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Abstract

Ticks and tick-borne diseases represent a growing public health threat in North America and

Europe. The number of ticks, their geographical distribution, and the incidence of tick-borne

diseases, like Lyme disease, are all on the rise. Accurate, real-time tick-image identification

through a smartphone app or similar platform could help mitigate this threat by informing

users of the risks associated with encountered ticks and by providing researchers and public

health agencies with additional data on tick activity and geographic range. Here we outline

the requirements for such a system, present a model that meets those requirements, and

discuss remaining challenges and frontiers in automated tick identification. We compiled a

user-generated dataset of more than 12,000 images of the three most common tick species

found on humans in the U.S.: Amblyomma americanum, Dermacentor variabilis, and Ixodes

scapularis. We used image augmentation to further increase the size of our dataset to more

than 90,000 images. Here we report the development and validation of a convolutional neu-

ral network which we call “TickIDNet,” that scores an 87.8% identification accuracy across

all three species, outperforming the accuracy of identifications done by a member of the

general public or healthcare professionals. However, the model fails to match the perfor-

mance of experts with formal entomological training. We find that image quality, particularly

the size of the tick in the image (measured in pixels), plays a significant role in the network’s

ability to correctly identify an image: images where the tick is small are less likely to be cor-

rectly identified because of the small object detection problem in deep learning. TickIDNet’s

performance can be increased by using confidence thresholds to introduce an “unsure”

class and building image submission pipelines that encourage better quality photos. Our

findings suggest that deep learning represents a promising frontier for tick identification that

should be further explored and deployed as part of the toolkit for addressing the public

health consequences of tick-borne diseases.
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Introduction

In recent years, artificial intelligence (AI) has begun to permeate many scientific fields in a

manner that is revolutionizing data-driven problems. The appeal of AI is twofold: first, it offers

a way to automate repetitive and time-consuming tasks currently performed by humans. Sec-

ond, it can further a researcher’s understanding by finding patterns and trends in data that

may have gone unrecognized. One area where artificial intelligence has shown particular suc-

cess is in image recognition, largely through deep learning. Deep learning uses a powerful set

of algorithms called neural networks that can learn from data without being explicitly told

what features to look for. The use of deep learning for image-based tick identification is a

novel approach to the problem of tick identification that could inform members of the general

public, health care providers, and public health practitioners about tick exposures and associ-

ated tick-borne disease (TBD) risk.

Ticks and associated pathogens represent an established and evolving public health threat

in North America, with trends indicating that the problem will only grow in the coming years.

Tick-borne diseases, especially those associated with Ixodes scapularis, account for 95% of all

reported vector-borne disease cases in the U.S. [1, 2]. More than 400,000 individuals are diag-

nosed and treated for Lyme disease each year in the U.S. [3, 4] and more cases may go unre-

ported [5, 6]. The abundance of I. scapularis and other ticks, their geographical distribution,

the prevalence of infection, and the number of tick-borne pathogens with which they are

infected, are all increasing due to a variety of factors including reforestation, growing white-

tailed deer populations, and warming temperatures [1, 7–10]. The increasing significance of

ticks on the epidemiological landscape demands innovation toward effective tools to prevent

TBD transmission.

Quick, accurate, and easily accessible species identification is an essential part of the effort

to treat tick bites appropriately and to monitor and surveil tick populations. Because specific

pathogens are associated with specific tick species, understanding the risk associated with tick

exposure depends on accurate species identification and estimation of feeding duration to

inform the need for medical treatment (e.g., prescription antibiotics) [11, 12]. Researchers also

rely on tick species identification to manage surveillance programs that provide insights into

tick phenology, changes in population density and spatial distribution, and the introduction of

new species [13, 14].

Passive surveillance programs have provided valuable data on tick distributions and TBDs.

Passive surveillance means researchers and public health agencies use data generated from

clinics and public accounts instead of actively and systematically looking for ticks on hosts or

in the environment. Some programs have rolled out smartphone apps that encourage mem-

bers of the public to submit images of ticks after an encounter [15–17]. This method provides

an economical way to monitor the distribution of ticks over large spatial regions [14, 18]. Data

from passive surveillance programs can also help assess the regional risk associated with tick-

borne diseases. For example, Jordan and Egizi [14] reviewed tick submissions over a ten-year

period in Monmouth County, NJ, and found a strong correlation between the number of

images submitted and the incidence of Lyme disease. When observations in passive surveil-

lance programs are validated, and data are available in near real-time, these programs could

act as cost-effective early warning systems to implement intervention strategies that reduce

tick exposure and TBDs. However, challenges remain with citizen science data, see Eisen and

Eisen 2020 [19] for details.

Although tick species identification is critical for surveillance and treatment, it is difficult

and time- consuming, and limited by the availability of well-trained experts [20, 21]. Many

people, including clinicians, are aware that ticks can transmit pathogens, but may not have the
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in the public domain on iNaturalist (inaturalist.org).

These can be accessed with unique DOIs from the

Global Biodiversity Information Facility (GBIF;

www.gbif.org): https://doi.org/10.15468/dl.4gbcs6,

https://doi.org/10.15468/dl.sq29u5 and https://doi.

org/10.15468/dl.tyybke. The images used for the

laboratory test set are likewise available in the

public domain on TickReport at tickreport.com.

Images from the TickApp were collected for

research in accordance with Institutional Review

Board approved protocols (2018−84, University of

Wisconsin – Madison, WI; and AAA3750-M00Y01,

Columbia University, New York, NY). The Tick App

images can only be used for tick identification and

educational purposes, so they cannot be shared

publicly. In order to request access this data,

please use the following contact information: - Dr.

