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Bacteria can resist antibiotics by sequestering them

Antibiotics have underpinned numerous advances including surgery, organ transplantation,

and cancer chemotherapy. Therefore, the emergence of bacterial pathogens that are resistant

to therapeutic antibiotics poses enormous challenges to modern medicine [1].

One of the key mechanisms by which bacteria resist antibiotics is the production of

enzymes that inactivate antibacterial molecules via hydrolysis or chemical modification [1].

However, there is growing evidence that bacteria can also survive exposure to antibiotics by

releasing molecules into the extracellular space that sequester the drug and prevent it from

reaching its target. Some of these ‘antibiotic interceptors’ function as decoys by mimicking tar-

get molecules, whilst others share no obvious similarity to the target at all (Fig 1). Many inter-

ceptors also function as structural components of biofilms, thereby contributing to the

antibiotic tolerance of these bacterial communities.

This article summarises our current understanding of antibiotic interceptors, explores the

selection pressures for the emergence of these systems, and identifies future research avenues

to characterise and overcome antimicrobial interception strategies.

Membrane lipid decoys

Daptomycin and colistin are considered antibiotics of last resort, used to treat infections

caused by highly drug-resistant gram-positive and gram-negative bacteria, respectively. They

are both peptide antibiotics with functional similarity to cationic antimicrobial peptides

(AMPs) found in the host. Daptomycin targets phosphatidylglycerol in the membrane of

gram-positive bacteria, resulting in membrane depolarisation and bacterial death, whilst colis-

tin binds to lipopolysaccharide (LPS) on the surface of gram-negative bacteria and disrupts

membrane function [2,3].

Recent work has shown that gram-positive bacteria, including Staphylococcus aureus and

Enterococcus faecalis, can evade daptomycin by releasing phosphatidylglycerol decoys from the

membrane in response to the antibiotic [4,5]. These decoys sequester daptomycin, preventing

the antibiotic from inserting into the bacterial membrane, and exist as monomers, indicating

that their concentration does not exceed the critical micelle concentration [6]. The release of

phospholipids occurs via a process that requires de novo lipid biosynthesis, demonstrating

that this constitutes an active defence mechanism rather than simply arising as the result of

damage to the membrane caused by the antibiotic [4,5]. However, neither the mechanism by

which bacteria detect daptomycin nor the process by which monomeric phospholipids are

released are understood.

Gram-negative bacteria also appear to employ decoys to survive exposure to membrane-

targeting antimicrobials. Although the release of outer-membrane vesicles (OMVs) from
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gram-negative bacteria, such as Escherichia coli and Pseudomonas aeruginosa, occurs in the

absence of antibiotic stress, the rate of vesicle production increases significantly in response to

colistin or polymyxin B [7]. The released OMVs act as decoy receptors for these antibacterial

agents, enabling bacteria to survive otherwise lethal concentrations of the antibiotics [7,8]. It is

unknown whether the release of OMVs in response to membrane-targeting antibacterials is a

regulated process or simply a consequence of membrane disruption. However, since OMV

release can be regulated independently of membrane disruption, it is feasible that vesicle

release in response to polymyxins forms part of a dedicated defence mechanism against these

antibiotics [9].

Antimicrobial interception by proteins

Burkholderia cenocepacia is a major cause of opportunistic lung infections, particularly in

patients with cystic fibrosis, and is inherently resistant to many antibiotics. Upon exposure to

bactericidal antibiotics, including polymyxin B, rifampicin, norfloxacin, and ceftazidime, B.

cenocepacia releases a small protein known as a lipocalin, which sequesters the inducing antibi-

otic [10]. Once bound to the lipocalin, the antibiotic is unable to engage its target, enabling the

bacterium to grow in the presence of otherwise inhibitory concentrations of the drugs [10].

The presence of lipocalin genes in several other pathogens, including Mycobacterium tubercu-
losis and S. aureus, raises the possibility that this constitutes a broadly conserved mechanism of

antibiotic interception [10].

