ε1 =

 −
c2

1−`·c1·y11·y22+c2·`·y2
11

c2
1·y21

− `·y11
c1

1

 , −→ε2,3 =


0

−
`·y22∓

√
y2

22−4 c2
`

2·c2
1

 . (5)
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As it will be clarified later, case a = 0 covers four out of six discovered sets of parameters
that lead to robust chaotic behavior. Now assume an arbitrary value of coefficient a. By
following Cardan´s rule, one can obtain the following symbolic eigenvalues:

γ = − 1
3·β

[
1

c2·`
− a·y21

c1·c2
+

y11·y22

c1·c2
− 1

3

(
y11

c1
+

y22

c2

)2
]
+ β− 1

3

(
y11

c1
+

y22

c2

)
, (6)

where the first auxiliary parameter:

β =

3

√√√√√√
−ϑ

2
±

√√√√√ϑ2

4
+

[
1

c2·` −
a·y21
c1·c2

+ y11·y22
c1·c2

− 1
3

(
y11
c1

+ y22
c2

)2
]3

27
, (7)

and the second auxiliary parameter can be calculated as:

ϑ =
y11

`·c1·c2
+

1
27

[
2
(

y11

c1
+

y22

c2

)3
− 9
(

y11

c1
+

y22

c2

)(
1

c2·`
− a·y21

c1·c2
+

y11·y22

c1·c2

)]
. (8)

For conservative dynamics, i.e., if y11 = y22 = 0, formulas for the eigenvalues (6), (7)
and (8) significantly simplify into the following relation:

γ1,2 = ±

√
`·a·y21 − c1

`·c1·c2
, γ3 = 0. (9)

A closer insight into these eigenvalues is not necessary since the optimization routine
(see below) operates with numerical values of network elements and, consequently, with
numerical eigenvalues.

Although case a 6= 0 was considered during the searching-for-chaos procedure, its
linearized analysis is not provided in this paper. Corresponding symbolic formulas are too
complicated to be displayed using a reasonable format.

2.2. Local Piecewise-Linear Backward Trans-Conductance

The idea behind this sub-section is to assume the successful (in the sense of compa-
rable values of positive largest Lyapunov exponent) approximation of backward trans-
conductance y12(v2) by two- or three-segment piecewise linear (PWL) curves. A set of three
ordinary differential equations that describe the class C amplifier is:

dα

dtα
v1 = −y11

c1
v1 −

1
c1

y12(v2),
dβ

dtβ
v2 = −y21

c2
v1 −

y22

c2
v2 −

1
c2

i` ,
dγ

dtγ
i` =

1
`

v1 (10)

where α, β, and γ are real numbers between zero and one. The approximated vector
field is symmetrical with respect to origin. Therefore, for odd-symmetrical PWL function,
backward trans-conductance with four breakpoints {−ϕ2, −ϕ1, ϕ1, ϕ2} can be expressed as:

y12(v2) = ρ2·x +
ρ0 − ρ1

2
·(|x + ϕ1| − |x− ϕ1|) +

ρ1 − ρ2

2
·(|x + ϕ2| − |x− ϕ2|) , (11)

where ρ0 is slope of segment around zero, ρ1 is slope of segment between breakpoint ϕ1 and
ϕ2 (ϕ1 < ϕ2), and ρ2 is slope of segment in the outer regions of the vector field, i.e., x > ϕ2.
For even-symmetry of the vector field, PWL function could possess three breakpoints
{−ϕ, 0, ϕ} and be characterized by the following simple relation:

y12(v2) = ρ0·|x|+
ρ1 − ρ0

2
·(|x + ϕ|+ |x− ϕ|)− ϕ·(ρ1 − ρ0). (12)

Obviously, such PWL function has slope ρ0 for 0 < x < ϕ, slope −ρ0 for −ϕ < x< 0,
slope −ρ1 for x < −ϕ, and finally slope ρ1 for x > ϕ. Both PWL functions generate a single
equilibrium point located at the origin and the entire vector field is separated into five and
four affine segments for odd (11) and (12) even-symmetrical PWL function, respectively.
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Note that the existence of other fixed points is not conditioned by the shape of PWL
functions. In other words, for scalar PWL functions, there is one equilibrium point located
at (−y12(0)/y11, 0, y21·y12(0)/y11)

T . Assume constant term ρconst in PWL function (11) or
(12). Then, ρconst can be used to move the equilibrium point to a new position in the state
space along a line.

