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Abstract: (1) Background: To study the feasibility of developing finite element (FE) models of the
whole lumbar spine using clinical routine multi-detector computed tomography (MDCT) scans to
predict failure load (FL) and range of motion (ROM) parameters. (2) Methods: MDCT scans of 12
subjects (6 healthy controls (HC), mean age ± standard deviation (SD): 62.16 ± 10.24 years, and
6 osteoporotic patients (OP), mean age ± SD: 65.83 ± 11.19 years) were included in the current
study. Comprehensive FE models of the lumbar spine (5 vertebrae + 4 intervertebral discs (IVDs) +
ligaments) were generated (L1–L5) and simulated. The coefficients of correlation (ρ) were calculated
to investigate the relationship between FE-based FL and ROM parameters and bone mineral density
(BMD) values of L1–L3 derived from MDCT (BMDQCT-L1-3). Finally, Mann–Whitney U tests were
performed to analyze differences in FL and ROM parameters between HC and OP cohorts. (3)
Results: Mean FE-based FL value of the HC cohort was significantly higher than that of the OP cohort
(1471.50 ± 275.69 N (HC) vs. 763.33 ± 166.70 N (OP), p < 0.01). A strong correlation of 0.8 (p < 0.01)
was observed between FE-based FL and BMDQCT-L1-L3 values. However, no significant differences
were observed between ROM parameters of HC and OP cohorts (p = 0.69 for flexion; p = 0.69 for
extension; p = 0.47 for lateral bending; p = 0.13 for twisting). In addition, no statistically significant
correlations were observed between ROM parameters and BMDQCT- L1-3. (4) Conclusions: Clinical
routine MDCT data can be used for patient-specific FE modeling of the whole lumbar spine. ROM
parameters do not seem to be significantly altered between HC and OP. In contrast, FE-derived FL
may help identify patients with increased osteoporotic fracture risk in the future.

Keywords: multi-detector computed tomography; finite element analysis; range of motion; spine;
osteoporosis; vertebral fracture; bone mineral density

1. Introduction

Metabolic bone disorders such as osteoporosis have become a prevalent medical
condition among the elderly population worldwide [1]. Osteoporosis is a bone-related
disorder associated with a reduction in bone mass and an increase in bone fragility [2,3].
Untreated osteoporosis can result in fragility fractures [1]. It is estimated that the prevalence
of fragility fractures in the European Union will increase from 2.7 million in 2017 to 3.3

Biomedicines 2022, 10, 1567. https://doi.org/10.3390/biomedicines10071567 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10071567
https://doi.org/10.3390/biomedicines10071567
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-6504-1530
https://orcid.org/0000-0002-8120-2223
https://orcid.org/0000-0002-8349-4813
https://orcid.org/0000-0002-7557-0003
https://orcid.org/0000-0002-4574-5212
https://doi.org/10.3390/biomedicines10071567
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10071567?type=check_update&version=1


Biomedicines 2022, 10, 1567 2 of 16

million by 2030 [4]. In addition, fracture-associated costs are estimated to grow 27% by 2030
from 37.5 billion in 2017 [4]. Besides hip fractures, vertebral fractures (VFs) are frequently
reported osteoporotic fracture entities. They have been observed in around 30–50% of the
population above 50 years of age [5]. The vertebral fracture occurrence can increase the
subsequent vertebral fracture risk by 10-fold [6]. In addition, patients with a history of
vertebral fractures have a 2.3-fold increase in hip fracture risk and a 1.4 times increase
in distal forearm fracture risk [6]. Therefore, it is essential to identify subjects at risk for
osteoporotic fractures early for better patient care.

