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Highlights Lay summary

� Personalised risk stratification of HCC among at-

risk patients is important for surveillance.

� Deep-learning-based HCC prediction model per-
formed better than the previous models, which
were based on conventional statistics.

� Deep learning method can provide continuous
probability results, not a binary result.
https://doi.org/10.1016/j.jhepr.2020.100175
For early detection of hepatocellular carcinoma, it is
important to maintain regular surveillance. However,
there is currently no standard prediction model for
risk stratification that can be used to establish a per-
sonalised surveillance strategy. We develop and vali-
date a deep-learning-based model that showed better
performance than previous models.
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Background & Aims: Personalised risk prediction of the development of hepatocellular carcinoma (HCC) among patients
with liver cirrhosis on potent antiviral therapy is important for targeted screening and individualised intervention. This study
aimed to develop and validate a newmodel for risk prediction of HCC development based on deep learning, and to compare it
with previously reported risk models.
Methods: A novel deep-learning-based model was developed from a cohort of 424 patients with HBV-related cirrhosis on
entecavir therapy with 2 residual blocks, including 7 layers of a neural network, and it was validated using an independent
external cohort (n = 316). The deep-learning-based model was compared to 6 previously reported models (platelet, age, and
gender-hepatitis B score [PAGE-B], Chinese University HCC score [CU-HCC], HCC-Risk Estimating Score in CHB patients Under
Entecavir [HCC-RESCUE], age, diabetes, race, etiology of cirrhosis, sex, and severity HCC score [ADRESS-HCC], modified PAGE-B
score [mPAGE], and Toronto HCC risk index [THRI]) using Harrell’s concordance (c)-index.
Results: During a median 5.2 yr of follow-up (inter-quartile range 2.8–6.9 yr), 86 patients (20.3%) developed HCC. The deep-
learning-based model had a Harrell’s c-index of 0.719 in the derivation cohort and 0.782 in the validation cohort. Goodness of
fit was confirmed by the Hosmer-Lemeshow test (p >0.05). Moreover, this model in the validation cohort had the highest
c-index among the 6 previously reported models: PAGE-B (0.570), CU-HCC (0.548), HCC-RESCUE (0.577), ADRESS-HCC (0.551),
mPAGE (0.598), and THRI (0.587) (all p <0.001). The misclassification rate of this model was 23.7% (model accuracy: 76.3%) in
the validation group.
Conclusions: The deep-learning-based model had better performance than the previous models for predicting the HCC risk in
patients with HBV-related cirrhosis on potent antivirals.
© 2020 Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Hepatocellular carcinoma (HCC) is the fourth most common
cause of death from cancer worldwide.1 Liver cirrhosis is the
leading cause of HCC, and HBV infection is the first major cause
of cirrhosis worldwide.2 Current international guidelines
recommend surveillance for HCC in at-risk patients to detect
HCC at an earlier stage, and thereby to improve their out-
comes.3,4 However, even in patients with cirrhosis, the risk of
HCC development is variable, and it is necessary to define the
strategy of HCC surveillance according to risk stratifications.

Therefore, several HCC prediction models were developed for
patients with chronic liver disease, including platelet, age, and
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gender-hepatitis B score (PAGE-B),5 Chinese University HCC score
(CU-HCC),6 HCC-Risk Estimating Score in CHB patients Under
Entecavir (HCC-RESCUE),7 age, diabetes, race, etiology of
cirrhosis, sex, and severity HCC score (ADRESS-HCC),8 modified
PAGE-B score (mPAGE-B),9 and Toronto HCC risk index (THRI).10

Each model includes 3 to 6 factors showing a significant asso-
ciation with HCC development, which are easy to get at the
initial hospital visit5–10: age, sex, platelet count, serum albumin,
serum bilirubin, HBV DNA titre, presence of cirrhosis, presence of
diabetes, and race. When applying these factors in the models, a
certain cut-off value for each factor is determined by conven-
tional statistical method that results in the factor being binary
data instead of a continuous value, which originally it is.
Although these models include a small number of factors and a
binary data type is easy to use, none of these models are widely
accepted yet because they have a rather poor performance in
real-world practice.

