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Accurate gene tree-species tree reconciliation is fundamental to inferring the evolutionary history of a gene family.
However, although it has long been appreciated that population-related effects such as incomplete lineage sorting (ILS)
can dramatically affect the gene tree, many of the most popular reconciliation methods consider discordance only due to
gene duplication and loss (and sometimes horizontal gene transfer). Methods that do model ILS are either highly pa-
rameterized or consider a restricted set of histories, thus limiting their applicability and accuracy. To address these
challenges, we present a novel algorithm DLCpar for inferring a most parsimonious (MP) history of a gene family in the
presence of duplications, losses, and ILS. Our algorithm relies on a new reconciliation structure, the labeled coalescent tree
(LCT), that simultaneously describes coalescent and duplication-loss history. We show that the LCT representation en-
ables an exhaustive and efficient search over the space of reconciliations, and, for most gene families, the least common
ancestor (LCA) mapping is an optimal solution for the species mapping between the gene tree and species tree in an MP
LCT. Applying our algorithm to a variety of clades, including flies, fungi, and primates, as well as to simulated phy-
logenies, we achieve high accuracy, comparable to sophisticated probabilistic reconciliation methods, at reduced run time
and with far fewer parameters. These properties enable inferences of the complex evolution of gene families across a broad
range of species and large data sets.

[Supplemental material is available for this article.]

Phylogenetic analysis forms the basis of many genomic studies

(Zmasek and Eddy 2002; Hahn et al. 2005; Huerta-Cepas et al.

2007; Wapinski et al. 2007; Butler et al. 2009; Mi et al. 2013) by

addressing a fundamental question of evolutionary biology: how

do new genes and functions arise between species? Because evo-

lutionary history exerts a strong influence on gene function (Ohno

1970; Lynch and Conery 2000; Koonin 2005; Peterson et al. 2009),

accurate inference of gene histories is a crucial task with many

important applications. For example, studies have used such his-

tories to infer the number, age, and location of gene duplication

and loss events across several genomes (Page 1994; Arvestad et al.

2004; Durand et al. 2006; Rasmussen and Kellis 2011) and to dis-

tinguish between orthologs and paralogs (Li et al. 2006; Datta et al.

2009; Vilella et al. 2009).

For a cluster of genes with detectable common ancestry, or

a gene family, these histories are often inferred by comparing two

kinds of phylogenetic trees: a gene tree that depicts the evolu-

tionary relationships among the genes within the gene family,

and a species tree that depicts the evolutionary relationships of a

set of species. The gene tree can be thought of as evolving ‘‘inside’’

the species tree, and reconciliation methods infer this nesting to

determine the evolutionary events that gave rise to a particular

gene tree.

In eukaryotic organisms at sufficiently large evolutionary

distances, discordance (topological differences) between the gene

tree and species tree typically arises due to duplication and loss

events (Fig. 1A). However, at smaller evolutionary distances, an

evolutionary phenomenon known as deep coalescence or incom-

plete lineage sorting (ILS) (Maddison 1997; Wakeley 2009), in

which polymorphisms survive several rapid speciations then

eventually fix or go extinct in a pattern incongruent to the species

tree, can have a potentially prominent effect (Fig. 1B). The simplest

approach to resolving discordance is to seek a most parsimonious

reconciliation (MPR) (Goodman et al. 1979; Page 1994; Maddison

1997), that is, one that minimizes the number of inferred events. It

has been shown that the least common ancestor (LCA) mapping

solves the MPR problem when minimizing duplications only

(Górecki and Tiuryn 2006), duplications and losses (Górecki and

Tiuryn 2006), and deep coalescence (Wu and Zhang 2011). How-

ever, these methods do not jointly model duplication, loss, and

deep coalescence, thus limiting their applicability and accuracy.

To address this problem, more sophisticated methods ac-

counting for incongruence due to duplication, loss, and deep co-

alescence have been proposed. For example, NOTUNG (Durand

et al. 2006; Vernot et al. 2007) allows users to reconcile a gene tree

with a nonbinary species tree, with the optimal reconciliation

minimizing the duplication-loss cost while allowing for possible

deep coalescence at unresolved nodes in the species tree. While this

parsimony framework is simple, requiring only a known species tree
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topology and (user-specified) costs for each evolutionary event, it

cannot capture all possible evolutionary histories.

More recently, a three-tree model called DLCoal was proposed

that introduced an intermediate locus tree describing how new loci

are created and destroyed (Fig. 1C; Rasmussen and Kellis 2012). In

the model, the reconciliation between the gene tree (or rather the

coalescent tree) and the locus tree describes the history of coalescent

events, including the presence of ILS, and the reconciliation be-

tween the locus tree and the species tree describes the history of

duplication and loss events. The associated reconciliation algo-

rithm DLCoalRecon seeks the maximum a posteriori reconcilia-

tion and shows dramatic improvement compared to ILS-unaware

approaches. However, DLCoalRecon suffers from several drawbacks

in practice: (1) It is highly parameterized, requiring divergence

times, duplication and loss rates, population sizes, and generation

times, all of which are difficult to estimate accurately; and (2) it relies

on hill-climbing to search the space of locus trees and reconcilia-

tions and therefore may miss the optimal solution due to its limited

search. These drawbacks limit the overall applicability, accuracy, and

scalability of DLCoalRecon.

To address these shortcomings, we present a number of con-

tributions to the reconciliation framework:

• We introduce the concept of a labeled coalescent tree (LCT),

which simultaneously describes the species tree, locus tree, and

coalescent tree, and the reconciliations between them (Fig. 1D).

In the LCT, each node of the gene tree is labeled with both the

species and locus to which it belongs, and gene tree nodes within

the same species and locus are totally ordered in time. The LCT

effectively combines the three-tree model into a single repre-

sentation in which we can efficiently search over the space of

locus trees and reconciliations.

• We present an algorithm DLCpar for inferring a most parsimo-

nious (MP) LCT, that is, one that minimizes the total cost of

inferred duplications, losses, and deep coalescence. This program

is freely available at http://compbio.mit.edu/dlcpar/. As part of

the development of DLCpar, we show that, assuming LCA rec-

onciliation between the locus tree and species tree, the LCA

mapping is an optimal solution for the species mapping be-

tween the gene tree and species tree in an MP LCT.

We have applied our DLCpar algorithm to both simulated and

real data sets and find that it dramatically improves reconciliations

compared to ILS-unaware approaches. Furthermore, its accuracy is

comparable to DLCoalRecon while requiring far fewer parameters

and having a faster run time.

Methods

Gene family evolution
In the reconciliation problem, we are given a gene tree and species
tree (either inferred using existing phylogenetic algorithms or as-
sumed known) and a leaf mapping that, for each extant gene,
defines the extant species from which it was sampled. Note that
both trees are full, rooted, and binary, and the leaf mapping in-
dicates only the species, not the locus, to which each extant gene
belongs. Our goal is to infer the evolutionary history of the gene
family. We make the following assumptions:

1. Any incongruence between the gene tree and species tree to-
pologies can be explained through duplication, loss, and in-
complete lineage sorting. Each duplication creates a unique
new locus that is unlinked with the original locus, and there is
no gene conversion between duplicated loci.