The World Health Organization (WHO) recognizes a radiographic-based dual-energy
X-ray absorptiometry (DXA) method for diagnosing osteoporosis [7]. The areal bone min-
eral density (aBMD) measures, i.e., T-scores and Z-scores derived from DXA, can be used
to diagnose osteoporosis and estimate fracture risk [7,8]. However, studies have shown
that the efficiency of the DXA-based method is limited (<50%) for predicting the fragility
fracture risk [9]. Thus, the effectiveness of aBMD measures for osteoporotic vertebral
fracture prediction is relatively low. Later, the University of Sheffield developed a statistical
tool called the Fracture Risk Assessment Tool (FRAX) to assess the fracture risk [10]. FRAX
calculates bone fracture risk using femoral neck BMD and 12 other parameters [11]. FRAX
is an inexpensive, easily accessible web-based tool that does not require any technical
expertise than the DXA-based method [12]. However, the effectiveness of the FRAX tool is
limited due to relevant shortcomings [11]. Beyond DXA, quantitative computed tomogra-
phy (QCT)-based volumetric BMD (vBMD) has been developed for quantitatively analyzing
the bone with regard to osteoporosis [13,14]. This method provides more information as
compared to DXA. However, studies have shown that the efficacies of aBMD-based and
vBMD-based measures are limited in predicting osteoporotic fracture risk [9,15]. This is
since BMD-based methods only consider the bone density values. However, other quantita-
tive factors such as topology, size, bone mass distribution, and loading must be considered
to understand and accurately quantify bone health.

Finite element (FE) patient-specific three-dimensional (3D) models derived from clin-
ical multi-detector CT (MDCT) have been used widely for analyzing the bone qualita-
tively [16–19]. In this method, a patient-specific 3D anatomical model is segmented and
reconstructed from the MDCT images. Then the model is meshed before applying image
intensity-specific material properties and loading conditions. Next, boundary conditions
are applied, and then the model is solved to derive structural and kinematic parameters.
The MDCT-based FE method is widely used to evaluate vertebral failure load (FL), fail-
ure displacement, and range of motion (ROM) [15,17,20,21]. In addition, studies have
shown that in vitro MDCT-based FE failure load values correlate well with the reported
experiments and results in the literature [15,20].

Most previous studies have used CT-based images acquired in laboratory or research
settings with higher resolution for building FE models of the spine than those acquired in
the routine clinical settings for the diagnosis or monitoring [22–25]. The reported accuracies
of these FE studies are promising. However, their clinical applicability is limited due to
the need for high radiation doses during image acquisitions. Therefore, in recent studies,
clinical routine MDCT data with lower spatial and in-plane resolutions were used for
comparable FE analysis of individual vertebrae [17,26]. The lumbar spine is a complex
anatomical structure comprised of different soft tissues, bones, and connecting elements
(e.g., vertebrae, intervertebral disk (IVD), ligaments). These tissues constantly interact with
each other and form an anatomically functional unit. Thus, it is essential to analyze the
entire lumbar spine as a unit to better understand the spinal biomechanics and quantify
fracture risk.

Thus, the current study aimed to investigate the feasibility of modeling and performing
finite element simulation of the whole lumbar spine from routinely acquired in vivo clinical
MDCT data for biomechanical analysis. To achieve the above-stated aim, we investigated
the following objectives:
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(1) Modeling and validation of the 3D patient-specific finite element model of the whole
lumbar spine from routine clinical MDCT data (in vivo) for extracting biomechanical
characteristics; and

(2) Comparison of these FE-derived structural biomarkers (FL and ROM) from whole
lumbar spine models of healthy controls (HC) and osteoporotic patients (OP).

2. Materials and Methods

In the current computational study, we have followed a five-step methodology. In the
first step, the routine MDCT data were automatically segmented. In the second step, the
patient-specific 3D lumbar model was generated. Then the annulus fibrosus and nucleus
pulposus of the intervertebral discs (IVDs) and ligaments were modeled separately and
assembled with the vertebra. In the third step, the assembled lumbar model was meshed
and image intensity-based material properties were mapped to the FE mesh. In step four,
loading and boundary conditions were applied, and the model was solved. Finally, in
step five, the data analysis was performed on the FE results. Figure 1 shows the schematic
representation of the complete workflow followed in the current study.
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Figure 1. Schematic representation of the five-step modeling methodology used in this study for
routine clinical MDCT image processing, modeling, and data analysis.