Susan M. Paskewitz - smpaskew@wisc.edu - Dr.

Lyric C. Bartholomay - lyric.bartholomay@wisc.edu

- UW-Madison IRB Health Sciences -

AskTheIRB@hsirb.wisc.edu.
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knowledge or confidence to correctly identify ticks, assess the risk of TBD transmission [22,

23], and determine whether they should seek further treatment. Butler et al. [12] asked 74 pri-

mary health care providers to identify specimens of the three most prominent tick species in

the US: Amblyomma americanum, Dermacentor variabilis, and I. scapularis and found that

they correctly identified 57.9%, 46.1%, and 10.5% of specimens, respectively. In an image-

based passive surveillance program, Kopsco and Mather [23] found that members of the gen-

eral public scored 13.2%, 19.3%, and 22.9% identification accuracy for A. americanum, D. var-
iabilis, and I. scapularis, respectively. By contrast, people who had received formal

entomological training had >90% accuracy in tick species identification [18, 20]. However,

this expertise is limited and therefore rate-limiting in getting results to the exposed individual

or health care provider in a timely manner.

Integrating a trained deep learning model for tick identification with an easily accessible

internet-based or mobile health platform would have several advantages. Individuals and

health care providers could get rapid tick identification and risk assessment data to inform

clinical treatment. Rapid tick identification is important because there is a 72-hour window

following tick-removal where prophylaxis treatment can be considered [11]. The current

options of sending in the physical sample for lab identification or waiting for tick experts to

review a photo submission may not return results within this window. Furthermore, an auto-

mated or semi-automated tick identification would free up researchers’ time from repetitive

tick identification tasks and attract more users to passive surveillance programs that can pro-

vide an economical way to monitor tick distributions.

We define three requirements for the deployment of a platform for real-time tick identifica-

tion from digital images: 1) the model must be able to identify user-generated images (i.e.,

widely varying images from the public) with a broad range of image quality, 2) the model must

be able to accurately identify the tick images with less than a 5% chance of misclassification, 3)

the model must account for uncertainty in its predictions (e.g., and “unsure” class or meaning-

ful confidence scores). In a semi-automated approach, instances which the model classified as

“unsure” would be left for tick experts to identify.

Deep learning is already established as a powerful tool in computer vision tasks like medical

imaging, diagnostics, and species identification and is thus uniquely suited to the task outlined

above. The approach has been used to detect skin cancer [24] and Alzheimer’s disease [25],

diagnose retinal disease [26], and predict cardiovascular risk factors [27]. Deep learning has

been applied to detect Lyme disease through the classification of erythema migrans––the

unique skin rash often seen in the early stages of Lyme disease [28–30]. Much progress has

also been made in the area of automated species identification. Deep learning has been used to

identify plant species [31], mammals [32], fish [33], and insects [34] among others. However,

despite the scale and impact of the tick-borne disease problem, there has been relatively little

work on automated tick identification. Akbarian et al. [35] trained a convolutional neural net-

work to distinguish between I. scapularis and non-I. scapularis ticks with high-quality images

taken in a lab. Their classifier achieved a best accuracy of 92%, but is limited in its predictive

power by only identifying a single tick species. Omodior et al. [36] trained a neural network on

images captured using a microscope to distinguish between A. americanum, D. variabilis, I.
scapularis, and Haemaphysalis spp. and their life stages, but had a limited training and evalua-

tion dataset (200 training images and 20 evaluation images per class); their best classifier scores

80% accuracy. Both algorithms are further limited in their feasible deployment to smartphone

or web-based tick identification services by their use of high-quality, standardized images

taken in a laboratory setting. Models trained and evaluated on laboratory-style images often

fail to perform as well in a real-world environment where low-quality images and non-stan-

dard backgrounds are common [37, 38].
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Here, we present a convolutional neural network called TickIDNet that is trained on an

original user-generated dataset to identify the three most important human-biting tick species

in the midwestern and eastern U.S.: I. scapularis, D. variabilis, and A. americanum. Our objec-

tive was to develop a tick identification tool that meets the requirements for feasible deploy-

ment using public submitted images, and outline the challenges and frontiers that remain in

automated tick identification. We compiled a dataset of user-generated images taken with

mobile devices. To the best of our knowledge, we are the first to use a user-generated dataset

for training where ticks are photographed amidst chaotic, non-standard environments and

backgrounds. We used image augmentation to increase the size of our dataset to more than

90,000 images; a dataset much larger than the datasets used in other reports on deep-learning-

based tick identification [35, 36]. We systematically compared and tuned several convolutional

neural network architectures and report our optimal hyperparameter configuration which

uses InceptionV3 architecture and ImageNet weights. Finally, we implemented a state-of-the-

art method for controlling our model’s error rate from Villlon et al. [39] that enables our

model to include uncertainty in its predictions.

Methods

Dataset

Image collection. To train a neural network to distinguish A. americanum, D, variabilis,
and I. scapularis, we compiled 12,177 user-generated images collected from public submissions

to the Tick App (thetickapp.org) [15], the Wisconsin Medical Entomology Laboratory

(WMEL), and the Global Biodiversity Information Facility (GBIF)[40–42]. User-generated

images (Fig 1) have varied backgrounds, camera angles, exposures, and relative tick sizes and

are thus broadly representative of the future public tick image submissions.