2. Duplication and loss events do not undergo hemiplasy (Avise
and Robinson 2008); that is, they do not fix differently in de-
scendant species. Equivalently, all duplications and losses either
always go extinct or never go extinct in all descendant lineages.
This allows separation of the duplication-loss process from the
coalescent process that affects gene family evolution.

3. Each extant species is represented by a single haploid sample;
that is, within each gene family, multiple genes from the same
extant species are sampled from multiple loci in a single in-
dividual (as opposed to being sampled from the same locus
across multiple individuals).

Assumption 1 is applicable to evolution within eukaryotic
species, and assumption 2 was shown to affect only a small number
of gene trees in simulation with biologically realistic parameters
(Rasmussen and Kellis 2012). A relaxation of assumption 3 is pre-
sented in the discussion.

To motivate the need for models of complex evolutionary
histories in which duplication, loss, and ILS can occur, consider the

Figure 1. The three-tree model and the labeled coalescent tree. (A) In the duplication-loss model, incongruence between the gene tree (black) and
species tree (blue) can be explained using gene duplications (yellow star) and gene losses (red ‘‘x’’). (B) In a multispecies coalescent model, incongruence
between the gene tree and species tree can be explained due to incomplete lineage sorting (ILS). Because no duplications or losses are allowed, this model
is inapplicable to gene families in which multiple gene copies exist in at least one species. (C ) The unified model proposed by Rasmussen and Kellis (2012)
combines the multispecies coalescent and duplication-loss models. In this example, a duplication occurs in one chromosome [note the duplicate’s frequency
is initially p = 1/(2N), where N is the effective population size, assuming a diploid genome] and creates a new locus, ‘‘locus 2,’’ in the genome. At locus 2, the
Wright-Fisher model dictates how the frequency p of the daughter duplicate (black dots) competes with the null allele (white dots) until it eventually fixates
(p = 1). A gene tree is a ‘‘traceback’’ in this combined process. Note that the red and yellow trees form an intermediate locus tree (distinct from the gene tree
and species tree) that describes how loci are created and destroyed. In this example, the gene tree has the same topology as that in A, but incongruence with
the species tree is explained by duplication and deep coalescence. (D) The LCT combines the species tree, locus tree, gene tree, and reconciliations between
them into a single structure. Each node of the gene tree is labeled with the species and locus to which it belongs, and gene tree nodes within the same species
and locus are totally ordered in time. (Parts of this figure have been adapted with permission from Rasmussen and Kellis [2012].)
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gene history illustrated in Figure 1C. Without duplications and
losses, a multispecies coalescent process (Tajima 1983; Pamilo
and Nei 1988; Rosenberg 2002; Rannala and Yang 2003; Degnan
and Rosenberg 2009) would be sufficient to model the ancestry of
genes a1, b1, and c1. However, in this example, a duplication event
occurs along the branch ancestral to species B and C, and this
duplicate eventually fixes so that it is present in all descendant
extant species, resulting in genes b2 and c2. In the locus tree, such
a duplication appears as a bifurcation in which one child, the
mother, continues to evolve at the original locus (‘‘locus 1’’) and
the other child, the daughter, evolves at a new locus (‘‘locus 2’’).
However, molecular sequences evolve along the gene tree, which is
affected by duplications, losses, and ILS. Continuing our example,
the duplication has created an additional lineage within the locus
1 tree that must coalesce. Because there exist multiple chromo-
somes within the population, there likely exists a delay between
the duplication event and the time at which the lineage with the
duplicate coalesces with another lineage in locus 1. (This is anal-
ogous to the delay between a speciation event and the coalescent
time of lineages from different species in a coalescent-only model.)
In the gene tree, the duplication therefore appears as a locus
‘‘change’’ along a gene tree branch. If ILS occurs, two or more gene
lineages may not coalesce at their first opportunity. In the exam-
ple, despite the duplication event occurring along the branch an-
cestral to species B and C, the gene lineage with the duplicate does
not coalesce with another lineage in locus 1 until after (looking
backward in time) the speciation event that differentiated species A
from B and C; this has caused incongruence between the gene tree
and locus tree.

Originally proposed by Rasmussen and Kellis (2012), this
unified three-tree model of gene tree-locus tree-species tree com-
bines the multispecies coalescent and duplication-loss models for
gene family evolution. Note that in addition to the gene tree,
which represents the history of a set of gene sequences, and the
species tree, which represents the history of a set of species, there
exists a third tree, the locus tree. This locus tree shows the locus to
which each sequence belonged at each point in its history and how
these loci are related through duplication events. (While the rec-
onciliation between the locus tree and species tree can additionally
reveal ‘‘missing’’ locus tree branches due to loss events, such losses
have no effect on the relationships between loci assigned to ob-
servable locus tree branches.) Importantly, under the three-tree
model, only sequences within the same species and the same locus
are allowed to coalesce. Therefore, the gene tree of this model can
be viewed as a generalized coalescent tree, as it represents the history
of gene sequences as they coalesce within the locus tree. As in the
standard coalescent tree from coalescent-only models, internal
nodes within the generalized coalescent tree capture coalescences;
however, these coalescences can occur in a duplicate locus (for
example, locus 2 in Fig. 1C), and furthermore, branches are allowed
to ‘‘change’’ loci (for example, from locus 1 to locus 2 in Fig. 1C) due
to duplication events. For simplicity, throughout the remainder of
this manuscript, we will simply use coalescent tree to refer to the
generalized coalescent tree. The problem with the term gene tree is
that it is used in very different ways in the two underlying models:
the gene branches present in one time slice in a species branch in
the coalescent model (Fig. 1B) represent the chromosomes that are
ancestral to the extant sequences; however, the same branches in
the duplication-loss model (Fig. 1A) represent the loci that exist
within the ancestral genome at that time. Therefore, the ‘‘gene
tree’’ from the coalescent model corresponds to our coalescent
tree, which evolves ‘‘inside’’ the locus tree, and the ‘‘gene tree’’
from the duplication-loss model corresponds to our locus tree,
which evolves ‘‘inside’’ the species tree. Indeed, it is this two-step
reconciliation that allows us to separate the multispecies coalescent

and duplication-loss processes responsible for gene family evolution.
Finally, within the three-tree model, molecular sequences evolve
along the coalescent tree; however, to be consistent with current
phylogenetic literature, throughout this manuscript, we refer to
a tree reconstructed using phylogenetic algorithms as a gene tree,
with the understanding that this is equivalent to the coalescent
tree.