An additional mechanism by which proteins can become interceptors is via their release in

OMVs. For example, proteases within OMVs were found to inactivate the AMP melittin [8].

Fig 1. Bacteria release a diverse array of molecules to intercept antibiotics. AMP, antimicrobial peptide; HNP-1, human neutrophil protein-1; HβD-3,

human β-defensin 3.

https://doi.org/10.1371/journal.ppat.1006924.g001
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Similarly, the presence of β-lactamases in membrane vesicles released from Moraxella catar-
rhalis or S. aureus protects both the producer and drug-sensitive bystander bacteria from β-lac-

tams by hydrolysing the antibiotic [11,12].

Antimicrobial interception by polysaccharides

Many pathogenic bacteria are enclosed within a polysaccharide capsule, which protects the cell

from host immune defences, including phagocytosis, complement peptides and AMPs such as

human neutrophil protein-1 (HNP-1), or the cathelicidin LL-37 [13,14]. However, exposure of

Klebsiella pneumoniae, Streptococcus pneumoniae, or P. aeruginosa to the peptide antibiotic

polymyxin B or HNP-1 triggers the release of polysaccharide from the bacterial surface [15]. It

is unknown whether capsule release is due to damage caused by the antimicrobials or a specific

bacterial response to stress, but this phenomenon promotes bacterial survival by sequestering

polymyxin B and HNP-1 [15]. Furthermore, exposure of the opportunistic pathogen Acineto-
bacter baumanii to chloramphenicol or erythromycin results in hyperproduction of capsular

exopolysaccharide, which confers resistance to these antibiotics, although the regulation and

mechanism of this process is unclear [16].

In addition to capsular polysaccharide, other polysaccharides frequently provide an impor-

tant structural component of biofilms, where they can also modulate susceptibility to antimi-

crobials. For example, the Psl exopolysaccharide contributes to the tolerance of P. aeruginosa
biofilms to colistin and tobramycin, most likely by sequestering the antibiotics, as observed for

capsular polysaccharides [17].

Antimicrobial sequestration by DNA

Like exopolysaccharides, extracellular DNA (eDNA) is a major structural component of bio-

films, as well as sequestering positively charged antimicrobials via electrostatic interactions

[18]. For example, P. aeruginosa biofilms rich in eDNA can sequester aminoglycosides such as

tobramycin, leading to increased bacterial survival [19]. Similarly, Staphylococcus epidermidis
biofilms exposed to subinhibitory concentrations of vancomycin contain higher levels of

eDNA than unexposed biofilms, although the regulatory and mechanistic basis for this is

unknown [20]. This eDNA binds vancomycin, impeding its penetration through the biofilm,

leading to increased bacterial survival [20]. In addition to antibiotics, eDNA also binds human

β-defensin 3, a cationic host defence AMP, reducing its ability to kill both planktonic and bio-

film forms of Haemophilus influenzae [21].

What has driven the evolution of antibiotic interceptors?

Many bacteria exist in single or polymicrobial biofilms that are maintained by extracellular

polymeric substances such as DNA, polysaccharides, proteins, and lipids [18]. Therefore, the

evolution of biofilm formation may have provided the mechanisms used in interceptor pro-

duction and release. Subsequently, it is likely that intermicrobial competition selected for the

use of extracellular products as antibiotic interceptors. Whilst antibiotic resistance is a recent

clinical problem, the underlying mechanisms are ancient, reflecting the presence of antibiotic-

producing fungi and bacteria in the environment [22]. Bacteriophages are also prevalent in the

environment and may, therefore, have contributed the emergence of OMVs as an extracellular

defence mechanism [7].