Image quality assessment. After compiling the images, a team from the Midwest Center

of Excellence for Vector-Borne Diseases (mcevbd.wisc.edu) with formal entomological train-

ing generated identifications for each image, including species, sex, life stage (adult, nymph,

larvae), blood-feeding status (fed or unfed), and relative tick size (see “Relative Tick Size”).

When the sex, life stage, or feeding status of the tick could not be identified, the respective cate-

gory was coded as “unknown.” A breakdown of the categorical information is shown in

Table 1.

Relative Tick Size: We define the term relative tick size (RTS) to mean the side-length of a

square bounding box around the tick measured in pixels (Fig 2). The RTS metric refers to the

size of the tick on a standardized scale from 0–224 pixels (see “Cropping” section). RTS is a

good indicator of image quality: an image with a relatively high RTS (i.e., 100–224) usually has

more pixel information on important features (e.g., scutum and capitulum), where those dis-

tinguishing features have less resolution in images with a relatively small RTS (i.e., 15–80).

Images with a low RTS are also subject to the small object detection problem in which the neu-

ral network fails to recognize the tick as the focus feature due to its small size. Instead the net-

work assigns importance to irrelevant features from the larger image (see “Convolutional

Neural Networks”). Failure to assign importance to the object of interest results in nonsensical

predictions and reduced overall performance [43, 44].

During image quality assessments the experts assigned each image a quality indicator that

included RTS and they marked the image as “keep,” “augment,” or “discard.” The quality indi-

cator metric was applied as follows: 1) Augment (9502 images total, 78.1%): the image contains

a single identifiable tick with visible features (see “Image Preprocessing” and Fig 3); 2) Keep

(1398 images total, 11.5%): the image contains one or several ticks that are difficult to identify

and contain little information on distinguishing features; 3) Discard (1273 images total,
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10.5%): the image does not contain a tick or contains too little information to make an

identification.

Image pre-processing. All images were cropped to 224x224x3 input format meaning 224

x 224 pixels and RGB color channels (Fig 2). This is a default resizing procedure for many

image recognition problems that balances resolution with computational performance.

For the images marked as “augment,” an additional copy was created by cropping a differ-

ent region of the original image. The “augment” pictures and their copies were then flipped

and rotated such that each original image produced an additional 15 images (Fig 3). This tech-

nique is called data augmentation and has been shown to effectively increase model perfor-

mance by increasing the amount of data available for training [34, 45].

Training, validation, and test sets. Typically, three datasets are used to develop a model:

a training set, a validation set, and a test set. The training set contains the images from which

the neural network learns to make its predictions. The validation set is used to continuously

evaluate the accuracy and error metric (also referred to as the loss metric) of the network

Table 1. Summary of images in the user-generated dataset.

Species Life stage Sex Feeding status Total

Adult Nymph Larvae Unk Male Female Unk Unfed Fed Unk

A. americanum 1565 145 19 211 435 1099 406 1533 149 258 1940

D. variabilis 6143 47 25 29 2381 3380 483 5394 725 125 6244

I. scapularis 2481 143 2 90 326 2013 377 1949 596 171 2716

Total 10189 335 46 330 3142 6492 1266 8876 1470 554 10900

This data was used to train and evaluate TickIDNet. Images marked as discard during the image quality assessment are not included in this summary. Unk: Unknown.

https://doi.org/10.1371/journal.pone.0260622.t001

Fig 1. Representative digital images of ticks from the user-generated dataset compiled from iNaturalist, the Tick App, and the Wisconsin

medical entomology laboratory. The user-generated test set includes adult, nymphal and larval, male and female, fed and unfed tick specimens

of the three most common human-biting ticks in the U.S.

https://doi.org/10.1371/journal.pone.0260622.g001
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Fig 2. Cropping, resizing, and measuring the relative tick size (RTS) for user-generated images. (a) Original resolution image

of a female Dermacentor variabilis tick. (b) The cropped and resized image (224x224 pixels) with the relative tick size bounding

box depicted in green (RTS = 67 pixels).

https://doi.org/10.1371/journal.pone.0260622.g002

Fig 3. Image augmentation procedure to increase the size of the user-generated training dataset. Each image was re-cropped, flipped, and

rotated to generate 15 visually distinct images. This process increased the size of the training dataset from 7,625 to 95,119 images.

https://doi.org/10.1371/journal.pone.0260622.g003
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during the model training and development. The network is not trained on the validation

images to ensure that the model can generalize to new data and is not just learning features

particular to the validation dataset–a problem referred to as overfitting. The test set is scored

only once at the end of the model development phase to ensure that network-tuning does not

overfit the validation set. This partitioning method provides a good prediction of how the

model will perform on unseen data [46].

After removing the images marked as “discard” during the image quality assessment, we

followed the above procedure and randomly assigned the remaining 10,900 images to a train-

ing set (7625, 70%), a validation set (2181, 20%), and a test set (1094, 10%) which we will refer

to as the user-generated test set. The user-generated test set is used to evaluate the model per-

formance on the kinds of images submitted by the public (Fig 1). We also introduced a second

test set of 300 images (100 per class) which was compiled from the TickReport database (tick-

report.com) and contained only images of adult ticks taken in a laboratory setting. This second

test set, which we will refer to as the laboratory test set, gives a good indication of the model’s

performance on high-quality (RTS 100–224) ground-truth images (Fig 4).

The augmented images were included in the training set after the user-generated images

had been partitioned into a training, validation, and test set. This ensured that the validation

and test sets did not include any of the augmented copies on which the network was trained.