The labeled coalescent tree

We now propose a new reconciliation structure, the labeled
coalescent tree (LCT) (Fig. 1D), for modeling gene evolutionary
histories. Here, we outline the basic structure of the LCT; a formal
definition is provided in Supplemental Material S1. Given a gene
tree, species tree, and leaf mapping, the LCT is specified by the
following:

• a species map that labels each gene tree node with the species to
which it belongs;

• a locus map that labels each gene tree node with the locus in
which it evolves; and

• a partial order that defines a total order on gene tree nodes within
the same species and locus.

The LCT implicitly models the locus tree topology and recon-
ciliations between the species, locus, and gene trees; these are
precisely the minimal information necessary for inferring evo-
lutionary events. Note also that the species map effectively de-
composes the gene tree into disjoint subtrees, one or more of which
evolve within each species tree branch. Let a speciation node be any
gene tree node that exists at a speciation event, that is, a node found
at the ‘‘bottom’’ or ‘‘top’’ of a species tree branch. Some speciation
nodes may be hidden in the gene tree due to gene loss or deep co-
alescence; we call such nodes ‘‘implied speciation nodes’’ and in-
clude them in the LCT.

The LCTallows for three sources of incongruence between the
gene tree and species tree (Fig. 2):

• Duplication: the locus of a gene tree node differs from the locus
of its parent node (Fig. 2A);

• Loss: a locus that exists within a species is not found within the
set of loci at the bottom of the species tree branch (Fig. 2B). Note
that we cannot infer when a locus is lost; thus, we assume that
a locus is lost when it no longer exists within the species tree
branch;

• Deep coalescence: deep coalescence is quantified by counting
the number of implied extra lineages (Fig. 2C, top). As new
lineages are created by speciation and duplication events, we
must address both these sources:
(1) ILS due to speciations: At a speciation, that is, at the top of

a species tree branch, there exist multiple lineages within the
same locus (Fig. 2C, middle); and

(2) ILS due to duplications: At a duplication, there exist multiple
contemporary lineages that belong to the same locus as the
parent locus of the duplication (Fig. 2C, bottom).

Finally, note that the LCT is a simplified and condensed rep-
resentation of the three-tree model of gene family evolution (for
a comparison, see Supplemental Material S4).

Inferring a most parsimonious LCT

Using the LCT, we can now develop new methods for gene tree-
species tree reconciliation. In this section, we assume that, in ad-
dition to the gene tree, species tree, and leaf mapping, we are given
positive costs for duplications, losses, and deep coalescence (extra
lineages). Our goal is to infer a most parsimonious (MP) LCT, that

Duplication, loss, and coalescence
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is, a (not necessarily unique) LCT with minimum reconciliation
cost, subject to the condition that the reconciliation between the
locus tree and species tree is the LCA mapping. Note that we have
constrained the reconciliation between the locus tree and species
tree in order to make our inference algorithm more efficient; we
find that this assumption holds in the majority of gene trees in
simulation with biologically realistic parameters.

We now present our algorithm DLCpar for inferring an MP
LCT. Here, we outline the basics of our algorithm; technical details,
including pseudocode and proofs, are provided in Supplemental
Material S2 and S3, respectively. DLCpar adopts a multistage ap-
proach in which we first infer an optimal species map, then use
this to infer an optimal locus map and order (Fig. 3). Our method
makes use of the structure of the LCT to search over all possible MP
reconciliations and reuse computations.

Our first step is to infer an optimal species map. As the leaf
mapping of extant genes to extant species is known, our goal is to
map each internal gene tree node to a species tree node. Under our
assumptions, an optimal species map is the LCA mapping. We can
prove this by contradiction: if the species map is not the LCA
mapping, moving a gene tree node ‘‘down’’ (toward the leaves of)
the species tree incurs a lower cost; thus, the species map cannot be
optimal (for full details, see Theorem S2.1). Once the species map
has been determined, implied speciation nodes are added, and the
speciation nodes are used to decompose the gene tree into disjoint
subtrees that evolve within each species tree branch (Fig. 3A).

To find an optimal locus map and order, note that knowledge
of the loci at the speciation nodes would allow us to infer evolution
within each species tree branch independently of one another.
Therefore, rather than inferring the locus map and order for the
entire gene tree at once, we consider the subproblem of deter-
mining species-specific locus maps and orders. In particular, for
each species, a species-specific locus map is defined only on the
gene tree nodes mapped to that species. By definition, a partial
order for the LCT already separates gene tree nodes by their mapped
species.

Our next task is to enumerate the set
of species-specific locus maps for each
species. We accomplish this through a
pre-order traversal of the species tree. To
start, we consider the (single) subtree (of
the gene tree) that evolves within the root
branch of the species tree. We label each
gene tree branch within this subtree with
a boolean variable that is true if the locus
has changed along the branch and false
otherwise. Next, we assign the root of the
gene tree to an arbitrary locus and, for
each combination of branch labels, recur
down the subtree to determine a possible
species-specific locus map. This yields the
set of possible species-specific locus maps
for the root species (Fig. 3B). For species
that are not the root of the species tree,
a similar approach is applied, except that
multiple subtrees may exist within the
species tree branch. Also, instead of as-
signing the root of the gene tree to an
arbitrary locus, we consider all possible
‘‘root loci,’’ that is, all possible locus as-
signments for the gene tree nodes at the
top of the species tree branch. Similarly,
‘‘leaf loci’’ are the locus assignments for
the gene tree nodes at the bottom of a
species tree branch. Because we have per-

formed a pre-order traversal of the species tree, the set of possible
root loci for a species is equal to the set of leaf loci for its parent
species, and in turn, the set of leaf loci is determined by the species-
specific locus maps.

For each species-specific locus map, we must also determine
an associated optimal order. One solution is to choose an order
such that the implied duplications are as early in the species tree
branch as possible. This is because the order only affects the
number of extra lineages due to duplications, and such a selection
minimizes this count (for full details, see Proposition S2.3). In
essence, pushing duplications toward the top of a species tree
branch effectively enforces LCA reconciliation between the gene
tree and locus tree.

At this point, the reconciliation cost for each species-specific
locus map (and associated optimal order) can be computed, but
there is one last step to perform within the species tree branch. As
previously mentioned, we need only transmit the loci at speciation
nodes from one species tree branch to the next. In addition, later in
our algorithm, we require a method for comparing the locus as-
signments at speciation nodes across different locus maps. In
particular, even though there are multiple ways of arriving at the
same leaf loci, we are only interested in the relative assignments,
that is, which nodes are mapped to the same locus and which to
different loci. Therefore, we remap the leaf loci to a set of relative
loci; this is accomplished by arbitrarily ordering the speciation
nodes, assigning the first to an arbitrary locus, then proceeding
along the speciation nodes and, based on the species-specific locus
map, assigning each to an existing locus or to a new locus. Once
this has been performed for each species-specific locus map, we
retain, for each unique relative locus map, only its optimal under-
lying (absolute) locus map (Fig. 3C). Finally, note that, to remove
redundancy, the resulting relative leaf loci are used (instead of the
absolute loci) when enumerating species-specific locus maps for
the children species.