2.3. Alternative Mathematical Models of Class C Amplifier

So far, a bipolar transistor substituted by two-port described by admittance matrix was
considered to be a dynamical system dedicated for analysis. Firstly, note that a transistor
cannot be directly substituted by the very popular Giacoletto´s model or a similar intercon-
nection where backward trans-conductance is neglected. Secondly, an arbitrarily biased
bipolar transistor can be modeled using other types of two-port equivalent parameters,
such as impedance or hybrid matrix. However, this change does not bring benefits over
the initial admittance matrix Y; neither from the viewpoint of linear analysis nor circuitry
realization. For a bipolar transistor modeled by impedance matrix Z = Y−1 we can obtain
the following algebraic relations:

z11 = y22
y11·y22−y12·y21

= 0 , z12 = − y12
y11·y22−y12·y21

= 1 ,

z21 = − y21
y11·y22−y12·y21

= 1
y12

, z22 = y11
y11·y22−y12·y21

= − y11
y12

,
(13)

where significant simplifications provided above are valid for a zero output admittance
y22 = 0 and a normalized forward trans-conductance y21 = 0. Analogically, for a bipolar
transistor described by the hybrid matrix, we can obtain:

h11 =
1

y11
, h12 = −y12

y11
, h21 =

1
y11

, h22 =
y11·y22 − y12·y21

y11
= −y12

y11
, (14)

where the combination of y22 = 0 and y21 = 1 provides simplification again. Obviously, a
chaotic system based on a class C amplifier can be constructed using (13) and (14), or by
introducing a linear transformation of coordinates applied on system (3) or (10).

A single-transistor class C amplifier can be also modeled by a two-port equivalent
circuit of a bipolar transistor where three two-terminal devices (initially admittances) are ar-
ranged into Π topology appended by one voltage controlled current source. This controlled
source can be located at the input port, output port or between these ports. However, no
such transformation reduces the complexity of the final circuit since much more complex
polynomial nonlinearities need to be implemented as lumped electronic subcircuits. From
the viewpoint of global dynamics, the Π-type configuration of an equivalent circuit can
still generate robust chaotic waveforms.

2.4. Searching for Chaotic Case

For the process of chaos localization using the largest Lyapunov exponent as the
objective function [26], transfer characteristics of backward trans-conductance were ap-
proximated by a polynomial up to the sixth order. Finally, it turns out that the values of
both capacitors and inductors can be kept constant (unity) during optimization without
losing the chance to find a chaotic solution. Additionally, a bipolar transistor is supposed
to work close to ideal current source with y22→0 and forward trans-conductance y21 = 1 S.
Normalized eigenvalues associated with the origin will be γ1 = −y11, γ2,3 = ±j, i.e., neigh-
borhood trajectories are attracted to an eigenplane where limit cycle is evolved. This is a
quite unusual situation in chaos theory. Therefore, the sixth-dimensional hyperspace of the
internal parameters of a dynamical system (1) with the edges Ψ∈{y11, a, b, c, d, e} undergoes
deep investigation. The last five parameters shape nonlinear feedback function (3).

Since individual points in this hyperspace can be calculated independently (an ar-
bitrary number of the fitness functions can be calculated simultaneously), Matlab and
CUDA-based parallel processes represent a good choice for high precision and fast calcula-
tion. Objective function is a combination of three phenomena: a bounded state attractor
(verified during numerical integration), a positive value of LLE (taken as a final value
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after integration), and predefined local geometry near the fixed point. Since there is no
closed-form analytic solution associated with chaotic dynamics, stochastic nature-inspired
optimization (a combination of genetic algorithm and swarm intelligence) was utilized. So
far, several configurations Ψ with a reasonable (from the viewpoint of potential practical
applications involving experimental construction of the chaotic circuit) seven-sided volume
have been found. More details can be found in Table 1 for polynomial vector field and
Table 2 for PWL case. The provided cases represent differently shaped (in the geometric
sense) strange attractors and this list is by no means complete.

Table 1. Numerical values of internal parameters of system (3) with mathematical ordersα = β = γ = 1
that result in robust chaotic motion.

Case y11 a b c d e

Ψ1 0.56 0 2.1 0 −1.1 0
Ψ2 0.50 0 0 3 0 −1.5
Ψ3 0.30 5 0 −2 0 0
Ψ4 0.40 0 2.7 0 −2 0
Ψ5 0.30 0 0 3 0 −2
Ψ6 0.50 2 0 0 0 −0.5
Ψ7 0.40 0 0 2 0 –1

Table 2. Numerical values of internal parameters of system (10) with mathematical orders α = β = γ = 1
and either (11) or (12) that result in structurally stable chaotic motion (NA means Not Available).