Including the augmented images increased the number of images in the user-generated train-

ing set from 7,625 to 95,119.

Model development

Convolutional neural networks. A convolutional neural network (CNN) is a type of deep

learning algorithm that can take an input image (a three-dimensional grid of RGB pixels) and

assigns features of that image importance for classification. The architecture of CNNs consists

of connected layers made up of many learnable parameters called weights and biases. Different

layers perform functions like feature extraction (e.g., edges, colors, gradient directions) and

feature pooling, to reduce the size of the original input, and learn the most relevant features for

classification in a computationally efficient way. What makes CNNs unique from other more

traditional machine learning classifiers is that they can learn from data without any a priori
knowledge of the objects in question or human-assigned features.

During model training, the CNN learns by continuously making predictions on the training

data and adjusting the weights and biases to minimize some function usually called the net-

work’s loss or error until, in theory, optimal performance is reached. However, reaching

Fig 4. Representative images from the laboratory test set that includes high-quality images of tick specimens taken on a plain background.

The laboratory test set includes male and female (fed and unfed) specimens of the three most common human-biting ticks in the U.S.. The

laboratory test set was sourced from an online database maintained by tickreport.com; a tick identification and testing service.

https://doi.org/10.1371/journal.pone.0260622.g004
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optimal performance requires the careful tuning of various non-learned parameters called

“hyperparameters” including learning rate, training duration, weight initialization, and most

importantly, network architecture.

To converge on the optimal hyperparameter configuration, we systematically compared the

cross-entropy loss for different network architectures and hyperparameter configurations dur-

ing the validation phase. The configuration with the lowest loss was used to train TickIDNet.

For each network architecture (Table 2) we compared three optimization algorithms: Adam

[47], stochastic gradient descent (SGD), and RMSprop. Furthermore, we ran a parameter

sweep over key hyperparameters e.g., learning rate, momentum, and mini-batch size. For all

configurations, we started with pre-trained weights from ImageNet (image-net.org). ImageNet

weights are a standard set of weights tuned on millions of images across 1,000 different classes

and are commonly used to speed up new classification tasks. We also used balanced class

weights to account for imbalanced class sizes. Table 2 shows the results for the best-performing

configurations for each network architecture. Based on these results we selected the Incep-

tionV3 architecture with SGD optimization, a learning rate of 0.004, momentum of 0.9, and a

mini-batch size of 32 as our optimal configuration (Table 2). Additional information on Tick-

IDNet model training can be found on GitHub at github.com/lennijusten/TickIDNet. For a

more detailed description of CNNs and hyperparameters see Dhillon and Verma [48]. For a

description of the final InceptionV3 CNN architecture used in our application see Szegedy

et al. [49].

Computation. Training and evaluating CNNs on large image datasets is a computation-

ally expensive process. An InceptionV3 model trained on a single CPU core required roughly

one day of computing time with 20Gb of memory and 20Gb of disk space. We used the infra-

structure at the University of Wisconsin–Madison’s Center for High Throughput Computing

(CHTC, chtc.cs.wisc.edu) to train and evaluate many different models concurrently on differ-

ent CPUs. The models and image generator pipelines were built from the open-source Python

packages Tensorflow 2.3.0 [50] and Keras [51].

Model evaluation

After selecting the final model (henceforth referred to as TickIDNet), we evaluated its perfor-

mance on the user-generated test set and the laboratory test set. For metrics of aggregate per-

formance across all classes, we report accuracy (i.e., the overall proportion of correct to

incorrect tick identifications), weighted F1-score, and the Kappa statistic (also called Cohen’s

kappa coefficient) which considers how much better the agreements are between the true class

and TickIDNet’s predicted class compared to chance agreements [52]. A Kappa statistic of 0

indicates chance agreement and a Kappa statistic of 1 indicates perfect agreement (S1 Text).

The weighted F1-score is the average of the class F1-scores weighted by the number of images

in each class.

Table 2. Best performing configuration results for four different network architectures.

Architecture Training Accuracy Validation Accuracy Training loss Validation loss

InceptionV3 0.9884 0.9200 0.0315 0.2818

ResNet101 0.9874 0.8520 0.0317 0.5453

DenseNet121 0.9909 0.9034 0.0241 0.4576

DenseNet201 0.9984 0.9071 0.0043 0.4025

The configuration with the lowest validation loss, InceptionV3 (optimizer = SGD, learning rate = 0.004, momentum = 0.9, mini-batch size = 32), was used to train

TickIDNet.

https://doi.org/10.1371/journal.pone.0260622.t002
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The performance of TickIDNet among the three classes A. americanum, D. variabilis, and I.
scapularis is reported by precision (also called positive predictive value, Eq 1), recall (also called

sensitivity, Eq 2), and F1 score (Eq 3). The precision of the I. scapularis class, for example, is

the fraction of actual I. scapularis images out of all the images in the test set predicted by Tick-

IDNet to be I. scapularis. The recall of the I. scapularis class is the fraction of actual I. scapularis
images correctly identified by TickIDNet. A perfect classifier would have precision and recall

of 1 for every class. The F1-score combines these measures into a single score that accounts for

imbalanced class sizes. These metrics can be calculated from a confusion matrix, a type of table

that visualizes the class-specific true positive (TP), true negative (TN), false positive (FP), and

false negative (FN) rates (S1 Table).