Once locus maps, orders, relative locus maps, and costs have
been computed for all species tree branches (Fig. 3D), we use dy-

Figure 2. Duplications, losses, and deep coalescence. In A–C, evolutionary events are depicted using
the unified model (left), the gene tree evolving ‘‘inside’’ the locus tree (middle), and the LCT (right). (A)
Gene duplication was discussed in Figure 1. Evolution within a single species tree branch is shown. (B)
Similar to duplication, a gene loss starts in one chromosome and drifts until it fixates or goes extinct.
Evolution within a single species tree branch is shown. (C ) Deep coalescence occurs when two lineages
fail to coalesce before either can coalesce with a third lineage. This results in extra lineages at the top of a
locus tree branch (top). Within a single species tree branch, multiple lineages can exist at the top of
a locus tree branch created by a speciation (middle) or at the top of a locus tree branch created by
a duplication (bottom). (D) Events are counted in the LCT of Figure 1D.
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namic programming (DP) to determine optimal relative locus as-
signments for the speciation nodes (Fig. 3E). To accomplish this,
we perform a post-order traversal of the species tree, and for each
species tree branch and each assignment of (relative) root loci and
(relative) leaf loci, use DP to determine the minimum total cost
along all descendant species tree branches. The cost of assigning
a particular leaf loci is either known (for extant species) or com-
puted by adding the respective costs of assigning the same loci as
root loci in the children species. The cost of assigning a particular
root loci is computed by considering each possible leaf loci and
adding the cost of the events within the species tree branch; the
minimum among all possible choices is selected. At the root of the
species tree, the optimal cost is selected, choosing randomly from
among the optima if multiple optimal solutions exist. We then
traceback (through a pre-order traversal of the species tree) to as-
sign optimal root loci and leaf loci for each species.

Finally, because we have kept a mapping of relative locus maps
to absolute locus maps, we can determine the optimal species-
specific locus maps for each species, then look up the associated
optimal order for each species-specific locus map. Combining the
species-specific locus maps and orders yields an optimal locus
map and order for the entire gene tree, and together with our
previously inferred optimal species map, this constitutes the MP
LCT (Fig. 3F).

Results

Simulated data sets

To evaluate the performance of DLCpar, we used the simulated

data sets and metrics of Rasmussen and Kellis (2012) and compared

DLCpar to the DLCoalRecon algorithm (Rasmussen and Kellis

2012) and the usual most parsimonious reconciliation (MPR) al-

gorithm (Page 1994). To effectively model real data, these data sets

used known species trees and parameters (divergence times, du-

plication and loss rates, population sizes, generation times) for two

clades of 12 Drosophila species and 17 primates and other mam-

mals (Supplemental Fig. S4A,B), then used the DLCoal model to

simulate locus trees and gene trees. To reconcile the gene trees to

the species trees, we ran DLCpar using the same event costs across

all settings and ran DLCoalRecon using the true parameters used in

the simulations (MPR requires no parameters).

For most simulation parameters, DLCpar performance either

exceeds (fly data set) or is comparable to (primate data set) that of

DLCoalRecon, with both of these programs showing substantial

improvement over MPR (Fig. 4; Supplemental Fig. S5). As an ex-

ample of the comparative performance of the various methods, for

the Drosophila data set with a duplication-loss rate of 0.0012

events/gene/myr (13 the estimated real rate), a generation time of

0.1 yr, and an effective population of 25 million, our 500 simulated

gene trees contain 232 duplications, 216 losses, and 33,182 pairs of

orthologous genes. By confusing ILS events as duplications with

compensating losses, MPR infers 1241 duplications (80.2% sensi-

tivity, 15.0% precision), 2495 losses (97.7%, 6.0%), and 21,413

ortholog pairs (64.5%, 100%), with 8.4% (locus tree) topological

accuracy. In comparison, DLCpar infers far fewer events at in-

creased accuracy, sensitivity, and precision, with 232 duplications

(96.6%, 96.6%), 213 losses (98.1%, 99.5%), 33,192 ortholog pairs

(99.98%, 99.95%), and 98.0% topological accuracy. Impressively,

DLCpar also outperforms DLCoalRecon, with the latter inferring

242 duplications (90.5%, 86.7%), 216 losses (98.6%, 98.6%),

33,285 ortholog pairs (99.7%, 99.4%), with 96.0% topological ac-

curacy. This is despite the advantages that DLCoalRecon has over

Figure 3. The DLCpar algorithm. In this example, we use equal costs for the evolutionary events. Furthermore, for illustrative purposes, the root of the
gene tree has been extended so that a duplication may occur along the root branch; in general, this root branch is not necessary. (A) LCA mapping is used
to map the gene tree (gray) within the species tree (blue), and implied speciation nodes (*) are added to gene tree branches that span multiple branches of
the species tree. (B) Starting at the root branch of the species tree, DLCpar enumerates the locus maps and determines an optimal order and reconciliation
cost for each. (In practice, some locus maps are not considered since they are never most parsimonious.) (C ) The leaf loci are remapped to relative loci, and
for each unique labeling of root loci and leaf loci, an optimal underlying locus map (and associated order) is selected. (D) This is repeated for all branches of
the species tree in pre-order traversal, thereby enumerating all locus maps (along with associated optimal orders and reconciliation costs) for this gene tree
and species tree. (E) For each species and each assignment of root loci and leaf loci, dynamic programming (DP) is used to determine the minimum total
cost along all descendant species tree branches. The DP table is filled by post-order traversal of the species tree (arrows); see text for how these costs are
computed. Colors indicate which leaf loci (circles) and which species-specific locus map (squares with colors corresponding to parts C and D) are used. At
the root of the species tree, the optimal cost is selected (boxed), and traceback allows assignment of the loci for all speciation nodes (boxed). These can
then be used to determine the species-specific locus maps and orders. (F) The inferred LCT is shown.
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DLCpar in this simulation study; in particular, the DLCoal model

was used to generate the simulated gene trees, and DLCoalRecon

both incorporates additional parameters and uses the true pa-

rameters used in the simulations.

We also find that with increasing ILS rate (due to increasing

population size with a constant generation time), DLCpar per-

formance remains relatively stable, whereas DLCoalRecon per-

formance decreases. The decreased performance of DLCoalRecon

is likely partially attributable to its heuristic search strategy

Rasmussen and Kellis (2012): on the same simulated Drosophila

data set as above (13 duplication-loss rate, g = 0.1 yr, N = 25

million), when the search is initialized on the correct locus tree,

DLCoalRecon infers 232 duplications (97.4% sensitivity, 97.4%

precision), 213 losses (98.6%, 100%), and 33,196 ortholog pairs

(100%, 99.96%), with 99.2% locus tree topological accuracy.