2.1. Subjects

Twelve subjects, six HC (six females, mean age ± standard deviation (SD): 62.16 ± 10.24 years)
and six OP (four males, two females, mean age ± SD: 65.83 ± 11.19 years), were included in this
study. The digital picture archiving and communication system (PACS) of our institute was used to
identify all included subjects retrospectively.

All subjects with a known history of bone diseases, including metabolic, hematologic,
and metastatic disorders other than osteoporosis, were excluded from the current study. The
included subjects were categorized into healthy (QCT BMD > 80 mg/mL) and osteoporotic
(QCT BMD < 80 mg/mL) subjects based on QCT BMD values derived from opportunistic
use of clinical routine MDCT data [27,28] The QCT BMD values (BMDQCT-L1-3) for HC
were as follows: 108.04, 107.82, 106.91, 103.86, 82.44, and 95.54 mg/mL, respectively. For
OP, the BMDQCT-L1-3 values were as follows: 67.67, 62.44, 61.20, 57.14, 56.44, and 62.69
mg/mL, respectively. This retrospective study was approved by the local institutional
review board (Faculty of Medicine, Technical University of Munich, ethics approval 2019,
registration number: 27/19 S) and was conducted in accordance with the Declaration of
Helsinki. The requirement for written informed consent was waived due to the study’s
retrospective design.
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2.2. Image Acquisition

A 64-row MDCT scanner (Somatom Sensation Cardiac 64; Siemens Medical Solutions,
Erlangen, Germany) was used to acquire routine abdominal contrast-enhanced MDCT
data according to clinical indications. A standard bone kernel was used to reconstruct the
sagittal reformations of the spine with a 3 mm slice thickness. All image acquisitions were
performed after administering an intravenous contrast medium (IVCM; Imeron 400; Bracco,
Konstanz, Germany) using a high-pressure injector (Fresenius Pilot C; Fresenius Kabi, Bad
Homburg, Germany).

All scans were acquired using the following scanning parameters: minimum collima-
tion of 0.6 mm, peak tube voltage of 120 kVp, average tube load of 200 mAs, and IVCM
flow rate of 3 mL/s with a delay of 70 s. The amount of injected IVCM was based on the
bodyweight of individual subjects: 80 mL for ≤80 kg, 90 mL for ≤100 kg, and 100 mL
for >100 kg. In addition, all subjects received a 1000 mL oral contrast medium (Barilux
Scan; Sanochemia Diagnostics, Neuss, Germany). For all acquired MDCT scans, a reference
phantom (Osteo Phantom; Siemens Medical Solutions, Erlangen, Germany) was placed in
the scanner mat beneath the subjects.

2.3. QCT BMD Calculation from MDCT Data

BMD values for all lumbar vertebrae were calculated from the following relation:
BMDMDCT = [HAb/ (HUb − HUw)] × (HU − HUw) [29]. HUb and HUw represent the
image intensity of bone and water-like phantoms. HAb = 200 mg/mL and HAw = 0 mg/mL
are two phases in the Siemens Osteo Phantom, representing bone and water, respectively.
Hounsfield units (HU) were calculated for each vertebra from L1 to L3 from regions of
interest (ROIs), which were manually placed at equal distances from both the endplates in
the trabecular components of the anterior vertebral body by a radiologist. Standard BMD
QCT for each vertebra was calculated from MDCT-related BMD using the following relation:
BMDQCT = 0.69 × BMDMDCT−11 mg/mL [30]. We averaged the L1 to L3 BMD values for
the whole lumbar model, and the calculated BMDQCT-L1-L3 values were used as standard
BMDQCT values in the current study.

2.4. MDCT Image Segmentation and Lumbar Spine Modeling

Using a deep learning-driven framework (https://anduin.bonescreen.de; accessed on
5 January 2021) [31–33], the L1–L5 vertebrae were automatically labeled and segmented.
This algorithm was semi-automated, accurately identifying the spine regions and creating
separate segmentation masks for each vertebra [31–33].