Case y11 ϕ ϕ1 ϕ2 ρ0 ρ1 ρ2

Ψ8 0.56 1.1 NA NA 1 −4.3 NA
Ψ9 0.5 NA 0.3 1.1 0.3 2 −7
Ψ10 0.3 NA 0.6 1.18 4.6 0.6 −9.9
Ψ11 0.3 NA 0.4 1 0.2 1.5 −9.5

Dynamical system (1) can be rewritten in the form of a jerk function, that is, as the
third order differential equation, namely:

d3

dt3 iL +

(
y11

c1
+

y22

c2

)
· d2

dt2 iL +

(
1

c2·L
+

y11·y22

c1·c2
− y12·y21

c1·c2

)
· d
dt

iL +
y11

c1·c2·L
·iL = 0 , (15)

or a simplified form by considering all assumptions provided above:

d3

dt3 iL + y11·
d2

dt2 iL + (1− y12·y21)·
d
dt

iL + y11·iL = 0 . (16)

In both (15) and (16), y12 is a nonlinear scalar function of variable v2. A single higher-
order differential equation has a simple circuit representation: cascade connection of integra-
tors with two-port feedback branches and an input summation/differentiation stage.

Third-order differential Equation (15) or (16) can be instantaneously compared with
the so-called jerk functions discovered during the excessive search performed by several
scientists in the most recent three decades. Prof. Sprott was especially active in this
research field and discovered many algebraically simple dynamical systems with a chaotic
solution [27–29]. From this perspective, mathematical model (1) with parameters Ψ1
up to Ψ7 represents a new chaotic system that cannot be transformed into some known
third-order system via a linear change of coordinates.

3. Numerical Results

The core engine for all routines used for numerical analysis presented in this paper
is a fourth order Runge–Kutta method with fixed step size. The numerical integration of
both mathematical descriptions of the discovered chaotic system, i.e., matrix expression (1)
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and its normal form, calculated in Mathcad is provided by means of Figure 2. For this
fundamental analysis, final time was set to 10,000 s, time step was 0.01 s, initial conditions
were chosen x0 = (−1, 0, 0)T for parameter set Ψ1,2,3,5,6 and x0 = (2, 0, 0)T for parameter set
Ψ4. Individual cases of parameters Ψ1–6 are associated with Table 1.Entropy 2021, 23, x FOR PEER REVIEW 8 of 24 

 

 

 
Figure 2. Plane projection v1 vs. v2 (black) and rainbow colored three-dimensional perspective views on the typical strange 
attractors generated by: (a) parameter set Ψ1 substituted into the expression (1), (b) parameter set Ψ1 substituted into 
system (6), (c) parameter set Ψ2 substituted into differential Equation (1), (d) parameter set Ψ2 substituted into jerk dynam-
ics (6), (e) parameter set Ψ3 numerically integrated using Equation (1), (f) integration of system (1) with parameter set Ψ4, 
(g) parameter set Ψ5 substituted into Equation (1), and (h) parameter set Ψ6 substituted into system (1) and integrated. 

Table 3 provides calculated values that can quantify the complexity of typical strange 
attractors generated by the subclasses of a class C amplifier cell with a single transistor Ψ1 
up to Ψ7. The first flow quantifier is the largest Lyapunov exponent (LLE) calculated using 
the mathematical model, see [30,31] for an overall description and algorithm explanation. 
Based on the spectrum of one-dimensional Lyapunov exponents (real numbers calculated 
with transient behavior omitted), the so-called Kaplan–Yorke dimension (KYD) of a gen-
erated strange attractor is established [32,33]. Capacity dimension (CD) of the state space 
attractor established by using the box counting method [34] is also provided. Mentioned 
flow quantifiers adapted for third-order dynamical systems can be calculated as follows: LLE = lim௧→ஶ lim|ఋ𝒁బ|→଴ |𝛿𝒁ሺ𝑡ሻ||𝛿𝒁଴| , KYD = 2 + 𝐿𝐸ଵ + 𝐿𝐸ଶ𝐿𝐸ଷ  , CD = limఌ→଴ ln 𝑁ሺ𝜀ሻln 1/𝜀  , (17)

where LLE is calculated using flow linearization and change in cube volume after small 
integration step δZ(t), LE1 > LE2 > LE3 are one-dimensional Lyapunov exponents arranged 
in a decreasing order, and N(ε) is the number of cubes with edge ε required to fully cover 
the inspected state attractor. 

Figure 2. Plane projection v1 vs. v2 (black) and rainbow colored three-dimensional perspective views on the typical
strange attractors generated by: (a) parameter set Ψ1 substituted into the expression (1), (b) parameter set Ψ1 substituted
into system (6), (c) parameter set Ψ2 substituted into differential Equation (1), (d) parameter set Ψ2 substituted into jerk
dynamics (6), (e) parameter set Ψ3 numerically integrated using Equation (1), (f) integration of system (1) with parameter set
Ψ4, (g) parameter set Ψ5 substituted into Equation (1), and (h) parameter set Ψ6 substituted into system (1) and integrated.