While this performance is slightly higher than that of DLCpar, it

further highlights another advantage of DLCpar over DLCoalRecon,

namely that DLCpar searches over the entire space of reconcilia-

tions compared to the heuristic search approach of DLCoalRecon

(Fig. 5). While increasing the search space of DLCoalRecon could

lead to performance increases, the total run time of DLCoalRecon

already far exceeds that of DLCpar; for the data set above,

DLCoalRecon took 5.6 h compared to DLCpar at 6.3 min, a slow

down of 54.23.

In addition to increased accuracy and reduced run time,

DLCpar holds a major advantage over DLCoalRecon in terms of

applicability. In DLCoalRecon, the maximum a posteriori recon-

ciliation is inferred, thus requiring knowledge of speciation times,

duplication and loss rates, generation times, and population sizes.

For this evaluation, DLCoalRecon used the true parameters used in

the simulation, but in practice, these parameters need to be esti-

mated from genome-wide data and are often difficult, if not im-

possible, to obtain accurately. In contrast, DLCpar only requires

the user to select costs for duplications, losses, and ILS. In this

analysis, despite the differences in the number of implanted du-

plications and losses and varying ILS rate across the different spe-

cies trees and simulation parameters, we used the same event costs

for DLCpar throughout, yet DLCpar performance is still consis-

tently high. Analysis using varying relative costs also shows that

DLCpar performance is robust to the choice of these costs (Sup-

plemental Material S6; Supplemental Fig. S6). To demonstrate that

DLCpar is applicable to a wide range of data sets, we also conducted

additional analyses using simulated species trees and gene trees

and found that, almost universally, DLCpar shows dramatic im-

provement over DLCoalRecon and MPR (Supplemental Material

S8; Supplemental Fig. S9).

Finally, we consider the performance of NOTUNG (Durand

et al. 2006; Vernot et al. 2007), which allows for ILS by reconciling

Figure 4. DLCpar performance on simulated fly and primate gene trees. DLCpar, DLCoalRecon, and MPR were used to reconcile simulated gene trees.
Simulated data sets and DLCoalRecon and MPR results were obtained from Rasmussen and Kellis (2012), and DLCpar was run with costs of D = 1, L = 1, C =
0.5. Duplications and losses were simulated at rates estimated from real data (flies: 0.0012 events/gene/myr; primates: 0.0017 events/gene/myr),
generation times for model organisms were obtained from the literature and assumed equal throughout the clade (flies: 0.1 yr; primates: 20 yr), a wide
range of effective population sizes was used, and 500 gene trees were simulated per parameter setting. For the fly data set, DLCpar shows substantial
improvement over DLCoalRecon in both the precision of inferring duplications and losses (A,B) as well as the accuracy of reconstructing the locus tree
topology (C ). For the primate data set, DLCpar and DLCoalRecon performance is comparable (D–F). Both ILS-aware methods dramatically outperform
MPR.
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gene trees to nonbinary species trees. This either requires species

trees with well-studied polytomies or a procedure for collapsing

species tree branches; a principled approach for the latter does not

exist. Therefore, we ran NOTUNG using species tree topologies

with a range of polytomies; these included collapsing the shortest

branch or branches within the species tree, collapsing branches

that have been found to be sources of ILS in previous studies, and

collapsing all branches to create a ‘‘star’’ phylogeny. (Note that the

‘‘star’’ phylogeny is the only one that allows for ILS along all

branches of the species tree.) In all cases, we find that DLCpar per-

forms dramatically better than NOTUNG (Supplemental Fig. S8). As

expected, NOTUNG performs worse than DLCpar and DLCoalRecon

but better than MPR in terms of duplication precision, and pre-

cision increases with the number of polytomies. That is, by rec-

onciling gene trees to nonbinary species trees, NOTUNG is able to

correctly identify spurious duplications due to ILS. However, this

comes at the cost of increasingly worse loss precision; in many

cases, NOTUNG loss precision is worse than that of even MPR. This

is likely because losses associated with a polytomy in the species tree

can be assigned to multiple candidate gene tree edges depending on

how the order of divergence within the polytomy is resolved; such

ambiguities are not possible when both the gene tree and species

tree are binary. We also find the duplication sensitivity of NOTUNG

to be similar to that of MPR (that is, worse than that of DLCpar and

DLCoalRecon) and the loss sensitivity of NOTUNG to be worse than

that of MPR. These results highlight the shortcomings of NOTUNG.

In particular, the NOTUNG model cannot capture all possible evo-

lutionary histories because it does not explicitly model the locus

history of the gene family, for example, through a locus tree. Be-

cause of this, NOTUNG cannot model deep coalescence of a dupli-

cated lineage with its parent lineage. Furthermore, NOTUNG can

only capture pairwise relationships present as bifurcations in the

gene tree; this is despite the gene tree being an inaccurate repre-

sentation of the duplication-loss history of the gene family due to

the presence of ILS.

Biological data set of 16 fungal genomes

To study whether our observed trends in simulated data sets trans-

late to a real data set, we also assessed the performance of DLCpar on

a biological data set of 5351 gene trees across 16 fungal genomes

(Supplemental Fig. S4C; Butler et al. 2009); this data set has been

used to evaluate numerous phylogenetic algorithms (Wapinski et al.

2007; Rasmussen and Kellis 2011, 2012; Wu et al. 2013). Compared

algorithms include BIONJ (Gascuel 1997), PhyML (Guindon and

Gascuel 2003), RAxML (Stamatakis 2006), MrBayes (Ronquist and

Figure 5. DLCpar complexity on simulated fly and primate gene trees. For each data set, gene trees were divided into classes based on the number of
extant genes (counts shown as bars). For each gene tree, we determined the total number of reconciliations considered by DLCpar (red), the number of
reconciliations if only relative locus maps for speciation nodes are considered (green), and the number of computations to complete the DP table (blue).
The mean and 95% confidence interval (mean 6 1.96 3 standard error) is shown for each class. Also shown are the number of reconciliations considered
by DLCoalRecon (red dots), which was fixed at 1000 search iterations. (DLCoalRecon utilizes a prescreening approach so that 20 3 103 locus trees are
proposed, but only 1000 of these are considered using the full probabilistic model.) Data are shown for flies with simulation parameters of 13 duplication-
loss rate, g = 0.1 yr, N = 25 million; and for primates with simulation parameters of 13 duplication-loss rate, g = 20 yr, N = 25,000. Note that the number of
reconciliations considered by DLCpar increases with increasing gene tree size (red), redundancy in the reconciliation search space is dramatically reduced
by considering relative locus maps at speciation nodes (green), and dynamic programming further increases efficiency by reusing subproblems (blue).
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Huelsenbeck 2003), SYNERGY (Wapinski et al. 2007), TreeBeST

(Vilella et al. 2009), PrIME-GSR or DLRS (Arvestad et al. 2004),

SPIDIR (Rasmussen and Kellis 2007), SPIMAP (Rasmussen and Kellis

2011), tt (Górecki and Eulenstein 2011), NOTUNG (Chen et al.