To increase the model performance, it is necessary to include
all possible related factors with continuous values as intended.
Recently, advancements in the deep learning methodology have
provided a more effective and accurate way to manage large-
scale data compared with conventional statistical methods.11

The aims of this study were to develop and validate a
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deep-learning-based prediction model of HCC and to compare its
performance with previously reported models in patients with
HBV-related cirrhosis on antiviral therapy.
Patients and methods
Study design, setting, and participants
The study was conducted at 2 tertiary hospitals (Seoul National
University Bundang Hospital [SNUBH], Bundang, Gyeonggi-do,
Republic of Korea and Samsung Medical Center [SMC], Seoul,
Republic of Korea), using electronic medical records. We
included consecutive patients meeting all of the following in-
clusion criteria:

� chronic HBV infection was defined by the presence of the
HBsAg for more than 6 months or relevant clinical history;

� cirrhosis was defined as
B a platelet count of <100,000/ml and image diagnosis
(either cirrhosis ultrasonography [US] or computed to-
mography) that included a blunted liver edge with
splenomegaly (>12 cm);

B the presence of portal hypertension, such as oesophageal
or gastric varices; or

B features of decompensation, such as ascites or hepatic
encephalopathy12; and

� treatment-naive patients who started entecavir therapy be-
tween March 2007 and June 2013.

Among them, we excluded patients if they met any of the
following criteria:

� age <18 yr;
� co-infection with other hepatitis viruses (i.e. HCV or HDV) or

HIV; and
� previous and current malignancies, to identify adult patients

with HBV mono-infected cirrhosis without malignancy at
baseline who started entecavir therapy.

There were 430 eligible patients at the SNUBH cohort and 324
eligible patients at the SMC cohort. Among them, those who
developed HCC within 6 months from cohort entry were
excluded (SNUBH cohort [n = 6] and SMC cohort [n = 8]). The
SNUBH cohort was used to evaluate the 6 previous models and to
develop the deep-learning-based model. The SMC cohort was
used to validate the novel model and to compare it with the 6
previous models. This study complied with the Declaration of
Helsinki. The study protocol was approved by the Institutional
Review Board of SNUBH and SMC, and the requirement for
informed consent from patients was waived.

Variables, data sources, and measurement
The index visit was defined as the first day of entecavir pre-
scription. Patients were monitored for a 1- to 6-month interval
on a regular basis by their attending physicians, who were all
experienced hepatologists. HCC surveillance was done using US
and serum alpha-fetoprotein at a 6-month interval. In some
cases, computed tomography was used instead of US. HCC was
diagnosed clinically or histologically based on regional HCC
diagnosis guidelines during the study periods.13,14 The follow-up
period was defined from the day of the initiation of the entecavir
treatment to HCC diagnosis or last hospital visit, whichever
comes first. In case of death or liver transplantation before HCC
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development, data were censored at the time of death or
transplantation. The reference date was June 30, 2017.

The following variables were collected by reviewing the
electronic medical records of each patient: age, sex, height,
weight, presence of diabetes, platelet count, serum bilirubin,
serum albumin, and HBV DNA levels at the index visit. Cirrhosis
was defined as the aforementioned criteria, and the presence of
diabetes was determined by medical record review of the
glucose level and by prescription history of anti-diabetic
medications.

Development of the deep-learning-based novel prediction
model
Using deep neural network technology, most of the reported
factors significantly associated with the development of HCC
from previous studies were selected: age, sex, platelet count,
serum albumin, serum bilirubin, HBV DNA titre, presence of
diabetes, and observation period from the index visit. Three
factors among all the factors (presence of cirrhosis, aetiology, and
race) from the 6 previous models were excluded in the deep-
learning-based model because all of our derivation cohorts
were Asian patients with HBV-related cirrhosis.

Among the selected factors, sex and the presence of diabetes
were binary data types, and the others were continuous nu-
merical data types. The numerical data were applied to the new
model as a continuous value as is rather than categorising them
with certain cut-off values to maintain and maximise the influ-
ence of each numerical factor. Because the related factors con-
sisted of 2 data types, we used a deep neural network and
arranged that each input variable was allocated to its own input
node, not to be affected by the other data types. Numerical
variables were normalised before entering them into the neural
network, which could then be trained faster and reduce the
chances of getting stuck in local optima.