Figure 3 shows that the chaotic system is extremely sensitive to the small variations of
initial states, as required for the chaotic dynamics. This kind of analysis was performed
for the Ψ1 case of the chaotified class C amplifier (see Table 1), but similar results can be
obtained for the rest of the system cases, both polynomial and PWL. In these graphs, red
dots represent 104 initial conditions with normal distribution, standard deviation 0.01 and
nominal value x0 = (1, 0, 0)T. Other colors have the following meanings: final state is stored
after 1 s (green points), ending state after 10 s (blue dots) and final state after 100 s (black
dots). Note that neighborhood trajectories diverge slowly, and after 10 s fiducial points are
still closely spaced. There is one exception: system case Ψ2 possesses the higher degree of
long-time unpredictability.

Figures 4–10 demonstrate the distribution of dynamic energy through the state space
for individual cases Ψ1–7 (see Table 1). Here, red color denotes high kinetic energy, green
marks average local energy and magenta indicates a very low local energy. Numerical
values associated with these rainbow scaled plots normalized to unity time intervals are
also provided. Initial conditions and time step were kept the same as for the analysis given
in Figure 2; both with integration input parameters and a set of the initial conditions. Firstly,
note that strange attractors occupy different sized volumes in the state space. Therefore,
each plotted high-resolution plane has different axis ranges but uniform step size 0.01;
concrete boundaries can be found within descriptors of the individual figures. For system
cases Ψ1 and Ψ4, it is obvious that average dynamic energy rises with the absolute value
of state variable z. Using visualized plots, geometrical similarity between system cases
Ψ1 and Ψ4 can be observed. Finally, strange attractors primarily do not evolve within
areas with very high or low normalized energy. Along with kinetic energy distributions,



Entropy 2021, 23, 175 8 of 24

Poincaré return maps for the horizontal slices of the state space (z = const) are visualized.
Obviously, geometrical shapes of generated strange attractors are distinct and attractors
are dense in the state space, outside regions of a high local differential growth. If indicated
in the plot, vector field symmetry causes the strange attractor to be mirrored with respect
to the zero plane (z = 0) and Poincaré sections could only be provided for upper or lower
half state space (system cases Ψ2,3,6).
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Figure 8. Horizontal state space slices given by plane z = const. providing rainbow scaled dynamical energy distribution of
the typical chaotic attractors of case Ψ5 system (white trajectory), and associated Poincaré sections (black dots). Individual
figures are sorted from left to right and up to down: z = −1, z = −0.8, z = −0.6, z = −0.2, z = 0.4, z = 0.6, z = 1, z = 1.5, z = 2,
z = 2.5, and z = 2.9.
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Figure 9. Horizontal state space slices defined by plane z = const. providing rainbow scaled dynamical energy distribution
of typical chaotic attractors of case Ψ6 system (white state trajectory), associated Poincaré sections (black dots). Figures
sorted from left to right and up to down are given by: z =−3.3, z = −2.7, z = −2, z = −1.2, z = −0.7, z = 0, z = 0.4, z = 1,
z = 1.7, z = 2.3, and z = 3.3.
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Figure 10. Horizontal state space slices given by plane z = const. providing rainbow scaled dynamical energy distribution of
the typical chaotic attractors of case Ψ7 system (white trajectory), and associated Poincaré sections (black dots). Individual
figures sorted from left to right and up to down are given by: z = −1.4, z = −1, z = −0.5, z = −0.2, z = 0, z = 0.2, z = 0.5, z = 1,
z = 1.5, z = 1.8, z = 2.2, and z = 2.7.

Table 3 provides calculated values that can quantify the complexity of typical strange
attractors generated by the subclasses of a class C amplifier cell with a single transistor Ψ1
up to Ψ7. The first flow quantifier is the largest Lyapunov exponent (LLE) calculated using
the mathematical model, see [30,31] for an overall description and algorithm explanation.
Based on the spectrum of one-dimensional Lyapunov exponents (real numbers calculated
with transient behavior omitted), the so-called Kaplan–Yorke dimension (KYD) of a gener-
ated strange attractor is established [32,33]. Capacity dimension (CD) of the state space
attractor established by using the box counting method [34] is also provided. Mentioned
flow quantifiers adapted for third-order dynamical systems can be calculated as follows:

LLE = lim
t→∞

lim
|δZ0|→0

|δZ(t)|
|δZ0|

, KYD = 2 +
LE1 + LE2

LE3
, CD = lim

ε→0

ln N(ε)

ln 1/ε
, (17)

where LLE is calculated using flow linearization and change in cube volume after small
integration step δZ(t), LE1 > LE2 > LE3 are one-dimensional Lyapunov exponents arranged
in a decreasing order, and N(ε) is the number of cubes with edge ε required to fully cover
the inspected state attractor.

Table 3. Geometric and time-domain features of generated typical strange attractors.