The MDCT data and segmentation masks were then imported to the open-source 3D
image reconstruction software 3D Slicer (version 4.11; https://www.slicer.org/; accessed on
20 July 2021) for patient-specific vertebral body generation. The segmented model was then
imported to the commercial FE tool Abaqus CAE (version 6.10; Johnston, Rhode Island, United
States) for meshing. To capture the irregular shape of the vertebrae accurately, we used linear
tetrahedral elements (C3D4) for meshing. The meshed vertebral bodies were then imported
to the open-source material mapping tool Bonemat (version 3.2; http://www.bonemat.org/;
accessed on 15 August 2021). The vertebral models were then mapped with image intensity-
specific material properties using this software program. The material mapping relations used
in the current study are shown in Table 1.

https://anduin.bonescreen.de
https://www.slicer.org/
http://www.bonemat.org/
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Table 1. Elastic constants and material mapping relations used in modeling vertebrae and IVDs in
this study. The density values were calculated from Hounsfield units (HU), and then the modulus
and stress values were derived from densities.

Mechanical Property Mapping Relations

Vertebrae material properties
Apparent density (ρapp in Kg/m3) [34] ρapp = 47 + 1.122 × HU

Ash density (ρash in Kg/m3) [35] ρash = 0.6 × ρapp

Elastic modulus (E in MPa) [34,36]
Ez = 4730 × (ρapp)1.56

Ex = Ey = 0.333 Ez
Z- Vertebrae axial direction

Shear modulus (G in MPa) [37] Gxy = 0.121 Ez
Gxz = Gyz = 0.157 Ez

Poisson ratio (V) [37] Vxy = 0.381
Vxz = Vyz = 0.104

Maximum principal stress limit (σ in MPa) [38] σ = 137 × ρash
1.88, ρash < 0.317

σ = 114 × ρash
1.72, ρash > 0.317

Plastic strain (εAB) [39] εAB = −0.00315 + 0.0728 ρash
Minimum principal stress limit (σmin in MPa) [39] σmin = 65.1 × ρash 1.93

Intervertebral disc properties
Annulus

Elastic modulus (E in MPa) [40] E = 25
Poisson ratio (V) [40] 0.49

Density (ton/mm3) [41] 1.20 × 10−9

Nucleus
Elastic modulus (E in MPa) [42] E = 1

Poisson ratio (V) [42] 0.49
Density (ton/mm3) [41] 1.00 × 10−9

The material-mapped vertebral models were then returned to Abaqus CAE software
(version 6.10; Dassault Systems, Johnston, RI, USA). For IVD and ligament generation,
the imported vertebrae were then assembled and exported to Solidworks (version 2021;
Dassault Systems, Waltham, MA, USA). In this software, the nucleus pulposus and annulus
fibrosus of the IVD and the ligaments were manually generated. The nucleus surface area
was maintained at 30% of the overall IVD area [15,43]. The flow of the segmented models
between different tools is shown in Figure 2.
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Figure 2. The flow of segmented models between different processing tools in the current computa-
tional study. A—Importing the routine clinical data to image segmentation tool; B—Importing of
segmented vertebral models to finite element (FE) preprocessor; C—Importing of meshed vertebral
models to material mapping tool; D—Importing of material-mapped models to FE preprocessor;
E—Importing of the assembled vertebral model to solid modeling tool for the generation of IVD and
ligaments; F—Importing the complete lumbar spine model to FE preprocessor; G—Application of
loading and boundary conditions to the lumbar model and importing to FE solver.
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The ligaments were modeled manually as 3D wire elements based on the anatomical
positions. In the current study, we have considered a total of seven ligaments, namely:
anterior longitudinal ligament (ALL), posterior longitudinal ligament (PLL), interspinous
ligament (ISL), supraspinous ligament (SSL), ligamentum flavum (LF), facet capsular
ligament (FCL), and intertransverse ligament (ITL). The properties of the ligaments used in
the current study are shown in Table 2.