To improve the model predictability, we used the residual
learning framework of the ResNet architecture (Microsoft
Research, Redmond, WA, USA), which has shown good perfor-
mance in previous image recognition.15 We adopted residual
learning for every stacked layer in this model. Residual learning
is established through the connection of stacked layers. By
integrating the following input and output variables of each
layer, it provides additional non-linearity and reduces the addi-
tionally generated weight to increase the learning performance.
We applied shortcuts (or skip connection) to improve the
learning performance by minimising the data loss for the
centring layer responses, gradients, and propagated errors,
implemented by shortcut connections.

The deep neural network was developed based on TensorFlow
(version 1.13; Google, Mountain View, CA, USA), and the Adam
optimization algorithm was used to optimise the model. We
implemented the weighted cross entropy as the loss function to
control the class imbalance in the derivation cohort. The para-
metric rectified linear unit was used as an activation function,
and we adopted batch normalisation with a minimal dropout. In
addition, the neural network was not deeper, considering the
small amount of data, and the learning rate was 1×10−5.

Statistical analyses
Baseline characteristics were presented as the mean ± SD for
normally distributed continuous variables and as the median
with inter-quartile ranges for continuous variables with a
skewed distribution. Discrete variables were summarised by the
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Table 1. Baseline characteristics of patients of HBV-related cirrhosis on
antiviral therapy.

Patient characteristics Derivation set
(n = 424)

Validation
set (n = 316)

p
value

Age, mean ± SD (yr) 52.7 ± 10.1 51.9 ± 9.2 0.084*
Sex, male, n (%) 270 (63.7) 204 (64.6) 0.806†

BMI 24.2 ± 3.1 24.9 ± 3.1 0.003*
Platelet (×109/L) 124.6 ± 50.7 115.2 ± 54.2 0.016*
Albumin (g/dl) 3.9 ± 0.6 3.8 ± 0.6 0.106*
Total bilirubin (mg/dl) 1.5 ± 2.0 1.3 ± 1.4 0.265*
HBV DNA (log10 IU/ml) 6.7 ± 1.3 6.0 ± 1.3 <0.001*
FIB-4 3.4 (2.2–5.8)‡ 3.8 (2.4–6.8) 0.082*
DM, n (%) 75 (17.7) 56 (17.7) 0.991†

Data are expressed as n (%) or mean ± SD.
BMI, body mass index; DM, diabetes mellitus; FIB-4, fibrosis-4.
* By Student’s t test.
† By Pearson’s chi-square test.
‡ Inter-quartile range.
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Fig. 1. Network architecture. The optimal model was established and had 2
residual blocks, including 7 layers of a neural network.

Table 2. Comparison of HCC development among the predictive models.