Case LLE KYD CD ApEn

Ψ1 0.071 2.113 2.15 0.539
Ψ2 0.156 2.239 2.24 0.558
Ψ3 0.045 2.132 2.14 0.440
Ψ4 0.020 2.050 2.10 0.503
Ψ5 0.069 2.186 2.20 0.564
Ψ6 0.047 2.081 2.15 0.518
Ψ7 0.050 2.160 2.13 0.620

The self-similarity of patterns of time sequences with different lengths produced
by the inspected chaotic systems is measured using the so-called approximate entropy
(ApEn). The approach for how to deal with this problem including its algorithmizing in a
Matlab environment is provided in several research papers, for example, [35,36]. The ApEn
routine has several input parameters, and the number provided in Table 3 is the biggest
calculated value of ApEn for the particular case Ψ. Here, a data sequence with a length
of 1000 samples, embedding dimension 3 and time delay 1, was adopted. Table 3 can be
roughly evaluated as follows: second case Ψ2 can be considered as the most unpredictable
system with the most complex geometric structure of the strange attractor, while cases
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Ψ1, Ψ5 and Ψ7 produce chaotic waveforms with the most significant entropic properties.
These are probably a good choice for applications in secure communications, chaos-based
modulation/masking techniques, etc.

Figures 11–15 prove that the regions of chaos for individual cases Ψ are wide enough
such that the geometry of desired strange attractors will be structurally stable and experi-
mentally observable—consult paper [37] for details. This is important since real values of
the circuit components fluctuate with time, ambient temperature and heating, and they
are inaccurate due to the fabrication tolerances, etc. Moreover, these effects neither com-
pensate each other nor have mutual correlations. Color scale (legends with values of LLE
are provided directly within individual plots) corresponds to the solution of a dynamical
system (1) as follows: red denotes unbounded solution, yellow and green represent strong
and weak chaos, respectively, blue color marks areas where the ω-limit set is periodic
solution, and magenta highlights areas where trajectory is slowly attracted to the fixed
point. In this case, final time was extended to 5000 s and the data sequence for calculation
was stored after 500 s to remove short as well as long transients. To obtain sufficient
accuracy (high resolution) of all plots, the parameter step was decreased to 0.01 such that
each plot contained 101 × 101 = 10,201 points. Vertical axis is provided using a linear scale
starting with zero. Note that system case Ψ3 has a very narrow parameter subspace that
leads to the geometrically stable predefined chaotic attractor. On the other hand, nominal
values of internal parameters of system case Ψ1 can be adjusted such that the prescribed
strange attractor is very robust and cannot be violated by various imperfections during
circuit construction.
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Figure 16 graphically demonstrates that randomness of generated chaotic motion dis-
appears for both decreased and increased dissipation of the analyzed mathematical model,
represented by the input admittance of bipolar transistor y11. However, corresponding
patterns are different for the particular cases Ψ1–6. To demonstrate this property, dynamical
flow was quantified and divided into the following classes: unbounded solution (white),
strong chaos (red), weak chaos (yellow), limit cycle (green) and fixed point solution (blue).
The parameter step for all plots is chosen uniformly as 0.05, axis scale for case Ψ1 is b∈(2, 3),
d∈(−2, −1), for second system Ψ2 it is c∈(2, 3), e∈(−2, −1), third case Ψ3 has axis ranges
a∈(4, 5), c∈(−2, −1), fourth case Ψ4 is characterized in ranges b∈(2, 3), d∈(−3, −2), results
for fifth case Ψ5 are given in ranges c∈(2, 3), e∈(−3, −2), and for the case Ψ6 it is a∈(1, 2),
e∈(−1.5, −0.5). For this kind of analysis, low resolution plots with 21 × 21 = 441 points
have been calculated.

Figure 17 illustrates geometric structures in the state space associated with individual
attractors for case Ψ1 transistor cell. Plots are calculated for ranges x0∈(−1, 1), y0∈(−1, 1)
and each plot contains 201 × 201 = 40,401 sets of initial conditions. Note that neighborhood
of equilibrium is not a part of the basin of attraction for the chaotic attractor. Basins of
attraction are colored as follows: unbounded solution (red), strange attractor (green), limit
cycle (light blue) and fixed point solution (dark blue).
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4. Design of Flow-Equivalent Chaotic Oscillator

Verification through practical experiment belongs to the common standard for the
presentation of a new chaotic dynamical system. It is widely adopted that the observability
of strange attractors represents satisfactory proof of the robustness of desired dynamics.