Table 2. The mechanical material constants used for modeling the wire ligaments. Circular cross-
sectional area and the ligament number [41,44].

Density
(Ton/mm3)

Youngs
Modulus

(MPa)

Poisson’s
Ratio

Circular
Cross-

Sectional
Area (mm2)

Number of
Ligaments

ALL 1 × 10−9 55.77 0.4 32.4 3
PLL 1 × 10−9 54.43 0.4 05.2 3
LF 1 × 10−9 03.25 0.4 84.2 3
ISL 1 × 10−9 02.23 0.4 35.1 4
SSL 1 × 10−9 12.80 0.4 25.2 2
ITL 1 × 10−9 11.50 0.4 12.0 4
FCL 1 × 10−9 08.69 0.4 43.8 6

2.5. FE Modeling and Analysis

Modeled IVDs and ligaments were then imported to Abaqus CAE for further analysis.
The vertebrae, IVDs, and ligaments were assembled, and a comprehensive patient-specific
lumbar model was generated. The meshed geometry models used in the current study are
shown in Figure 3. To maintain the accuracy of the computational model, we performed a
mesh sensitivity analysis by varying the element edge length from 0.5 mm to 2.5 mm for
vertebrae and 0.25 mm to 1.5 mm for IVDs with an increment of 0.25 mm. We observed
that 1.5 mm and 0.75 mm element edge sizes produced a mesh-independent result for the
vertebrae and IVDs, respectively. Thus, those element sizes have been used to mesh all the
lumbar models.
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For replicating the realistic mechanical behavior of the model under the applied
loading condition, a tie constraint was given between nucleus and annulus of IVDs, nucleus
and vertebrae, annulus and vertebrae, and ligaments and vertebrae [45]. The inferior
surface of the lumbar spine was fixed in all six directions. For calculation of the FL, normal
displacement load was applied on the superior surface, the model was simulated, and
the variation of load and displacement was captured. The peak of the load-displacement
curve was considered the FL. This methodology was validated with experimental studies
in previous work [15,20]. For studying the kinematics, we applied a pure moment of
7.5 Nm on the superior surface of the lumbar spine and simulated flexion, extension, lateral
bending, and twisting motions [46]. In addition, we have plotted the variation of ROM
with angular displacement. This methodology was validated in the previous works [21,42].
The applied loading and boundary conditions and the final deformed contour after the
simulation are shown in Figure 4.
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2.6. Statistical Data Analysis

Statistical analyses were performed using Microsoft Excel (version16.0; Redmond, WA,
United States) and IBM SPSS Statistics for Windows (version 25.0; IBM Corp., Armonk, NY,
USA). We used the descriptive statistics for FL and ROM parameters, calculated mean ± SD,
and compared it with previously published experimental results. Correlation plots were
plotted to observe the relation between FL and ROM parameters, and BMDQCT-L1-3 and
Spearman correlation coefficients (ρ) were calculated. We performed Mann–Whitney U
tests at a significance level of 0.05 to compare the FL and ROM parameters of HC and OP.

3. Results
3.1. Calculation of FL and ROM Values for Healthy and Osteoporotic Lumbar Models

The mean age of HC is 62.17 ± 10.24 years (range: 43 to 75 years), and for OP is
65.83 ± 11.19 years (range: 41 to 73 years). The BMDQCT-L1-3 and FE-predicted FL values for
the healthy lumbar spine were 100.77 ± 9.25 mg/mL and 1471.50 ± 275.69 N, respectively.
The maximum mean rotation values for the applied moment were as follows: 11.11◦ ± 3.73◦