Derivation set of this study

5-yr HCC incidence 3-yr HCC incidence

Value 95% CI Value 95% CI

PAGE-B
<18 0.126 0.080–0.169 0.085 0.048–0.121
>−18 0.236 0.161–0.304 0.142 0.083–0.196

CU-HCC
<19 0.160 0.042–0.263 0.062 0.001–0.127
>−19 0.172 0.129–0.214 0.115 0.080–0.150

HCC-RESCUE
<85 0.112 0.062–0.160 0.072 0.032–0.110
>−85 0.217 0.156–0.273 0.137 0.089–0.183

ADRESS-HCC
<4.71 0.084 0.001–0.160 0.039 0.001–0.090
>−4.71 0.191 0.148–0.241 0.127 0.088–0.164

mPAGE-B
<13 0.112 0.064–0.158 0.063 0.028–0.093
>−13 0.233 0.167–0.294 0.157 0.102–0.209

THRI
<240 0.085 0.035–0.131 0.051 0.013–0.087
>−240 0.218 0.161–0.270 0.140 0.094–0.183

ADRESS-HCC, age, diabetes, race, etiology of cirrhosis, sex, and severity HCC score;
CU-HCC, Chinese University HCC score; HCC-RESCUE, HCC-Risk Estimating Score in
CHB patients Under Entecavir; mPAGE-B, modified platelet, age, and gender-hepatitis
B score; PAGE-B, platelet, age, and gender-hepatitis B score; THRI, Toronto HCC risk
index.
number of subjects with percentages. To compare the baseline
characteristics between the cohorts, we used Student’s t test
properly. Distribution of categorical variables was compared
using the chi-square test. Survival analysis was performed using
the Kaplan-Meier analysis, which was used to estimate the cu-
mulative incidence rate of the HCC rate, according to the risk
groups. To compare the prognostication power between the
models, we conducted both discrimination and calibration per-
formance. It was evaluated with the concordance (c)-index for
the discrimination function and the Hosmer-Lemeshow test for
the calibration function. The performances of the 6 previous
models, which were CU-HCC, HCC-RESCUE, ADRESS-HCC, PAGE-
B, mPAGE-B, and THRI, were evaluated and compared using the
SNUBH cohort. Six prediction models were selected according to
the characteristic of each cohort, which should include patients
with potent antiviral treatment and some portion of patients
with cirrhosis. The prognostic factors that were included in each
model were as follows: CU-HCC6 (age, albumin, bilirubin, HBV
DNA titre, and presence of cirrhosis), HCC-RESCUE7 (age, sex, and
presence of cirrhosis), ADRESS-HCC8 (age, diabetes, race, aeti-
ology of cirrhosis, sex, and hepatic function severity), PAGE-B5

(age, sex, and platelet), mPAGE-B9 (age, sex, platelet, and albu-
min), and THRI10 (age, sex, aetiology, and platelet). In the original
studies, all the previous models established 2 cut-off values,
which divide the subjects into 3 categories according to the risk
stratification (low, intermediate, and high risk). Because enrolled
patients in this study cohort had cirrhosis and none of the pa-
tients were in the low-risk group of each model, we evaluated
and compared the model performance with a higher cut-off
value for each model. The statistical analyses were performed
using SPSS 22.0 (SPSS Inc., Chicago, IL, USA) and the SAS version
9.4 software (SAS Institute, Cary, NC, USA).
Results
Development of the optimal deep-learning-based model
The baseline characteristics of the derivation cohort are sum-
marised in Table 1. During a median 5.2 yr of follow-up (inter-
quartile range 2.8–6.9 yr), 86 patients (20.3%) developed HCC.
The baseline characteristics of the validation cohort are also
shown in Table 1. During a median 6.4 yr of follow-up (inter-
quartile range 2.4–9.0 yr), 68 patients (21.5%) developed HCC.
HCC was mainly diagnosed according to radiological criteria of
qualified dynamic computed tomography or magnetic resonance
JHEP Reports 2020
imaging. Histological confirmation was performed in the absence
of typical image finding of HCC. When compared with the
derivation cohort, the validation cohort had a higher body mass
index, lower platelet count, and lower HBV DNA levels. The
optimal model was established and had 2 residual blocks,
including 7 layers of a neural network, as the data size of the
derivation cohort was relatively small. The deep-learning-based
model did not present a binary result according to a certain
cut-off. Instead, it presented the results (the probability of HCC
development) as a continuous probability from 0 to 1 (Fig. 1). The
c-index of the deep-learning-based model was 0.719 (95% CI
3vol. 2 j 100175
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Fig. 2. Comparison of the previous models in the derivation cohort. The HCC incidence was significantly different between the high-risk and low-risk groups
in 5 previous models (HCC-RESCUE, ADRESS-HCC, PAGE-B, mPAGE-B, and THRI) except for CU-HCC (by Kaplan-Meier analysis). ADRESS-HCC, age, diabetes, race,
etiology of cirrhosis, sex, and severity HCC score; CU-HCC, Chinese University HCC score; HCC, hepatocellular carcinoma; HCC-RESCUE, HCC-Risk Estimating Score
in CHB patients Under Entecavir; mPAGE-B, modified platelet, age, and gender-hepatitis B score; PAGE-B, platelet, age, and gender-hepatitis B score; THRI, Toronto
HCC risk index.

Table 3. Comparison of previous HCC prediction models with DNN model
with validation cohort.

Model c-Index

95% CI

p value*Lower Upper

DNN 0.782 0.734 0.830 –

PAGE-B 0.570 0.514 0.626 <0.001
CU-HCC 0.548 0.491 0.604 <0.001
HCC-RESCUE 0.577 0.520 0.632 <0.001
ADRESS-HCC 0.551 0.495 0.607 <0.001
mPAGE-B 0.598 0.542 0.653 <0.001
THRI 0.587 0.530 0.641 <0.001

ADRESS-HCC, age, diabetes, race, etiology of cirrhosis, sex, and severity HCC score; c-
index, concordance index; CU-HCC, Chinese University HCC score; DNN, deep neural
network; HCC-RESCUE, HCC-Risk Estimating Score in CHB patients Under Entecavir;
mPAGE-B, modified platelet, age, and gender-hepatitis B score; NPV, negative pre-
dictive value; PAGE-B, platelet, age, and gender-hepatitis B score; PPV, positive
predictive value; THRI, Toronto HCC risk index.
* Compare with the c-index of the DNN model.