Lumped circuit synthesis based on a prescribed mathematical model is a problem
that can be easily solved using several different approaches. One of the most popular
methods is based on an integrator block schematic, where basic mathematical operations are
performed by three types of the two-port building blocks: inverting summing integrators,
differential amplifiers and blocks having piecewise-linear or polynomial transfer curve.
Each mentioned operation requires at least a single active element, usually a voltage
feedback operational amplifier. The main drawback of this concept is evident: the necessity
of using many active elements and a rather high power consumption. An integrator based
kind of circuit realization is possible in three operational regimes: the most preferred is
voltage-mode concept [38], current-mode is usually dedicated for the higher frequency
bands [39] and mixed-mode circuits.

It is worth nothing that the Orcad Pspice circuit simulator was used for the pre-
validation of designed chaotic oscillators. Figure 18 shows maximally idealized case Ψ1
and Ψ3 systems with impedance norm 103 and frequency norm 106. Of course, having ideal
voltage-controlled current-sources (G) and ideal voltage multiplication blocks (MULT),
both norms can be arbitrary; only simulation profile setup needs to be adjusted accordingly.
In our case, final time was set to 10 ms (to visualize the robust strange attractor), maximum
allowed time step was reduced to 1 µs (to demonstrate the density of the strange attractor)
and pseudo-components IC = −1V (IC1) served to set nonzero initial conditions into
the circuit. In real circuitry, the injection of certain initial conditions is a much more
complicated task.
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Figure 18. Idealized circuit realization of a chaotic system with the emulated bipolar transistor stage: (a) case Ψ1 system
with parameters taken from Table 1, (b) case Ψ3 system with parameter set taken from Table 1, (c) Monge projections vy1 vs.
vx1 (blue) and iL1 vs. vx1 (red), (d) frequency spectrum of generated signal vx1 (blue) and vy1 (red). Red areas represent
polynomial feedback transfer functions.

Voltage-mode realizations ready for simulation/construction are provided in Figure 19
and these circuits undergo deep experimental verification. Supply voltage is symmetri-
cal ±15 V. The designed oscillator consumes two cheap voltage feedback operational
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amplifiers TL082 (in a single package), one current-feedback operational amplifier with
compensation node (denoted by letter C) AD844 and two four-quadrant analog multipliers
AD633. Schematic and associated realization using a breadboard are provided by means
of Figure 20. The first designed chaotic oscillator (Figure 19a) is described by following
ordinary differential equations:

d
dt

v1 = − v1

R1C
− v2

R3·C
+ K2 v3

2
R2C

,
d
dt

v2 = − v1

R·C −
v3

R·C ,
d
dt

v3 =
v2

R·C , (18)

where state vector transforms into x = (v1, v2, v3)T and K = 0.1 is the internally trimmed trans-
fer constant of AD633. Note that this chaotic system models the behavior of function (3)
with nonzero values a and c, whereby other terms are zero.
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Similarly, the second dynamical system is able to model differential equations with the
polynomial function (3) with nonzero values of coefficients b and d. The set of differential
equations is:

d
dt

v1 = − v1

R3C
−
(

K +
R2

R1 + R2

)
v2

2
R4C

+

(
K +

R2

R1 + R2

)3 v4
2

R5C
,

d
dt

v2 = − v1

R·C −
v3

R·C ,
d
dt

v3 =
v2

R·C , (19)

whereargument inbracketscanbechosenadvantageouslysuchthatequalityK +R2/(R1 + R2) = 1 holds.
The fundamental time constant of this circuit is τ = R·C = 104·10−8 = 100 µs, but the main
frequency components can be shifted toward the GHz band easily by appropriate frequency
rescaling. Considering the normalized numerical values provided in Table 1, impedance
rescaling 104 and frequency norm 108 circuit components for (18) with parameter set Ψ3
are: C = 10 nF, R = 10 kΩ, R1 = 33 kΩ, R2 = 50 Ω, and R3=2 kΩ. Analogically, circuit
components for (19) with parameter set Ψ2 (Ψ4) are the following: C = 10 nF, R = 10 kΩ,
R1 = 1 kΩ, R2 = 9 kΩ, R3 = 18 kΩ (25 kΩ), R4 = 4.8 kΩ (3.7 kΩ), and R5 = 91 Ω (50 Ω).
Figure 20a shows the PCB (Printed Circuit Board) of two uncoupled two-ports modeled
by the adjustable admittance parameters. While input and output admittance is linear
and represented by a variable resistor, trans-admittance y12 and y21 are polynomials up
to the fourth order. The unoccupied socket is dedicated for integrated circuit TL084 (four
operational amplifiers in a single package), or its empty pins can be used to connect PCB
with the breadboard. PCB is designed such that a user can use switches to change signs
of all coefficients of the polynomial trans-conductance y12(v2) and/or y21(v1). Figure 20b
demonstrates the simplicity of the designed chaotic system.