Precision ¼
True positive

True positiveþ False positive
Eq 1

Recall ¼
True positive

True positiveþ False negative
Eq 2

F1 � score ¼
2� True positive

2� True positiveþ False positiveþ False negative
Eq 3

Confidence thresholding. When TickIDNet makes a prediction, it returns a probability

(confidence) between 0–1 for every species class (i.e., A. americanum, D. variabilis, I. scapu-
laris) such that the sum of the probabilities across all classes equals one. The class with the

highest probability is then returned as the output. Confidence thresholding introduces an

additional “unsure” class by setting a minimum confidence threshold at a value τ. If the highest

probability prediction is greater than τ, the output (i.e., species class) is returned as before.

However, if the highest probability prediction is less than τ, the image is classified as “unsure”

instead (Fig 5). The threshold τ can be set distinctly for each class.

High probability predictions are positively correlated with correct predictions, so adjusting

τ can increase the model’s correct classification rate (CC, Eq 4) and decrease a model’s misclas-

sification rate (MC, Eq 5) at the cost of a higher unsure classification rate (UC, Eq 6) (i.e.,

more images being classified as “unsure”). We adopted the method proposed by Villon et al.

[39] to calculate class-specific confidence thresholds τi from the validation dataset results such

that the MC was bounded below some value α. We calculate species-specific confidence

thresholds τi for three α values that constrain the MC on the validation set to be less than 10%,

5%, and 2% respectively. We then evaluate the thresholds on the user-generated test set. For

more information on how these thresholds were calculated see Goal 2 in Villon et al. [39].

For a prediction on an image x, TickIDNet returns the class prediction C(x) determined by

the highest probability S(x). The expert-identification class of this image is known to be Y(x).

The rates for CC, MC, and UC are then calculated for each species i as shown Eqs 1–4 where #

is the enumeration function [39].

CCi ¼
#ððCðxÞ ¼ iÞ AND ðSðxÞ > tiÞÞ AND ðY ¼ iÞ

#ðY ¼ iÞ
Eq 4

MCi ¼
#ððCðxÞ 6¼ iÞ AND ðSðxÞ > tiÞÞ AND ðY ¼ iÞ

#ðY ¼ iÞ
Eq 5
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UCi ¼
#ððCðxÞ ¼ iÞ OR ðCðxÞ 6¼ iÞÞ AND ðSðxÞ < tiÞ

#ðY ¼ iÞ
Eq 6

CCi þMCi þ UCi ¼ 1 Eq 7

Effect of RTS and tick characteristics on model performance. We hypothesized that

there would be a strong positive correlation between RTS and TickIDNet performance due to

the underlying mechanics of CNNs that struggle with identifying small objects. To examine

this relationship, we first fit a logistic regression to the user-generated test set results where a

correct prediction is coded as 1, and an incorrect prediction is coded as 0. Next, we used chi-

squared analyses, to evaluate the relationship of correct predictions with each of the tick char-

acteristics (species, sex, life stage, and feeding status). To evaluate if mean RTS was different

among the groups of each of the tick characteristics, we used ANOVAs. We expected that

groups with a low RTS were less likely to be correctly identified. When the mean RTS was sig-

nificantly different between groups we report the mean, median, and range of RTS for each of

the groups and the likelihood they were correctly identified compared to the reference groups

(I. scapularis, females, adults, or fed ticks) using a logistic regression. Lastly, we fit a multivari-

able logistic regression to the subset of data containing only adult ticks to determine how spe-

cies, sex (male, female), the interaction between species and sex, feeding status (fed and

unfed), and RTS related to a correct prediction. Images with unknown sex and/or feeding

Fig 5. Application of confidence thresholds to TickIDNet predictions. The classifier returns a probability for each tick species class with the highest probability

prediction S(x) determining the class prediction C(x). If S(x) is lower than the computed species threshold τ, the image is not returned with the C(x) class

prediction but is classified as “unsure” instead. These formulas are adapted from Villon et al. [39].

https://doi.org/10.1371/journal.pone.0260622.g005
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status were excluded from this analysis. Akaike’s Information Criterion (AIC) was used to

compare the full model with reduced models (S2A Table), and we report the most parsimoni-

ous model with the lowest AIC or within 2 AIC of a more complex model. We assessed the

logistic regression models using McFadden’s Pseudo R2 value [53], the area under the receiver

operator curve (AUC), and Hoslem’s test for goodness of fit using 10 groups. These analyses

were conducted in R statistical computing software (version 4.0.2) using package lme4 [54]

(version 1.1.23) for regression analyses, package pROC [55] (version 1.16.2) for AUC calcula-

tions, and package ResourceSelection [56] (version 0.3.5) for Hoslem’s test.

Grad-CAM visualization. One method to check if TickIDNet is extracting the relevant

part of the image (i.e., the part containing the tick) is a Gradient-weighted Class Activation Map-

ping or “Grad-CAM” visualization. This technique developed by Selvaraju et al. [57] provides

insight into the model’s decision by overlaying a heatmap onto the predicted image showing

which regions were most important for classification. If Grad-CAM shows TickIDNet assigning

importance to areas of the image not containing a tick, it would be an indication that the model

has failed to recognize the tick within the image. The Grad-CAM method provides a qualitative

reality-check that TickIDNet is indeed classifying images based on relevant tick features.