Research article
0.680–0.758) in the derivation cohort. Goodness of fit was
confirmed by the Hosmer-Lemeshow test (p >0.05).

Performance evaluation of a deep-learning-based model and
comparison of 6 previous models with the derivation cohort
The 5- and 3-yr HCC incidences of the 6 previous models (CU-
HCC, HCC-RESCUE, ADRESS-HCC, PAGE-B, mPAGE-B, and THRI)
were calculated and compared with our derivation cohort
(Table 2). When we applied the derivation cohort to the 6
JHEP Reports 2020
previous models, the discrimination of the 5-yr HCC cumulative
incidence between the high- and low-risk groups was main-
tained along with the results of the original articles. However,
the difference between the HCC cumulative incidences between
the risk groups was reduced compared with the original data,
which were reported in each article. In the survival analysis, the
HCC incidence was significantly higher in the high-risk group
than in the low-risk group among 5 previous models (HCC-
RESCUE, ADRESS-HCC, PAGE-B, mPAGE-B, and THRI) except
CU-HCC (Fig. 2).
Performance evaluation of the deep-learning-based model
and comparison of the 6 previous models in the validation
cohort
The c-index of the deep-learning-based model was 0.782 (95% CI
0.734–0.830) in the validation cohort. The performance of the
new model was compared with the previous models. The
c-indexes of the previous models were below 0.6 with the vali-
dation cohort (PAGE-B [c-index 0.570; 95% CI 0.514–0.626], CU-
HCC [c-index 0.548; 95% CI 0.491–0.604], HCC-RESCUE [c-index
0.577; 95% CI 0.520–0.632], ADRESS-HCC [c-index 0.551; 95% CI
0.495–0.607], mPAGE [c-index 0.598; 95% CI 0.542–0.653], and
THRI [c-index 0.587; 95% CI 0.530–0.640]). However, the deep-
learning-based model showed a significantly better perfor-
mance than that of the 6 previous models (all p <0.001). The
c-index of the deep-learning-based model was 0.782 (95% CI
0.734–0.830) in the validation cohort (Table 3). To evaluate the
4vol. 2 j 100175



Case Age Sex Diabetes Platelet (x103/ml) Albumin (g/dl) Bilirubin (mg/dl) HBV DNA (log10)

1 51 Female 0 187 3.9 1.2 6.0

2 54 Male 0 116 3.7 1.7 6.2

3 55 Male 1 107 3.0 2.2 5.8
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Fig. 4. Expected HCC incidence rate of 3 hypothetical patients. The expected
HCC incidences of 3 hypothetical patients were presented, according to base-
line clinical and laboratory data (by prediction probabilities of deep neural
network). HCC, hepatocellular carcinoma.
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Fig. 3. Evaluation of the deep-learning-based model performance accord-
ing to the risk groups in the validation cohort (cut-off value: 0.5). In the
survival analysis between 2 groups, the high-risk group presented a signifi-
cantly higher HCC incidence than the low-risk group in the validation cohort
(p <0.001; by Kaplan-Meier analysis). HCC, hepatocellular carcinoma.
performance of the model, we categorised the risk group using a
cut-off probability of 0.5 in the new model. In the survival
analysis between the 2 groups, the high-risk group (>−0.5) had a
significantly higher HCC incidence than that of the low-risk
group (<0.5) in the validation cohort (p <0.001) (Fig. 3). The ex-
pected HCC incidences of 3 hypothetical patients were calculated
and presented in Fig. 4. The probabilities of HCC development
were discriminated according to the baseline clinical and labo-
ratory data.
Discussion
In this study, we developed a novel deep-learning-based model,
which can predict HCC development in patients with HBV-
related cirrhosis, which showed a better performance than the
previous 6 reported models. As far as we know, this is the first
HCC prediction model by adapting the deep learning method.
We confirmed the model performance by applying an indepen-
dent validation cohort and compared the c-indexes with 6 pre-
viously developed models. This deep-learning-based model had
the best performance among all the models. Moreover, the new
model is promising because it can evolve its performance
through further training with new data sets.