for flexion (F), 12.05◦ ± 6.12◦ for extension (E), 11.80◦ ± 4.36◦ for lateral bending (L), and
8.96◦ ± 3.72◦ for twisting (T). The variations in rotation values with respect to the applied
moment are shown in Figures 5 and 6. The BMDQCT-L1-3 and FE-predicted FL values for
the osteoporotic lumbar spine models were 61.21 ± 3.67 mg/mL and 763.33 ± 166.70 N,
respectively. The maximum mean rotation values were as follows: 11.26◦ ± 2.02◦ (F),
14.75◦ ± 3.93◦ (E), 14.37◦ ± 3 (L), and 12.48◦ ± 2.25◦ (T).
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We observed a strong correlation (R2: 0.8, p < 0.01) between FE-predicted FL and
BMDQCT-L1-L3 values in all subjects. The correlation plot is shown in Figure 7. We observed
no statistically significant correlations between the ROM parameters and BMDQCT-L1-3
values, ρ = 0.08, p = 0.81 (F); ρ = 0.034, p = 0.91 (E); ρ = 0.056, p = 0.18 (L); ρ = −0.36, p = 0.25
(T). The correlations between the ROM parameters and BMD values are shown in Figure 8.
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3.2. Comparison of Healthy and Osteoporotic Lumbar Spine Models

We observed a significant difference between healthy and osteoporotic lumbar spine
models for BMDQCT-L1-3 (p < 0.01) and FE-based FL values (p < 0.01). The FL values were
higher for HC compared to those of OP (1471.50 ± 275.69 N vs. 763.33 ± 166.70 N). The
ROM parameters were higher for OP compared to HC: 11.11◦ ± 3.73◦ vs. 11.26◦ ± 2.02◦

(F); 12.05◦ ± 6.12◦ vs. 14.75◦ ± 3.93◦ (E); 11.80◦ ± 4.36◦ vs. 14.75◦ ± 3.93◦ (L); 8.96◦ ± 3.72◦

vs. 12.48◦ ± 2.25◦ (T). Even though the mean rotation values for the osteoporotic models
were higher than for the healthy models, no significant differences were observed between
HC and OP for the ROM parameters: p = 0.69 (F), p = 0.69 (E), p = 0.47 (L), and p = 0.13
(T), respectively. The mean, SD, and p-values for different parameters for healthy and
osteoporotic lumbar spine models are shown in Table 3. Figure 9 shows the FE-derived FL
results as a box plot.

Table 3. Comparison of BMD, failure load, and ROM parameters for healthy and osteoporotic subjects
and level of significance values. The asterisks (*) indicate statistical significance (p < 0.01).

Healthy Osteoporotic p-Value
Mean Std Dev Mean Std Dev

QCT BMD
(mg/mL) 100.77 9.25 61.21 3.67 <0.01 *

Failure load (n) 1471.50 275.69 763.33 166.70 <0.01 *
Flexion (◦) 11.11 3.73 11.26 2.02 0.69

Extension (◦) 12.05 6.12 14.75 3.93 0.69
Lateral

bending (◦) 11.80 4.36 14.37 3.78 0.47

Twisting (◦) 8.96 3.72 12.48 2.25 0.13
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4. Discussion

The current work studied the feasibility of using clinical routine MDCT data to model
the whole lumbar spine with a FE method to derive FL and ROM parameters. Our results
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showed that the FE-based FL values and ROM parameters for healthy lumbar models
were in the range of previously published experimental and other computational studies.
Furthermore, in contrast to ROM parameters, FL significantly differed between HC and OP.
Thus, the routine clinical image data can potentially be used to model the lumbar spine.