2000; Durand et al. 2006), and TreeFix (Wu et al. 2013). As the truth

is not known for real data, we used several informative metrics to

assess the quality of reconciliations (Table 1).

For comparison, we evaluated several combinations of phy-

logenetic (gene tree) reconstruction programs and reconciliation

programs. Phylogenetic programs included some of the best per-

forming methods; we considered sequence-only (PhyML [Guindon

and Gascuel 2003]), hybrid (RAxML [Stamatakis 2006] + TreeFix

[Wu et al. 2013]), and species-tree-aware (SPIMAP [Rasmussen and

Kellis 2011]) approaches, as well as approaches that integrated other

sources of information such as synteny (SYNERGY [Wapinski et al.

2007]). Reconciliation programs included DLCpar, DLCoalRecon,

and MPR. However, both SPIMAP and SYNERGY incorporate their

own reconciliation model into gene tree reconstruction, and these

models are incompatible with an ILS-aware reconciliation model;

therefore, we applied DLCpar and DLCoalRecon only to PhyML and

TreeFix gene trees.

The real data set included some very large gene families: the

largest gene family contains 178 extant genes for an average of ;11

genes per extant species, and another family contains 42 genes in an

extant species. We therefore bounded the search space of DLCpar by

prescreening reconciliations. For the 0.2% (PhyML: 10/5351;

TreeFix: 9/5351) of families that were too complicated using the

bounded search (memory requirements exceeded 4 GB), we used

DLCpar with a hill-climbing search heuristic. Evaluation of these

heuristic approaches on the simulated fly and primate genomes

shows only minor changes in performance when using biologically

realistic simulation parameters (Supplemental Material S7; Sup-

plemental Fig. S7).

First, we assessed the ability to recover syntenic orthologs

(one-to-one homologs that are highly likely to be orthologous,

given their surrounding conserved gene order). We find that when

applied to trees reconstructed using the same phylogenetic pro-

gram, DLCpar recovers slightly more syntenic orthologs than

DLCoalRecon (PhyML: 98.4% vs. 97.8%; TreeFix: 99.1% vs.

99.0%). Compared to reconciliations that do not take into account

ILS, this is a dramatic improvement over sequence-only methods

(64.2%) and higher than hybrid or species-tree-aware methods

(96.4%–96.5%). These high sensitivities are also accompanied by

more inferred orthologs and fewer inferred duplications and

losses. This is, of course, expected, as ILS results in spurious du-

plications and losses in the gene tree, which are then removed by

the ILS-aware reconciliation methods. We find that DLCpar and

DLCoalRecon infer similar numbers of orthologs (0.5%–0.6% dif-

ference), duplications (0.4%–0.7%), and losses (1.4%–2.3%), and

other than SYNERGY, which infers more orthologs and a compa-

rable number of duplications, DLCpar and DLCoalRecon infer at

least 16.1% fewer duplications and 35.5% fewer losses than other

methods.

Next, we analyzed the duplication consistency score (Vilella

et al. 2009), which measures the plausibility of inferred duplica-

tions. For each duplication node, this score computes the percent-

age of species overlap in the two child subtrees; the assumption is

that erroneous duplications are often followed by compensating

losses and therefore yield a low score. We find that DLCoalRecon

slightly outperforms DLCpar, as evidenced by its score distribution

(Supplemental Fig. S10). Compared to other methods, the ILS-aware

methods have an average duplication consistency score at least

13.1% higher than the next best performing method (SYNERGY)

under this metric.

For our last metric, we evaluated the ability to recover more

recent duplications due to gene conversion events. When paired

with a sequence-only method, DLCpar recovers slightly more recent

gene-converted paralogs than DLCoalRecon (91.9% vs. 86.5%), but

more impressively, when paired with a hybrid method that ac-

counts for gene tree errors due to statistical uncertainty, DLCpar and

DLCoalRecon show 100% recovery. This suggests that even though

the alignment is not passed to either DLCpar or DLCoalRecon, and

despite neither algorithm modeling gene conversion, the gene tree

topology still adequately constrains the underlying locus tree to-

pology so that species tree information does not override sequence

evidence in the reconciliation.

Table 1. Evaluation on real fungal data set

Phylo proga Recon proga % Orthsb # Orthsc # Dupsc # Lossesc DCSd % GCe Phylo run timef Recon run timeg

PhyML DLCpar 98.4 581,017 4498 6699 0.823 91.9 45.3 (20.0) sec 74.4 (0.9) sec
PhyML DLCoalRecon 97.8 575,374 4533 6398 0.883 86.5 45.3 (20.0) sec 54.1 (52.2) sec
PhyML MPR 64.2 464,479 21,264 64,391 0.153 86.5 45.3 (20.0) sec –
TreeFix DLCpar 99.1 590,113 4535 5535 0.899 100.0 25.7 (8.0) min 11.7 (0.8) sec
TreeFix DLCoalRecon 99.0 583,490 4472 5378 0.927 100.0 25.7 (8.0) min 47.6 (48.6) sec
TreeFix MPR 96.4 574,946 6062 10,981 0.649 97.3 25.7 (8.0) min –
SPIMAP – 96.5 557,981 5407 10,384 0.650 83.8 21.9 (12.2) min –
SYNERGY – 99.2 595,289 4604 8179 0.692 2.7 – –

aSeveral combinations of phylogenetic reconstruction (phylo) programs and reconciliation (recon) programs were evaluated. PhyML+DLCoal,
PhyML+MPR, SPIMAP, and SYNERGY results were taken from Rasmussen and Kellis (2012). TreeFix+MPR results were taken from Wu et al. (2013), where
TreeFix used as input RAxML trees (with 100 bootstraps) and long search parameters. PhyML+DLCpar, TreeFix+DLCpar, and TreeFix+DLCoalRecon were
evaluated using PhyML trees from Rasmussen and Kellis (2012), or TreeFix (long) trees from Wu et al. (2013), and running DLCpar with costs of D = L = C = 1,
or DLCoalRecon with parameters from Rasmussen and Kellis (2012).
bPercentage of 183,374 syntenic orthologs recovered.
cNumber of pairwise orthologs, duplications, and losses inferred across all gene trees.
dAverage duplication consistency score. Scores range from 0 to 1, with a higher score indicating more consistent duplications.
ePercentage of 37 recent gene-converted paralogs recovered.
fAverage (median) run time for reconstructing each gene tree. TreeFix run times include times for reconstructing initial RAxML trees. Note that depending on
program parameterization, shorter run times may be possible to achieve similar performance. Since SYNERGY trees were downloaded, no run time was
estimated.
gAverage (median) run time for reconciling each gene tree. MPR run times are not included, but on average took less than a second. Note that, depending on
program parameterization, shorter run times may be possible to achieve similar performance.
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In addition to studying reconstruction quality, we compared

the run time performance of DLCpar and DLCoalRecon. We find

that while DLCpar has a longer run time than DLCoalRecon for

PhyML trees (74.4 sec vs. 54.1 sec), its average run time is highly

skewed by large families. If we exclude the longest 0.25% of run

times for either program, DLCpar run time dramatically decreases

(29.4 sec) while DLCoalRecon run time is unaffected (53.2 sec).