Prediction of HCC development among at-risk patients is
important to establish an individualised surveillance strategy.
However, the risk of HCC development varies according to age,
race, and aetiologies.16 Previous HCC prediction models were
mostly developed with patients who were enrolled from the
same race, same aetiologies, or same continents. The models for
PAGE-B or mPAGE-B were only for patients with chronic hepa-
titis B. The models for CU-HCC, mPAGE-B, and HCC-RESCUE were
developed from Asian patients, while the models for PAGE-B or
ADRESS-HCC and THRI were from Caucasian patients. Thus, these
models, which were developed based on homogeneous patients,
had a low expandability and lower performances when they
were applied to other patients of different races or continents.
Although the new model was also based on Asian patients with
chronic hepatitis B, it can have high expandability through
JHEP Reports 2020
training with additional data set from other races, continents, or
aetiologies. The deep-learning-based model can upgrade its
performance accumulatively and continuously, even after it is
released. This is the most important difference between the
deep-learning-based model and the previous models.

When evaluating the performance of the previous models of
at-risk patients by applying our cohort, we identified the risk
group for HCC development along with the original published
data. Although the performances of the previous models were
different, predictions were available in the previous models.
Therefore, we found that the factors that consisted of the models
were actually effective. Among the prognostic factors, including
the 6 previous models, age was included in all models, sex was
included in 4 models, and platelet count was included in 3
models. The deep-learning-based model included 7 possible
factors: age, gender, platelet, albumin, bilirubin, HBV DNA titre,
and presence of diabetes.5–10 Three factors among all the factors
of the 6 previous models were excluded in the deep-learning-
based model. The presence of cirrhosis, aetiology, and race
could not be included in this model, because our derivation
cohort included Asian patients with HBV-related cirrhosis.

Previously, there was no effective deep-learning-based pre-
diction model that had been trained from numerical data, not
image data. Through this model, we could confirm the potential
of the deep-learning-based prediction model. First, the deep-
learning-based model performed better than the previous
models, which were based on conventional statistics. Moreover,
this better performance could be achieved with a relatively small
amount of data, while usually the deep learning method may
require a large amount of data at least, generally.17 We showed
that only hundreds of pieces of data would be enough to train a
deep-learning-based prediction model, if the potential factors for
the new model were well identified, such as age, sex, bilirubin,
albumin, platelet, presence of diabetes mellitus, and HBV DNA in
this model. Second, the deep learning method can develop a
more accurate model and derive continuous probability results
5vol. 2 j 100175
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(from 0 to 1), not a binary result. Previous models, which had
been developed from conventional statistics, usually established
a scoring system. The scoring system divided continuous vari-
ables into 2 or 3 categories with a certain cut-off value. The
purpose of these scoring systems is to distinguish risk stratifi-
cation. However, the deep-learning-based model could use the
factors as an original continuous value without categorisation.
Thus, the new model could result in more accurate continuous
probabilities. Third, we found that training with a small number
of data points (424 data points in our derivation cohort) was not
a time-consuming task, and it could replace conventional sta-
tistical methods without any time delays, which is 1 of the
general concerns of the deep learning method. In addition, we
also found that training with a relatively small number of nu-
merical data points, not image data sets, can be performed with a
common laptop computer without requiring multiple graphics
processing units. Fourth, the deep-learning-based model could
evolve with data accumulation.18 Previous conventional models
have not changed and have the same performance despite
further data accumulation. However, the deep-learning-based
model can upgrade its performance through additional data
training.
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This study has several limitations. First, our model was devel-
oped based on patients with cirrhosis. Because the previous
models included patients with chronic hepatitis B and analysed
them, the generalisability of ourmodelwas limited comparedwith
the previous models. However, it can be overcome through addi-
tional data-set training of patients with chronic hepatitis B. Sec-
ond, the previousmodel performanceswere poor in our validation
cohort, while external validation studies of the models showed a
fair performance for each model.9,19,20 This result might be caused
by the relatively high risk for HCC development in our cohort,
which consisted of patients with cirrhosis. Third, although the
deep-learning-based model has shown its potential for HCC pre-
diction, it does not represent an intuitive formula or scoring sys-
tem for medical decisions. However, it can be overcome through a
web-based application, which could be easily acceptable. Fourth,
our model was developed in an Asian cohort with cirrhosis;
therefore, additional validation study will be needed in non-Asian
cohorts and cohorts with advanced fibrosis before cirrhosis.