We have demonstrated the use of the clinical routine MDCT data for modeling and
studying the whole lumbar spine behavior at different loading conditions using FE analysis.
The spine has a complex configuration with continuous interaction between tissues and
structures such as vertebrae, IVDs, and ligaments. Lower back pain (LBP) is one of the
prevalent medical conditions, affecting around 90% of adults worldwide [47]. In 2015,
around 540 million were suffering from activity-limiting back pain (around 7.3% of the
global population). Untreated LBP can cause permanent disability y [48]. LBP can occur
due to multiple reasons such as disk herniation [49,50], osteoporosis [51], weight [52], etc.
Osteoporotic fractures were one of the major causes of LBP. As stated earlier, understanding
in vivo lumbar spine biomechanics is essential to identifying, assessing, and predicting
various pathophysiological conditions and monitoring clinical treatments. Due to the
complex geometrical and topological characteristics (size and shape) and physiological
loading conditions, direct in vivo measurement of the lumbar spine biomechanical aspects
is challenging. In addition, vertebral compression fractures severely affect the spine biome-
chanics, which results in secondary fractures. The primary functions of the lumbar spine
are the range of motion (ROM) to perform day-to-day activities, provide stability and
maintain balance, and sustain the weight of the upper body. Thus, it is essential to analyze
the lumbar spine as an anatomical and functional unit to understand its biomechanical
behavior better.

Identifying the osteoporosis cases in advance is feasible using the FE-MDCT methodol-
ogy. However, most FE-based studies have used high-resolution images (low slice thickness
of 0.5 to 1.5 mm and no contrast agent) for bone analysis. Studies have shown that the
radiation can reach up to 5.6 mSv for the conventional CT scans, which is relatively high
compared to the DXA scan used to quantify the bone mineral density and diagnose osteo-
porosis. High radiation risk could potentially discourage using FE analysis even when we
used routine clinical data to develop the model. So, it is vital to study the feasibility of
using routine clinical data for FE analysis. The primary issue with MDCT images acquired
during the clinical routine for diagnosis is their lower spatial resolution than those acquired
in experimental settings, thus causing partial volume effects. Rayudu et al. showed that
routine data could be used for osteoporotic fracture risk assessment based on a single
vertebral failure load derived from FE analysis [26].

We have observed that FE-derived FL for the healthy lumbar spine models was
1471.50 ± 275.69 N. These FE-predicted failure load values are in a comparable range
with the available previous experimental results of 967 N to 4387 N [53]. The flexion
(F), extension (E), lateral bending (L), and twisting (T) were similar to those in previous
experimental results and computational studies [46,53–55]. The maximum mean ROM
values were also in the range of previously published literature: 11.11◦ ± 3.73◦ vs. 12.59◦

to 13.36◦ for F [53,55,56]; 12.05◦ ± 6.12◦ vs. 10.12◦ to 14.45 for E [46,55,56]; lateral bending
of 11.80◦ ± 4.36◦ vs. 12.39◦ to 17.08◦ for L [46,55,56]; and twisting of 8.96◦ ± 3.7◦ vs. 5.46◦

to 7.16◦ for T [46,55,56]. Based on these results, we can conclude that the routine clinical
data could be used to model and analyze the lumbar section of the spine and generate
comparable results.

The FE-derived FL was significantly lower in OP (763.33 ± 166.70 N) compared to HC
(1471.50 ± 275.69 N). The osteoporotic vertebrae were expectedly weaker due to reduced
bone mass and deterioration of trabecular microstructure. Chandran et al. have shown
significantly higher values in FE-derived FL for healthy models compared to osteoporotic
for the femoral bone [57]. In addition, Hatira et al. observed that the strength of osteoporotic
lumbar vertebrae was lower than that of healthy models [58]. The results of the present
study also follow a similar pattern of difference. Specifically, BMDQCT-L1-3 and FE-derived
FL were significantly higher in HC when compared to in OP subjects. This trend is in
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line with previously reported studies, which have shown that FE-derived FL and vBMD
values could predict vertebral fractures more effectively with an area under the curve
(AUC) = 0.804 and 0.815, respectively, compared to aBMD values (AUC = 0.715) [23].