Results

TickIDNet was evaluated on a user-generated test set consisting of 1,094 images collected from

public submissions to mobile phone apps (the Tick App) and websites (GBIF, WMEL). In

aggregate, TickIDNet scored an 87.84% accuracy, 87.73% weighted F1-score, and 0.7895

Kappa agreement score on the user-generated test set. When TickIDNet was evaluated on the

laboratory test set containing high-RTS images with standardized white backgrounds, the

model scored a 91.67% accuracy, 91.55% weighted F1-score, and 0.875 Kappa agreement

score. The performance of TickIDNet among the three species is summarized in Table 3.

Confidence thresholding

After calculating the optimal confidence thresholds from the validation dataset to constrain

the misclassification rate (MC) to 10%, 5%, and 2%, the thresholds were evaluated on the user-

generated test set. The results show that the thresholding leads to lower MC for all species at

the cost of a higher unsure classification (UC, Fig 6). For the weakest class, A. americanum,

TickIDNet thresholds must be set particularly high to constrain the MC. In the 5% MC bound,

the UC of 43.8% for A. americanum means that 43.8% of the images which TickIDNet would

have returned as A. americanum will instead be returned as “unsure.” For the remaining 56.2%

of images, TickIDNet correctly identifies 92.7% of them as A. americanum images.

Image quality and model predictions

To investigate the effect of RTS (as a proxy for image quality) on TickIDNet’s performance, we

fit a logistic regression to the user-generated test set predictions (Figs 7 and 8). In univariable

Table 3. Class-specific performance statistics of TickIDNet evaluated on the user-generated test set (n = 1094) and the laboratory test set (n = 300).

User-generated test set Laboratory test set

A. americanum (n = 194) D. variabilis (n = 625) I. scapularis (n = 275) A. americanum (n = 100) D. variabilis (n = 100) I. scapularis (n = 100)
Precision 82.97% 91.07% 83.86% 87.85% 96.47% 91.67%

Recall 77.84% 91.36% 86.91% 94.00% 82.00% 99.00%

F1-score 80.32% 91.21% 85.36% 90.82% 88.65% 95.19%

Precision, recall, and F1-score can all be calculated from a confusion-matrix of results (S1 Table).

https://doi.org/10.1371/journal.pone.0260622.t003
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analysis, every increase of 10 pixels (RTS) made images 1.16 times more likely to be correctly

predicted (OR 1.16, 95% CI: 1.09, 1.23, p<0.001). This model had little explanatory power and

Fig 6. Post-processing of TickIDNet predictions on user-generated test set with species-specific confidence thresholds to increase the correct classification

rate (CC) at the cost of more images being returned as “unsure.” Three different sets of thresholds were calculated by applying 10%, 5%, 2% MC bounds to the

validation set as described in Goal 2 of Villon et. al [39].

https://doi.org/10.1371/journal.pone.0260622.g006

Fig 7. Binary logistic regression of the relationship between a correct prediction and the relative tick size (RTS).

https://doi.org/10.1371/journal.pone.0260622.g007
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a poor fit, as is common for bivariate logistic regression (McFadden’s Pseudo R2 0.039, AUC

0.697, and a highly significant Hoslem’s test p<0.001). When selecting only images with

RTS�100 pixels (n = 212/1,094, Fig 8), the overall model prediction accuracy increased to

93.87% from 87.84% for the full data set (n = 1,094).

The effect of tick characteristics on model predictions

Immature ticks and ticks with an unknown life stage were less likely to be correctly predicted

compared to adult ticks (OR = 0.210, 95%CI: 0.110, 0.417, p<0.001 and OR = 0.191, 95%CI:

0.089, 0.428, p<0.001), and their RTS was smaller than adult ticks. The mean RTS of immature

ticks was 54.5 pixels (median = 34.5, range: 6 to 200) compared to 63.5 pixels (50, 8 to 224) for

adult ticks. Ticks with unknown life stages had a mean RTS of 28.4 pixels (20, 5 to 224). Tick

images with unknown feeding status (dataset included all ticks) or unknown sex (dataset

included adults only) were less likely to be correctly predicted to species compared to ticks for

which this information was known (OR = 0.401, 95%CI: 0.214, 0.799, p = 0.006, and

OR = 0.250, 95%CI: 0.140, 0.460, p<0.001). These images, for which feeding status and sex

was unknown, also had a lower RTS compared to their known counterparts; the unknown

images had a mean RTS of 44.5 (25, 6 to 224) and 34.7 (23, 12 to 176) compared to 63.2 (50, 5

to 224) and 65.4 (52, 8 to 224) respectively.

In multivariable analyses, adult ticks were less likely to be correctly identified if they were

A. americanum compared to I. scapularis, and fed ticks (any species) as compared to unfed

ticks (Fig 9 and S2 Table). The full model, including RTS and tick characteristics with the

interaction between species and sex, had the lowest AIC (S2A Table). However, the reduced

model without sex (SBR-model) performed within 2 AIC (delta AIC 1.97) and estimates are

shown in Fig 9 (S2D Table). In the full and SBR model estimates were of the same magnitude

Fig 8. Distribution of the relative tick size (RTS) of the user-generated test set. Color represents correct (grey) and incorrect (black) prediction by TickIDNet. The

total number of ticks identified was 1,094: 194 A. americanum, 625 D. variabilis, and 275 I. scapularis.

https://doi.org/10.1371/journal.pone.0260622.g008
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(S2B and S2D Table), but the effect of sex on the different species could be evaluated in the full

model (S2C Table); I. scapularis males were less likely to be correctly predicted compared to

females and this relationship was not significantly different for A. americanum, but it was

opposite for D. variabilis (respectively, males were 0.64 times less and 1.18 times more likely to

be correctly identified compared to females of the same species, S2B and S2C Table). The effect

of RTS in the full and SBR model was similar to what was observed in the univariable analysis

(Fig 7), for every 10 RTS (pixels) increase images were 1.13 times more likely to be correctly

identified (95%CI: 1.06, 1.21, S2D Table).