5. Experimental Verification

Selected strange attractors observed during experimental verification are provided
in Figures 21–23. In the first two cases, individual plane projections captured by an
oscilloscope are compared with numerically integrated results and Equations (1) and (3)
for parameter set Ψ3 and Ψ1, respectively—values are given in Table 1. A uniform 100 mV
grid is used for numerical integration results. For the latter case, numerical mirrors of the
visualized strange attractors are not provided. During measurement, strong sensitivity
of type of the steady state to the initial conditions imposed into the chaotic oscillator has
been confirmed. Nevertheless, goodish correspondence between theory and practical
experiment was achieved. The route-to-chaos scenario can be traced via the shaping of
nonlinear y12(v2) function, namely by variable resistors R4 and R5 in Figure 19b. To obtain
classes of the chaotic system characterized by sets Ψ2, Ψ5, Ψ6, and Ψ7, additional AD633 is
necessary. However, a major part of the proposed oscillator remains unchanged.
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Different realization of the chaotic oscillator offers the principal schematic given in
Figure 24b. This system is described by following a set of ordinary differential equations:

C1
d
dt

v1 = − v1

R1
− K

Ry
v2

2 +
K2

Rx
v4

2 , C2
d
dt

v2 = −iL − y21·v1 , L
d
dt

iL = v2 , (20)

where the forward transconductance y21 is realized by a single-input single-output opera-
tional trans-conductance amplifier. Nonlinear transfer function is implemented by couple
(third-order polynomial for Ψ3, fourth-order polynomial for Ψ1 and Ψ4) or three (fifth-order
polynomial to reach sets of parameters Ψ2, Ψ5 and Ψ6) AD633.
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dynamical system with passive approximated fractional-order inductor, (b) realization based directly on the state model (20).

Speaking in terms of commercially available active devices, trans-conductance ampli-
fiers are available as LM13700, LT1228, MAX435, or diamond transistors OPA660, etc. Note
that a nonlinear two-port needs to work in trans-admittance regime, i.e., with input voltage
and output current. If both impedance and frequency scaling factors could be arbitrary
real numbers, we experience two degrees of freedom for the calculation of inductance and
capacitance. Therefore, the parallel inductor-capacitor resonant tank could be arbitrary as
well, i.e., associated with an audio amplifier, an active part of a sensor element, a model of
piezo-element, a matching subcircuit, etc.
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Fractional-Order Chaotified Class C Amplifier

Now assume that the transistor is loaded by the non-integer order LC tank. Fractional-
ity will be represented by the presence of a fractional-order (FO) inductor. This FO inductor
will be approximated in the frequency domain by a more complicated network [40] with
a phase frequency response of impedance rippled around ideal value 90◦γ. Mentioned
approximation should be valid at least in a finite frequency range that corresponds to
the desired chaotic signal generated by the FO chaotic class C amplifier. In our case, fre-
quency range turns to be from 1 Hz up to 2 MHz (see also Figure 18) and the minimal
complexity of the FO inductor is 7 (number of required resistor-inductor sections). Note
that the impedance of the RL approximation circuit tends to Rc for very low frequencies
and reaches to infinity for high frequencies. A set of ordinary differential equations that
describes circuitry given in Figure 24b with an FO inductor Lx with seven sections is
as follows:

d
dt v1 = − v1

R1·C1
− K

Ry ·C1
v2

2 +
K2

Rx ·C1
v4

2, d
dt v2 = − v2

R2·C2
− y21

C2
·v1 − 1

C2
·iLc ,

d
dt iLc =

v2
Lc
− Rc

Lc
·iLc − 1

Lc
·∑7

k=1 Rck
(
iLc − iLck

)
, d

dt iLck =
Rck
Lck

(
iLc − iLck

)
,

(21)

where k = 1, . . . , 7.
Speaking in terms of FO network analysis, this is the place where conventional circuit-

oriented simulation software such as Orcad Pspice can be utilized. A gallery of passive
ladder FO capacitors calculated for important decimal orders between zero and one can
be found in paper [41]. Structures proposed in this paper have been optimized from the
viewpoint of low phase error (less than 1.5◦) and wide frequency range (from 3 Hz up
to 3 MHz). By following the duality principle, these findings can be extended and FO
inductors for orders 9/10 (Table 4), 8/9 (Table 5), 4/5 (Table 6), and 3/4 (Table 7) are
presented. Numerical values provided in these tables lead to FO inductors having unity
pseudo-inductance, i.e., the module of impedance measured at the specific frequency
f 0 = 1/(2π) Hz is 1 s1−α/F, where α represents math order.

Table 4. Numerical values of fully passive series-parallel circuit realization of fractional-order (FO)
inductor with mathematical order 9/10, i.e., phase shift between voltage and current 81◦.