(For many gene families, DLCoalRecon run time could likely be

decreased by reducing the number of search iterations. However,

reducing the search space yields lower accuracy, and there is no

principled way of balancing this trade-off.) Additionally, for TreeFix

trees, the average run times of DLCpar (DLCoalRecon) reduced

by a factor of 6.4 (1.1)3 to 11.7 (47.6) sec. Again, the average run

time for DLCpar is highly skewed by large families, as 90.0% of

families ran in under 1 sec. The decreased run time of DLCpar can

likely be attributed to the smaller degree of gene tree-species tree

incongruence for the TreeFix trees, which translates to smaller

search spaces for the LCT. Finally, we find that the run times for the

full phylogenomic pipeline (including both phylogenetic recon-

struction and reconciliation) are comparable for DLCpar (PhyML:

2.0 min; TreeFix: 25.9 min) and DLCoalRecon (PhyML: 1.7 min;

TreeFix: 26.5 min). However, the total run time for pipelines with

TreeFix is dominated by the phylogenetic reconstruction and can

be greatly reduced. Our TreeFix trees used long search parameters

and were built on RAxML gene trees with 100 bootstraps to yield

the highest accuracy, but using a smaller search space and no

bootstraps would result in only a minor decrease in performance

(Rasmussen and Kellis 2011; Wu et al. 2013) while requiring much

less run time.

Discussion
In this work, we have presented a novel algorithm DLCpar for

inferring a most parsimonious gene evolutionary history in the

presence of duplication, loss, and ILS. To develop our algorithm,

we have also introduced the labeled coalescent tree (LCT) and

shown it to be an efficient data structure for representing recon-

ciliations. Our analysis of simulated and biological data sets shows

that DLCpar achieves performance comparable to more sophisti-

cated probabilistic reconciliation methods at a fraction of the run

time. In addition, with its parsimony approach, DLCpar is more

applicable to a broad range of species and large data sets.

A core novelty of the LCT is that it labels gene tree branches

with the species to which it belongs and the locus in which it

evolves. This allows the LCT to simultaneously model the duplica-

tion-loss history and coalescent history of a gene family. In contrast,

current reconciliation structures that map gene tree nodes to species

tree nodes are only appropriate for capturing coalescent-only

histories (in which case, the reconciliation traces coexisting chro-

mosomes) or duplication-loss histories (in which case, the rec-

onciliation traces coexisting loci). The only existing reconciliation

framework that accounts for duplication, loss, and ILS is the three-

tree (DLCoal) model, which relies on a two-step reconciliation

structure, with one (the reconciliation between the gene tree and

locus tree) describing the coalescent history and the other (the

reconciliation between the locus tree and species tree) describing the

duplication-loss history. Thus, the LCT bridges the gap between

previously disjoint reconciliation structures and allows us to si-

multaneously capture multiple sources of incongruence. Further-

more, while conceptually identical to the three-tree model, the LCT

enables the development of an efficient inference algorithm based

on dynamic programming.

Similarly, a major feature of DLCpar is its simple yet powerful

model. DLCpar relies on the three-tree model of evolution and the

assumption that the most parsimonious reconciliation is the most

accurate. This model has a strong biological foundation and cap-

tures the most relevant phenomena responsible for eukaryotic

evolution, and parsimony assumptions are used in the simplest,

most popular reconciliation methods. Currently, only two other

methods exist that simultaneously model duplications, losses, and

ILS: NOTUNG and DLCoalRecon. However, NOTUNG, while sim-

ple, can only capture a subset of the possible reconciliations and

therefore has limited accuracy, and DLCoalRecon, while powerful, is

highly parameterized, making it difficult to use in many analyses.

Additionally, by using the LCT structure, DLCpar is able to

search over the entire reconciliation space. While there exists

previous work on exploring and summarizing the reconciliation

space, they consider only duplications and losses (Arvestad et al.

2004; Doyon et al. 2008, 2009, 2012) or additionally horizontal

gene transfer (Scornavacca et al. 2013), or, if ILS is addressed, they

model only a subset of the evolutionary histories that are possible

in our model (Vernot et al. 2007). That is, this work presents the

first approach for fully exploring the reconciliation space while

accounting for duplications, losses, and ILS. As we have shown,

this is a major advantage over the hill-climbing approach of

DLCoalRecon, likely resulting in the latter’s lower performance in

our simulations. Furthermore, DLCpar’s dynamic programming

approach allows it to reuse computations across different reconcil-

iations. In contrast, DLCoalRecon recomputes the posterior proba-

bility for every proposed reconciliation. In addition to the simpler

task of computing a parsimony-based reconciliation cost rather

than a probability, this likely accounts for the dramatic run time

improvement of DLCpar over DLCoalRecon.

Our results demonstrate that a parsimony approach is capable

of distinguishing between gene tree-species tree incongruence due

to duplication-loss and ILS. This is in spite of the fact that simple

formulas exist for relating the number of duplication-loss events

and the number of deep coalescence events (Zhang 2011), which,

at first glance, might suggest that parsimony methods would al-

ways infer one event over the other (for further discussion, see

Supplemental Material S5). Furthermore, while we have demon-

strated that DLCpar performs well under a variety of species tree

parameters, more study is needed in the ‘‘anomaly zone’’ of species

histories in which anomalous gene trees (AGTs) exist, that is,

where the gene tree most likely to evolve under a coalescent model

differs from the species tree topology (Degnan and Rosenberg

2006; Degnan et al. 2012; Degnan 2013). Within an anomaly zone,

it has been shown that species trees reconstructed using demo-

cratic vote (Degnan and Rosenberg 2006), greedy consensus

(Degnan et al. 2009), maximum likelihood from concatenated se-

quences (Kubatko and Degnan 2007), and minimizing-deep-

coalescence (Than and Rosenberg 2011) methods are inconsistent,

meaning that the estimated species tree topology is incorrect in the

limit as the number of sampled gene trees goes to infinity. However,

the risk of AGTs are rarely realized in practice (Huang and Knowles

2009), and a Bayesian approach for estimating species trees is

consistent (Liu and Edwards 2009). Altogether, this suggests that

a more careful treatment of parsimonious reconciliations within

this anomaly zone may be required, with particular focus on in-

vestigating whether the species tree and gene tree can mislead the

locus tree.