In the context of polymicrobial biofilms, antibiotic interceptors become ‘public goods’, a

shared resource between the bacteria that produce them and other cells that do not. This

shared-goods approach may reduce the overall cost of producing interceptors whilst maintain-

ing a high level of protection [17].
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In addition to the threats from antibiotic-producing competitors and bacteriophages, path-

ogens must also overcome host defences. Since many of the interceptors described above pro-

tect bacteria from AMPs as well as antibiotics, the host immune system may have provided

further selection pressure for the evolution of antibiotic interceptors [4,7,8,13,14,21,23]. There-

fore, antibiotic interceptors may have evolved to provide bacteria with an innate defence

against the broad spectrum of threats posed by competitors, bacteriophages, and host

defences.

Summary and future directions

The frequent inability of apparently appropriate antibiotic therapy to clear bacterial infections

suggests that mechanisms beyond dedicated antibiotic resistance modulate treatment out-

comes. One such mechanism involves the release of molecules into the extracellular space that

sequester antibiotics before they can engage with their target. These recently discovered pro-

cesses underscore the diversity of mechanisms by which pathogens have evolved resistance to

both host defences and antibiotics (Fig 1, Table 1). However, whilst we are beginning to iden-

tify and characterise antibiotic interceptors, several major questions remain (Table 2). In par-

ticular, our lack of understanding of these mechanisms has made it difficult to fully assess their

contribution to treatment failure. For example, the lack of mutants defective for capsule release

Table 1. Summary of antibiotic interceptors.

Class of

Interceptor

Mechanism of Interception Bacterial Species Antimicrobials Sequestered Reference

Lipid Release of monomeric membrane phospholipids S. aureus Daptomycin, nisin, melittin [4]

E. faecalis
Streptococcus

spp.

Daptomycin [5]

Release of OMVs E. coli Polymyxin B, colistin [6],[7]

Transport of hydrolytic enzymes within OMVs E. coli Melittin [8],[9]

M. catarrhalis Amoxicillin [11]Protein

Release of lipocalins B. cenocepacia Rifampicin, norfloxacin, ceftazidime, polymyxin

B

[10]

Polysaccharide Release of free capsular polysaccharide from bacterial

surface

P. aeruginosa
S. pneumoniae
K. pneumoniae

HNP-1, polymyxin B [13–17]

DNA Release of eDNA in biofilms P. aeruginosa Tobramycin, gentamicin [19]

S. epidermidis Vancomycin [20]

H. influenzae Human beta-defensin-3 [21]

Abbreviations: eDNA, extracellular DNA; HNP-1, human neutrophil protein-1; OMVs, outer membrane vesicles.

https://doi.org/10.1371/journal.ppat.1006924.t001

Table 2. Outstanding questions.

Outstanding Questions:

1. What is the contribution of antibiotic interceptors to clinical treatment failure?

2. How do bacteria sense the presence of antibiotics and AMPs?

3. How do bacteria release interceptors?

4. Can we block the production of interceptors to promote treatment outcomes?

Abbreviation: AMP, antimicrobial peptide.

https://doi.org/10.1371/journal.ppat.1006924.t002
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or OMV production prevents appropriate testing of antibiotic susceptibility in vivo. Chal-

lenges in studying interceptors may be resolved using small-molecule inhibitors. For example,

it has been shown that daptomycin-induced phospholipid release can be partially inhibited

by the β-lactam antibiotic oxacillin [4]. In addition to determining the contribution of antibi-

otic interception to treatment failure, this approach may also improve treatment outcomes by

identifying adjunctive therapeutic approaches that block the production of antimicrobial-

sequestering molecules. Such an approach may also disrupt biofilm formation since many

interceptors are important components of these structures [18]. In addition, since interceptors

do not chemically inactivate antimicrobials, it may be possible to develop adjunctive therapeu-

tic strategies that prevent or reverse antibiotic sequestration. For example, lipocalins could not

sequester antibiotics when fat-soluble vitamins were present [10]. Finally, since several antibi-

otic interceptors also confer resistance to AMPs, inhibitors of interceptor production or func-

tion may contribute to treatment success by increasing the susceptibility of pathogens to host

defences.
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