Interestingly, although the mean ROM values for the osteoporotic models were higher
than those of the healthy models, ROM parameters were not significantly different between
HC and OP. Tsouknidas et al. have observed around 15% variation in the ROM parameters
between osteoporotic models and healthy sacro-lumbar spine models [59]. In this regard,
vertebrae weaken with aging and show increased porosity due to osteoporosis. Somovilla-
Gómez et al. showed that the maximum F-angle variation is under 1◦ from age 35 to 64
years [60]. They have also developed a parametric model to explore the variation of ROM
parameters with age. Using this model, when a 30-year-old man (weight = 70 kg, height
= 160 cm) and 55-year-old man (weight = 70 kg, height = 160 mm) were compared, the
differences in ROM were as follows: 0.15◦ (F), 0.477◦ (E), 0.11◦ (L), and 0.08◦ (T) [60]. From
these values, we might conclude that osteoporosis seems to have a lower influence on
ROM parameters than FE-derived FL values. In the present study, we have observed that
osteoporosis severely affects bone strength and less affects lumbar spine ROM.

The FE-based lumbar spine modeling methodology developed in this study can be
used to study various downstream applications such as disk herniation and osteoporo-
sis [49,50]. With opportunistic screening, it will be possible to predict different clinical
conditions such as vertebral fractures, weekend disc, or so before herniation occurs. Fur-
thermore, FE-based patient-specific models developed from opportunistically acquired
MDCT data can be used to understand the changes in the spine biomechanics, in turn
predicting those conditions. The complexity and risk involved with spine surgery neces-
sitate the need for pre-operative visualization of anatomical and pathological structures
and planning of the procedures to minimize the risk and improve the surgical outcome.
3D intraoperative optical systems offer clear visualizations to aid surgeons and have been
proven to be effective. However, most of the planning of the procedure is being conducted
with static medical images (MRI, CT, and radiographs) and intraoperatively guided via
ultrasound and fluoroscopic imaging systems. Finite element simulations offer enriched
information on tissue health and target anatomical locations during the planning phase
of the surgical procedure. In addition, reconstructed anatomical models of the spine also
provide 3D geometric and topological characteristics to visualize and plan effectively.

There are some limitations in the current study that need to be considered while
interpreting the results of this study. First, the cohort size was relatively small, thus
restricting the statistical power. Second, we have considered linear elastics properties for
the IVDs with annulus and nucleus due to computational resource limitations. We aim
to incorporate more realistic IVD modeling in our future studies. Third, we have only
simulated the lumbar model under static loading conditions. The results may vary when
the model is simulated under dynamic conditions such as gait and other daily activities.
Fourth, even though the age range of these cohorts is similar, the smaller sample size
resulted in higher variability.

5. Conclusions

We investigated the feasibility of using clinical routine MDCT data to model the whole
lumbar spine as the functional spine unit. We observed healthy correlations between FE-
derived lumbar spine models and experimental results. In addition, we found significant
differences in FL between healthy and osteoporotic subjects. ROM parameters were not
significantly different between HC and OP. From these findings, we may conclude that the
FE-based models developed from clinical routine MDCT data can be used for analyzing
the whole lumbar spine. These FE-based models could be used as a complementary tool to
the existing BMD-based measures in osteoporosis to assess the patient-specific status of the
biomechanical properties of the whole lumbar spine.
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3D Three-dimensional
aBMD Areal bone mineral density
vBMD Volumetric bone mineral density
QCT Quantitative computed tomography
CT Computed tomography
DXA Dual-energy X-ray absorptiometry
QCT Quantitative computed tomography
HU Hounsfield units
MDCT Multi-detector computed tomography
FE Finite element
PACS Picture archiving and communication system
SD Standard deviation
ROC Receiver operating characteristic
AUC Area under the curve
BMDQCT-L1-L3 Vertebrae
FL Failure load
F Flexion loading
E Extension loading
L Lateral bending loading
T Twisting loading
ρ Spearman coefficient
WHO World Health Organization
HC Healthy controls
OP Osteoporotic patients
FRAX Fracture Risk Assessment Tool
ALL Anterior longitudinal ligament
PLL Posterior longitudinal ligament
ISL Interspinous ligament (ISL)
SSL Supraspinous ligament
LF Ligamentum flavum
FCL Facet capsular ligament
ITL Intertransverse ligament
IVD Intervertebral disk
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