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Islet Harvest in Carbon Monoxide-
Saturated Medium for Chronic
Pancreatitis Patients Undergoing
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Abstract
Stresses encountered during human islet isolation lead to unavoidable b-cell death after transplantation. This reduces the
chance of insulin independence in chronic pancreatitis patients undergoing total pancreatectomy and islet autotransplantation.
We tested whether harvesting islets in carbon monoxide-saturated solutions is safe and can enhance islet survival and insulin
independence after total pancreatectomy and islet autotransplantation. Chronic pancreatitis patients who consented to the
study were randomized into carbon monoxide (islets harvested in a carbon monoxide-saturated medium) or control (islets
harvested in a normal medium) groups. Islet yield, viability, oxygen consumption rate, b-cell death (measured by unmethylated
insulin DNA), and serum cytokine levels were measured during the peri-transplantation period. Adverse events, metabolic
phenotypes, and islet function were measured prior and at 6 months post-transplantation. No adverse events directly related
to the infusion of carbon monoxide islets were observed. Carbon monoxide islets showed significantly higher viability before
transplantation. Subjects receiving carbon monoxide islets had less b-cell death, decreased CCL23, and increased CXCL12
levels at 1 or 3 days post transplantation compared with controls. Three in 10 (30%) of the carbon monoxide subjects and
none of the control subjects were insulin independent. This pilot trial showed for the first time that harvesting human islets in
carbon monoxide-saturated solutions is safe for total pancreatectomy and islet autotransplantation patients.
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Introduction

Total pancreatectomy and islet autotransplantation (TP-IAT)

is a safe and effective approach in the management of

intractable pain associated with chronic pancreatitis (CP)1.

Although quality-of-life parameters are measurably

improved in IAT patients, the insulin independence rate after

TP-IAT is still low2–4. Major hurdles besetting this proce-

dure in CP individuals include the limited number of func-

tional islets available for transplantation from a severely

diseased and fibrotic pancreas, and islet cell death caused

by stresses encountered after pancreatectomy, during islet

isolation, and post-transplantation.

Islet stressors include deprivation of the blood supply

after pancreatectomy, exposure to cold enzyme solutions,
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and pancreatic digestion by enzymatic and mechanical

forces5. At the end of isolation, islets are transplanted into

the liver, a different environment compared with the pan-

creas, and exposed to the blood, inciting a blood-mediated

inflammatory reaction6,7. All these procedures cause islet

stress. Strategies that produce more “robust” islets that can

adequately resist stressors imposed at each step may lead to

improved survival of islets, and in the long term, more insu-

lin independence in CP patients undergoing IAT.

Carbon monoxide (CO) has been considered a purely

toxic by-product of incomplete combustion processes8.

Newer evidence suggests that CO at low concentrations

acts as a “protective” molecule in cellular processes based

on its anti-apoptotic, anti-inflammatory, immunomodula-

tory, antithrombotic, anti-fibrotic, and vasculo-relaxant

effects9–11. The therapeutic effects of low-dose CO (<500

parts per million, ppm) have been shown in numerous dis-

ease models12,13. The United States Food and Drug Admin-

istration granted orphan drug designation for inhaled CO

for use in the reduction of incidence and severity of delayed

graft function in patients undergoing solid organ transplan-

tation. Inhaled CO (100–200 ppm) is being tested in

patients with acute respiratory distress syndrome (www.

clinicaltrials.gov).