GRAD-Cam visualizations

To gain more insight into TickIDNet decision-making, we use Gradient-weighted Class Acti-

vation Mapping or “Grad-CAM” visualizations that show the relative importance of different

regions in the image for the model’s prediction [57]. Fig 10 shows two incorrect predictions (a,

b) and two correct predictions (c, d). In general, when the RTS was small, the network seemed

unable to assign importance to just the part of the image that contained the tick; instead Tick-

IDNet made predictions from meaningless parts of the background. The Grad–CAM visuali-

zations show how CNNs can fail when classifying ticks that are small compared to the

background.

Discussion

An automated tick identification tool would enable researchers, human and veterinary health-

care providers, and members of the general public, to more rapidly and effectively assess tick

exposure and the risk of transmission of TBDs. We explored the potential of deep learning

algorithms called convolutional neural networks (CNN) to automate the identification process

Fig 9. The adjusted odds ratios for correct TickIDNet predictions based on tick characteristics and relative tick size (RTS). Point estimate represents the

adjusted odds ratio (aOR) and error bars the 95% confidence interval. The vertical line at aOR = 1 represents equal odds.

https://doi.org/10.1371/journal.pone.0260622.g009
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and outlined three requirements for practicable deployment: 1) the model must be able to

identify ticks in virtually any setting given the nature of public-submitted images, 2) the model

must be able to accurately identify the tick with less than a 5% chance of misclassification for

each class, 3) the model must account for uncertainty in its predictions with an “unsure” class

or meaningful confidence scores.

We trained a CNN called TickIDNet to identify A. americanum, D. variabilis, and I. scapu-
laris ticks from user-generated images. The nature of the user-generated dataset means that

TickIDNet is versatile in its ability to identify ticks in a spectrum of backdrops, from cluttered,

non-uniform environments (e.g., natural vegetation, plastic containers, in situ on a person or

pet) to a microscope stage in a laboratory (i.e., white background, bright lighting). TickIDNet

performance evaluated on the user-generated test set is largely representative of its future per-

formance on similar data (i.e., future public submissions), while its performance on the labora-

tory test set should be representative of the network’s future performance on high quality,

research-grade images. The versatility of TickIDNet suggests that the first requirement for

deployment is met.

TickIDNet outperforms the accuracy of health care professionals and the general public,

but it fails to match the performance of human experts. When evaluated on the user-generated

Fig 10. Grad-CAM heatmap visualizations of TickIDNet predicted images show the model failing to assign importance

to the relevant parts of the images when RTS is small. The importance of shapes or regions in the image is ranked on a red-

blue heatmap described by the scale on the right. (a) Dermacentor variabilis incorrectly identified as Amblyomma
americanum with RTS = 15, (b) A. americanum incorrectly identified as Ixodes scapularis with RTS = 17, (c) I. scapularis
correctly identified with RTS = 145, (d) I. scapularis correctly identified with RTS = 48.

https://doi.org/10.1371/journal.pone.0260622.g010
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test set, TickIDNet scored an 87.8% accuracy across all three species. In contrast, a study by

Butler et al. [12] revealed that primary care providers correctly identified these three species

only 48.4% of the time without a manual and 72.9% with a manual. Another study by Kopsco

and Mather [23] evaluated the ability of users from the University of Rhode Island’s TickEn-

counter Resource Center’s photo-based surveillance system to correctly identify encountered

ticks. Overall, users were only able to correctly identify their encountered ticks 16.3% of the

time. People with formal entomological training, evaluated in Kopsco et. al [18], competently

identified ticks even from user-generated images with an accuracy of 96.7%. The performance

gap between TickIDNet and people with formal entomological training can be closed by intro-

ducing confidence thresholds.

With the application of species-specific confidence thresholds and an additional “unsure”

class, we were able to lower the misclassification rates below 5% and incorporate uncertainty

into TickIDNet predictions. Fig 6 shows that misclassification rates for each species can be

brought below 5% if the confidence thresholds are set such that images falling below the

threshold are identified as “unsure.” When constrained to a 5% misclassification rate, the

“unsure” classification rate (i.e., the proportion of images left for researchers to identify) is

35.6% for A. americanum images, 3.7% for D. variabilis, and 12.0% for I. scapularis. TickIDNet

will thus be able to make accurate predictions on most of the submitted images, but the

remaining “unsure” images will need to be identified by experts.

Despite meeting the suggested performance requirements, it is important to understand the

potential weaknesses of TickIDNet among different categories like life stage, blood-feeding sta-

tus, and sex of the tick. In some categories like nymphal and larval stage ticks, there were rela-

tively few images in the complete dataset, and even fewer in the user-generated test set,

making it difficult to draw detailed conclusions about the performance of TickIDNet in these

categories. Additionally, images of larval and nymphal ticks often had a low RTS making them

more difficult for TickIDNet to accurately identify. In general, immature ticks were less likely

to be correctly identified than adult ticks; fed ticks were less likely to be correctly identified

than unfed ticks; ticks with categories coded as “unknown” during labeling were less likely to

be correctly identified to species compared to their known-label counterparts. The disparities

in performance among the categories are likely due to the relative lack of data in the immature

and fed categories (Table 1) and the grouping of visually distinct ticks like a fed I. scapularis
and an unfed I. scapularis male under the same class label. The poorer performance of TickID-

Net for immature and fed ticks is congruent with the same observation from expert identifica-

tion [23].