In conclusion, the deep-learning-based model made in this
study has better performance in HCC prediction of at-risk pa-
tients compared with the previous models, and its performance
can be progressively improved with further data accumulation.
Abbreviations
ADRESS-HCC, age, diabetes, race, etiology of cirrhosis, sex, and severity
HCC score; c-index, concordance index; CU-HCC, Chinese University HCC
score; HCC, hepatocellular carcinoma; HCC-RESCUE, HCC-Risk Estimating
Score in CHB patients Under Entecavir; mPAGE-B, modified platelet, age,
and gender-hepatitis B score; PAGE-B, platelet, age, and gender-hepatitis
B score; SMC, Samsung Medical Center; SNUBH, Seoul National University
Bundang Hospital; THRI, Toronto HCC risk index; US, ultrasonography.

Financial support
The authors received no specific funding for this work.

Conflicts of interest
The authors declare no conflicts of interest that pertain to this work.

Please refer to the accompanying ICMJE disclosure forms for further
details.

Authors’ contributions
Conception: Joon Yeul Nam, Sook-Hyang Jeong.

Data collection: Joon Yeul Nam, Dong Hyun Sinn, Eun Sun Jang, Jin-
Wook Kim, Sook-Hyang Jeong.

Data analysis: Joon Yeul Nam, Junho Bae, Sook-Hyang Jeong.
Article preparation: Joon Yeul Nam, Dong Hyun Sinn, Sook-Hyang

Jeong.

Supplementary data
Supplementary data to this article can be found online at https://doi.org/
10.1016/j.jhepr.2020.100175.

References
Author names in bold designate shared co-first authorship

[1] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer
statistics 2018: GLOBOCAN estimates of incidence and mortality world-
wide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.

[2] World Health Organization. Global Hepatitis Report 2017. 2017. Available
at: https://www.who.int/hepatitis/publications/global-hepatitis-report2
017/en/. [Accessed 21 April 2020].

[3] Galle PR, Forner A, Llovet JM, Mazzaferro V, Piscaglia F, Raoul J-L, et al.
EASL Clinical Practice Guidelines: management of hepatocellular carci-
noma. J Hepatol 2018;69:182–236.
[4] Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, et al.
AASLD guidelines for the treatment of hepatocellular carcinoma. Hep-
atology 2018;67:358–380.

[5] Papatheodoridis G, Dalekos G, Sypsa V, Yurdaydin C, Buti M, Goulis J, et al.
PAGE-B predicts the risk of developing hepatocellular carcinoma in Cau-
casians with chronic hepatitis B on 5-year antiviral therapy. J Hepatol
2016;64:800–806.

[6] Wong VW-S, Chan SL, Mo F, Chan T-C, Loong HH-F, Wong GL-H, et al.
Clinical scoring system to predict hepatocellular carcinoma in chronic
hepatitis B carriers. J Clin Oncol 2010;28:1660–1665.

[7] Sohn W, Cho J-Y, Kim JH, Lee JI, Kim HJ, Woo M-A, et al. Risk score model
for the development of hepatocellular carcinoma in treatment-naive pa-
tients receiving oral antiviral treatment for chronic hepatitis B. Clin Mol
Hepatol 2017;23:170–178.

[8] Flemming JA, Yang JD, Vittinghoff E, Kim WR, Terrault NA. Risk prediction
of hepatocellular carcinoma in patients with cirrhosis: the ADRESS-HCC
risk model. Cancer 2014;120:3485–3493.

[9] Kim JH, Kim YD, Lee M, Jun BG, Kim TS, Suk KT, et al. Modified PAGE-B
score predicts the risk of hepatocellular carcinoma in Asians with
chronic hepatitis B on antiviral therapy. J Hepatol 2018;69:1066–1073.