Ra R1 R2 R3 R4 R5 R6 R7

0.6 Ω 3.3 Ω 22.7 Ω 153 Ω 1031 Ω 6944 Ω 46.7 kΩ 313 kΩ

La L1 L2 L3 L4 L5 L6 L7
144 mH 120 mH 98 mH 79 mH 64 mH 52 mH 42 mH 37 mH

Table 5. Numerical values of fully passive series-parallel circuit realization of FO inductor with
mathematical order 8/9, i.e., phase shift between voltage and current 80◦.

Ra R1 R2 R3 R4 R5 R6 R7

1 Ω 6.3 Ω 44.4 Ω 319 Ω 2286 Ω 16.4 kΩ 118 kΩ 833 kΩ

La L1 L2 L3 L4 L5 L6 L7
203 mH 230 mH 194 mH 152 mH 120 mH 93 mH 73 mH 62 mH

Table 6. Numerical values of fully passive series-parallel circuit realization of FO inductor with
mathematical order 4/5, i.e., phase shift between voltage and current 72◦.

Ra R1 R2 R3 R4 R5 R6 R7

1.1 Ω 4.7 Ω 25.8 Ω 141 Ω 769 Ω 4184 Ω 22.7 kΩ 133 kΩ

La L1 L2 L3 L4 L5 L6 L7
35 mH 237 mH 155 mH 101 mH 66 mH 43 mH 28 mH 22 mH
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Table 7. Numerical values of fully passive series-parallel circuit realization of FO inductor with
mathematical order 3/4, i.e., phase shift between voltage and current 67.5◦.

Ra R1 R2 R3 R4 R5 R6 R7

1.2 Ω 4.5 Ω 22 Ω 108 Ω 526 Ω 2591 Ω 12.7 kΩ 55.6 kΩ

La L1 L2 L3 L4 L5 L6 L7
13 mH 210 mH 132 mH 78 mH 46 mH 27 mH 16 mH 10 mH

Author encouragement for interested readers: please do not hesitate to contact me
(via email) if a specific mathematical order, frequency range, approximation network
complexity or different phase accuracy of the FO capacitor and/or inductor is required.

6. Discussion

This paper brings an example of an electronic circuit for which, under very specific
circumstances, the circuit can switch from regular into chaotic behavior. Conditions leading
to chaotic motion can be summarized as follows:

1. General mathematical models analyzed in this paper (3) and (10) contain normalized
values of all accumulation elements. After optimization, to observe strange attractors,
resulting parasitic capacitance as well as capacitance and inductance located within the
LC resonant tank are of comparable orders. Therefore, parasitic accumulation elements
turn into functional. This fact increases the intrinsic number of degrees of freedom and
forces a naturally non-chaotic analogue building block to behave chaotically. Because
of the internal structure of bipolar transistors commonly used in class C amplifiers,
this kind of motion is possible only for assumed high-frequency operation. In practice,
generated chaotic waveform can be easily misinterpreted as noise.

2. The second condition for chaos evolution is the presence of a specific local nonlinear
feedback. In the mathematical model of the analyzed dynamical system, either
polynomial or PWL scalar function is the only nonlinearity.

3. The third specific property of a bipolar transistor is linear backward trans-conductance.
Its value is non-zero and relatively large.

7. Conclusions

This manuscript admits the parasitic properties of a bipolar transistor to be the work-
ing accumulation elements; base-emitter capacitance is mandatory, while collector-emitter
capacitance may not be present. There is one consequence resulting from this research:
chaos belongs to the natural behavior of sub circuits that contain at least one bipolar transis-
tor, although the expected working regime may seem rather hypothetical for a practically
oriented design engineer. This statement agrees with the conclusion reached in paper [42],
where the JFET element is the single locally active element while the coil is the passive one.
In our case, fingerprints of a bipolar transistor can be found in both folding and stretching
mechanisms of a vector field. Additionally, a set of ordinary differential equations together
with the six different sets of internal parameters proposed in this paper can be considered
as a new chaotic dynamical system. This system is a member of autonomous deterministic
systems with a single center-type stable equilibrium point. Strange attractors observed
in the frame of numerical investigations are in good accordance with those captured as
oscilloscope screenshots using a flow-equivalent circuit.

This paper leaves significant space for further research, for example, to find system
parameters close to the common operation of a single transistor stage where:

1. Parasitic capacitors are working ones,
2. Nonlinearity is typical for a large signal model of a bipolar transistor,
3. An additional degree of freedom is presented because driving force (processed signal)

changes the operational point of an analyzed circuit.

The results presented in this work are strictly associated with a single-stage class C
amplifier with a single bipolar transistor. It is well known that the probability of chaos
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rises with the total order of a circuit. Therefore, the existence of various strange attractors
can be expected for electronic systems with several transistors, such as Darlington circuits,
cascode connections, current mirrors, multi-stage amplifiers, etc. Much more complex
behavior including higher-dimensional chaos and hyper-chaos can be expected if several
transistors coexist and interact.
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