In our simulations, we reconciled the simulated gene trees to

the species trees, thus assuming that gene trees are accurate and

fully resolved. However, in practice, gene tree reconstruction is
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complicated by the fact that many gene families lack enough

information to confidently support a single gene tree topology.

This is an important point as phylogenetic analyses depend

strongly on the accuracy of reconstructed gene trees (Hahn 2007).

Here, we must distinguish between topological errors due to lack

of phylogenetic signal and due to ILS. If we are interested in the

duplication-loss (locus) history of a gene family (for example, if

the goal is to infer duplications, losses, orthologs, and paralogs),

then the tree of interest is the locus tree, not the gene tree. How-

ever, to infer the locus tree from molecular sequences involves

inferring the gene tree from the sequences, then inferring the locus

tree from the gene tree. Phylogenetic signal (or lack thereof) affects

the former, and ILS affects the latter. That is, though ILS often

biases reconciliation-based inferences to yield false duplications

due to stochastic variations in gene tree topology (Zheng and

Zhang 2013), there could be sufficient phylogenetic signal to ac-

curately infer the gene tree topology, but this gene tree is still an

inaccurate representation of the duplication-loss history due to the

presence of ILS. Our analysis of the biological data set demon-

strates that while many ILS events can be accounted for by cor-

recting for gene tree errors due to lack of phylogenetic signal,

substantial improvement is achieved in locus tree accuracy by

accounting for errors due to a lack of phylogenetic signal and ILS.

To address this need, we suggest a powerful phylogenetic pipeline

for gene tree (or more accurately, locus tree) reconstruction and

event and homolog inference: reconstruct gene trees using a ML

method, correct for topological errors due to statistical uncertainty

using TreeFix, and account for ILS using DLCpar. These methods

are based on simple models and have few requirements: aside

from some user-defined thresholds and costs (to which the al-

gorithms are robust), we require only a sequence alignment and

species tree topology, and these are precisely the minimal re-

quirements for any phylogenetic pipeline. Compare this to other

methods that require parameters such as speciation times, dupli-

cation and loss rates, generation times, or population sizes, which

must be estimated from genome-wide data and are often noisy, and

even with the additional information, achieve, at most, comparable

performance.

In this work, we have presented a method for reconciling

binary gene trees to binary species tree, but in practice, inferring

fully resolved trees is a major issue due to lack of phylogenetic

signal or conflicting sources of information. For example, for the

PhyML (RAxML) gene trees reconstructed on our biological data

set, 1.4% (0.1%) of gene tree branches are unresolved (have zero

branch lengths), and 15.7% (1.7%) of gene trees had at least one

unresolved branch. While this might indicate a lack of gene tree

polytomies, we also find that for the RAxML gene trees recon-

structed on our biological data set, 29.5% of gene tree branches are

poorly supported (have bootstrap < 80%), and 84.3% of gene trees

have at least one poorly supported branch. (No estimates for PhyML

trees are available, as PhyML trees were reconstructed without

bootstrapping.) Accounting for gene tree error resolves some

polytomies (for example, TreeFix gene trees have 23.7% of gene

tree branches and 55.8% of gene trees poorly supported), but,

altogether, these results suggest a need for ILS-aware reconcilia-

tion methods capable of handling multifurcating gene trees. One

possible approach is to resolve gene tree polytomies by expanding

them and selecting the expansion with minimum reconciliation

cost; such a method has already been presented for the duplication-

loss problem (Chang and Eulenstein 2006; Durand et al. 2006;

Lafond et al. 2012). Future work could also consider reconcilia-

tions with multifurcating species trees. NOTUNG (Vernot et al.

2007) addresses this problem by allowing for ILS at unresolved

nodes in the species tree, but as we have shown in our analysis on

simulated data sets, this approach greatly diminishes loss sensi-

tivity and precision. In addition, more complex models that dif-

ferentiate between hard and soft polytomies, that is, polytomies

that represent simultaneous divergence versus polytomies that

replace a binary branching process that could not be fully resolved,

may be required.

While we have shown that DLCpar is robust to the choice of

reconciliation costs for the different evolutionary events, we sug-

gest that users try multiple event costs, then either take a conser-

vative approach and use only the intersection of the inferred

orthologs and events, or alternatively, find the consensus tree

among the inferred locus trees, and from this, infer orthologs and

events. A possible future direction is to incorporate knowledge of

species tree parameters to estimate these costs. For example, under

the DLCoal model, short species tree branches should induce fewer

duplications and losses and more deep coalescence, resulting in

higher duplication and loss costs and a lower deep coalescence

cost. Determining an equation that takes into account such spe-

cies tree information is not straightforward, however, due to the

complex relationship between duplications, losses, and deep co-

alescence; in particular, ILS increases with more duplications and

decreases with more losses (Rasmussen and Kellis 2012). Another

option is to use an iterative approach to incorporate the inferred

counts of duplications, losses, and extra lineages to assign event

costs, but we wished to avoid such circular dependencies in our

approach. We note also that using branch-specific costs would

require us to search over species maps rather than assuming the

LCA mapping.

We also envision the framework presented here to be useful in

the future development of methods for understanding gene family

evolution. For example, in addition to modeling phylogeny across

genomes, the LCT could be extended to capture phylogeny across

multiple individuals per genome. This has the benefit of incor-

porating both population genetic and phylogenomic data into

a single analysis. There have also been recent developments in

combining models of sequence evolution and duplication-loss

(Arvestad et al. 2004; Dubb 2005; Vilella et al. 2009); incorporating

substitution rate variation (Rasmussen and Kellis 2007, 2011;

Åkerborg et al. 2009), synteny (Wapinski et al. 2007), or horizontal

gene transfer (David and Alm 2011; Doyon et al. 2011; Tofigh et al.

2011; Bansal et al. 2012); jointly inferring species trees and gene

trees (Boussau et al. 2013) or gene trees and sequence alignments

(Liu et al. 2009); reconstructing species trees (Liu and Pearl 2007);

and estimating population statistics (Rannala and Yang 2003;

Hahn et al. 2005; Drummond and Rambaut 2007). However, so

far, all of these methods rely on the multispecies coalescent or

duplication-loss (possibly duplication-transfer-loss) model of evo-

lution, and we believe that incorporating joint models is an exciting

area for future study.

In conclusion, as we sequence ever denser clades, deep co-

alescence will only increase, requiring ILS-aware reconciliation

methods that are both accurate and efficient. The LCT structure

and DLCpar algorithm presented here enable us for the first time to

exhaustively and efficiently search the space of reconciliations and

infer gene evolutionary histories on a genome-wide scale without

additional knowledge of the species tree beyond its topology. Thus,

we recommend that studies use DLCpar in place of the standard

MPR reconciliation algorithm, and we believe that its application

will have many important implications for future investigations of

gene evolution.
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Data access
The DLCpar software and Supplemental Material are freely avail-

able for download at http://compbio.mit.edu/dlcpar.
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