[10] Sharma SA, Kowgier M, Hansen BE, Brouwer WP, Maan R, Wong D, et al.
Toronto HCC risk index: a validated scoring system to predict 10-year risk
of HCC in patients with cirrhosis. J Hepatol 2018;68:92–99.

[11] Singal AG, Mukherjee A, Elmunzer BJ, Higgins PD, Lok AS, Zhu J, et al.
Machine learning algorithms outperform conventional regression models
in predicting development of hepatocellular carcinoma. Am J Gastro-
enterol 2013;108:1723–1730.

[12] Jung KS, Kim SU, Ahn SH, Park YN, Kim DY, Park JY, et al. Risk assessment
of hepatitis B virus-related hepatocellular carcinoma development using
liver stiffness measurement (FibroScan). Hepatology 2011;53:885–894.

[13] Korean Liver Cancer Study Group, National Cancer Center, Korea. 2014
KLCSG-NCC Korea practice guideline for the management of hepatocel-
lular carcinoma. Gut Liver 2015;9:267–317.

[14] Korean Liver Cancer Association, National Cancer Center (NCC), Korea.
2018 Korean Liver Cancer Association–National Cancer Center Korea
practice guidelines for the management of hepatocellular carcinoma. Gut
Liver 2019;13:227–299.

[15] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition. Las
Vegas, NV: 2016;770–778.

[16] Mittal S, Kramer JR, Omino R, Chayanupatkul M, Richardson PA, El-
Serag HB, et al. Role of age and race in the risk of hepatocellular carcinoma
in veterans with hepatitis B virus infection. Clin Gastroenterol Hepatol
2018;16:252–259.
6vol. 2 j 100175

https://doi.org/10.1016/j.jhepr.2020.100175
https://doi.org/10.1016/j.jhepr.2020.100175
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref1
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref1
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref1
https://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/
https://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref3
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref3
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref3
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref4
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref4
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref4
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref5
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref5
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref5
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref5
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref6
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref6
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref6
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref7
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref7
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref7
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref7
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref8
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref8
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref8
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref9
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref9
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref9
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref10
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref10
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref10
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref11
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref11
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref11
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref11
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref12
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref12
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref12
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref13
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref13
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref13
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref14
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref14
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref14
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref14
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref16
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref16
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref16
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref16


[17] Cho J, Lee K, Shin E, Choy G, Do S. How much data is needed to train a
medical image deep learning system to achieve necessary high accuracy?
arXiv preprint arXiv:151106348 2015. Available at: https://arxiv.org/
abs/1511.06348. [Accessed 18 August 2020].

[18] Schmidhuber J. Deep learning in neural networks: an overview. Neural
Netw 2015;61:85–117.
JHEP Reports 2020
[19] Lee HW, Kim SU, Park JY, Kim DY, Ahn SH, Han KH, et al. External vali-
dation of the modified PAGE-B score in Asian chronic hepatitis B patients
receiving antiviral therapy. Liver Int 2019;39:1624–1630.

[20] Yip TC-F, Wong GL-H, Wong VW-S, Tse Y-K, Liang LY, Hui VW-K, et al.
Reassessing the accuracy of PAGE-B-related scores to predict hepatocel-
lular carcinoma development in patients with chronic hepatitis B.
J Hepatol 2020;72:847–854.
7vol. 2 j 100175

https://arxiv.org/abs/1511.06348
https://arxiv.org/abs/1511.06348
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref18
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref18
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref19
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref19
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref19
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref20
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref20
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref20
http://refhub.elsevier.com/S2589-5559(20)30109-9/sref20

	Deep learning model for prediction of hepatocellular carcinoma in patients with HBV-related cirrhosis on antiviral therapy
	Introduction
	Patients and methods
	Study design, setting, and participants
	Variables, data sources, and measurement
	Development of the deep-learning-based novel prediction model
	Statistical analyses

	Results
	Development of the optimal deep-learning-based model
	Performance evaluation of a deep-learning-based model and comparison of 6 previous models with the derivation cohort
	Performance evaluation of the deep-learning-based model and comparison of the 6 previous models in the validation cohort

	Discussion
	Financial support
	Conflicts of interest
	Authors' contributions
	Supplementary data
	References