In our tests, we also found that the image resizing and image quality significantly impacted

the ability of TickIDNet to correctly identify ticks due to inherent difficulties with CNN small

object recognition. The issue of small object recognition has been identified and studied in

deep learning literature and remains one of the cruxes in image recognition [43, 44]. When a

tick inhabits a relatively small part of an image–thus having a low RTS (15–80)–the network’s

architecture can make it difficult for the TickIDNet to separate the tick from its background.

This can be seen in the Grad-Cam visualizations (Fig 10) which show TickIDNet failing to

assign importance to small regions containing the tick as well as the positive relationship

between RTS and the probability of the model making a correct prediction (Fig 7). The small

object problem is compounded by the cropping and resizing procedure applied during our

image pre-processing which can blur features of a tick resulting in the loss of valuable informa-

tion. The images input into TickIDNet are resized to a resolution of 224x224 pixels; for com-

parison, an iPhone 7 camera captures pictures at a resolution of 4290x2800 pixels. Our

evaluation of human performance on the original resolution dataset and a resized image data-

set suggests that even humans have a harder time identifying these resized images (see S1
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Table). Unfortunately, increasing the resolution of images input into TickIDNet requires sig-

nificantly more computing time during training and when making predictions. Increasing

input resolution also fails to address aspects of the small object detection problem since it is

the object’s relative size in the image that matters in most applications.

Since we know that image quality, specifically the RTS of an image, plays a significant role

in TickIDNet performance, we suggest designing submission pipelines that encourage or even

require higher-quality images. Implementing such pipelines would naturally increase TickID-

Net performance and coverage leaving fewer images classified as “unsure.” An example of an

improved submission pipeline comes from the Dutch tick surveillance app “Tekenbeet”: when

taking a tick picture through the Tekenbeet app, users see the outline of a tick augmented onto

their camera screen showing them how to place the tick (e.g., dorsal/ventral view), and where

and how far away the camera should be positioned to take a good image. Another effective

method would be to allow users to adjust a square crop box around the tick after taking an

image, effectively removing much of the image’s background and increasing the image’s RTS.

Both implementations would very likely increase TickIDNet’s performance.

Inherent in the development of TickIDNet are limitations in its predictive breadth and

depth. Although the model was trained on arguably the three most important and abundant

species encountered by people in the U.S., there are many species (83 precisely) on which Tick-

IDNet was not trained––some of which look strikingly similar [1]. For example, the adult Gulf

Coast tick (Amblyomma maculatum) looks very similar to adult D. variabilis aside from a

slightly longer capitulum and would likely be identified as a D. variabilis tick by the model.

Similarly, the Rocky Mountain wood tick (D. andersoni) is nearly identical to D. variabilis.
TickIDNet will always make a prediction on an image; classifying it as one of the three species

it was trained on even if those labels do not apply to the image. For example, if an image did

not contain a tick or contained some other non-tick specimen, TickIDNet would still make a

prediction and assign the image one of the three species labels. In practice, this turns out to be

a somewhat frequent event. In Kopsco’s and Mather’s [23] analysis of 31,684 images submitted

by the public, 1,914 (6%) did not contain a tick and another 1,580 (5%) contained an unidenti-

fiable specimen. The implementation of confidence thresholding would likely filter many of

these submissions into the “unsure” class, but some will slip through and be returned to the

user with an incorrect class label. TickIDNet also lacks the predictive depth to identify tick

subclasses like life stage, feeding status, and sex. These categorical variables contribute impor-

tant information when assessing the risk of a particular tick bite and should ideally be included

when making an identification. Despite these limitations, the versatility and confidence-

threshold-adjusted performance indicate that TickIDNet could be deployed for tick identifica-

tion in areas where the species A. americanum, D. variabilis, and I. scapularis are common and

present a significant threat to public health.

Conclusion

We have demonstrated that deep learning can be practically applied to the identification of fre-

quently-encountered human-biting ticks in the U.S., including A. americanum, D. variabilis,
and I. scapularis. Furthermore, the model developed here (TickIDNet), could be deployed as a

real-time identification through smartphone apps or similar platforms. However, several limi-

tations remain, most notably the recognition of ticks when they are small in an image and mis-

labeling of species that are not represented in the training dataset. Continued data collection

and model evaluation using more comprehensive datasets for species not represented in this

paper, as well as more data for the species that were represented, will be useful to continue to

improve the TickIDNet model. Additional data in underrepresented categories like nymphal
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ticks and fed ticks would further facilitate the development of models to distinguish between

species subclasses through multi-label classification [58]. Training on more nuanced divisions

of engorgement with additional data would have the additional benefit of quantifying the feed-

ing duration which is an important indicator of risk. TickIDNet as a tool could also be

improved with object detection methods (e.g., YOLO or R-CNN [59, 60]) that would first

establish and display bounding regions around the tick/s and then classify the image based

only on the contents of those regions. This strategy also has the advantage of being able to

identify multiple ticks of the same or different species in an image.

Deep learning promises to play an increasingly important role in species identification.

This study presents an application of deep learning algorithms for tick species identification

and provides a benchmark for future models to compare their performance. Increased use and

improvement of automated tick identification will provide more capacity to help mitigate the

negative impacts of ticks and tick-borne diseases on animal and human health.
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