In most studies using CO as a therapeutic agent, inhaled

CO has been used. However, translating these results into the

clinic might be difficult due to the practical problems asso-

ciated with scavenging and monitoring levels of a potentially

toxic gas. Because CO is soluble in aqueous media (2.3 ml/

100 ml at 20�C) and organic solvents, an alternative

approach is to dissolve CO in solutions. This approach

demonstrated benefits in several animal disease models. For

example, a single intra-peritoneal injection of CO-saturated

Ringer’s lactate solution ameliorated postoperative ileus in

mice14. Storage of organs in University of Wisconsin (UW)

solution saturated with CO provided significant protection

against ischemia/reperfusion injury in the porcine kidney

transplantation15,16 and the rat liver transplantation mod-

els17. In a cardiac transplantation model, improved func-

tional recovery was observed after cold storage of the

heart with CO-releasing molecule 318,19. In all these studies,

no adverse events or abnormal CO-hemoglobin values were

observed in recipients. We showed in previous studies that

ex vivo culture of islets in CO-saturated solution improved

survival and function of transplanted islets by suppression of

inflammation and b-cell death20–24. Inflammation is trig-

gered when the innate immune cells detect injured b cells

post-transplantation. Injured cells secrete chemokines that

attract leukocytes, migrate to transplanted islets, and

increase islet/b-cell death25. In mouse studies, CO-treated

islet grafts had reduced mRNA expression of chemokines

including CXCL5, CXCL6, and CXCL8 compared with con-

trol islets at 1 day post transplantation, which may have

contributed to improved islet survival after transplantation24.

This has yet to be tested in humans.

Several indices have been used to determine the viability

of islets before and after transplantation. For example, the

oxygen consumption rate of cells, which is related to mito-

chondrial function, has been extensively used to assess via-

bility and health of cells in a variety of fields26. In islets,

oxygen consumption rate (OCR) divided by cell DNA con-

centration (OCR/DNA) has been shown as a better indicator

of islet viability, and the combination of information on the

OCR/DNA (a measure of viability) and OCR dose trans-

planted (a measure of viable amount of islet tissue trans-

planted) correlated with transplant outcomes in rodents as

well as clinical islet allo- and auto-transplantation27,28. One

of the indicators to trace or quantify islet cell death post-

transplantation is the serum concentration of unmethylated

insulin (INS) DNA. Because the insulin gene is uniquely

unmethylated in pancreatic b cells, circulating unmethylated

INS DNA correlates with the amount of b-cell death in

mouse models29 and humans with CP after TP-IAT30.

In the current study, we expanded our findings in animal

models to IAT patients and tested whether stress-induced

apoptosis of post IAT islets can be minimized by harvesting

islets in a CO-rich environment leading to increased islet

survival and function. We determined islet cell viability by

measuring the OCR of islets and unmethylated INS DNA in

serum during the peri-transplantation period. The safety and

efficacy of this novel intervention has been evaluated until 6

months post IAT. Such studies are needed as there are no

proven interventional therapies that reproducibly have

improved outcomes of IAT in CP patients.

Materials and Methods

Subject Selection

CP patients scheduled for TP-IAT from October 2015 to

October 2016 were recruited for this study. All subjects

signed informed consent approved by the Medical Univer-

sity of South Carolina (MUSC) Institutional Review Board

(IRB). The clinicaltrial.gov registration number is

NCT02567240. This study had a Food and Drug Adminis-

tration exemption. Initial inclusion criteria were 18–69-year-

old individuals without prior pancreatic surgery, scheduled

for TP-IAT, who were diabetes free according to the Amer-

ican Diabetes Association classification of diabetes, which

include: hemoglobin A1C (HbA1c) <6.5%, fasting blood

glucose <126 mg/dl and 2-hour post-prandial plasma glucose

<200 mg/dl. To increase enrollment, the inclusion criteria

was extended to diabetic subjects with IRB approval after

the first 13 individuals were enrolled.

Study Design

The goal of this study was to evaluate the safety and efficacy

of harvesting human islets using CO-saturated solutions.

This study was designed as a randomized, controlled,

double-blind study, with subjects randomized at a 2:1 ratio

favoring islets harvested in CO-saturated medium (CO
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islets) over islets harvested in normal medium (control

islets). Post-operative care was not different between groups.

The safety of the intervention was measured by adverse

events (AEs). Primary efficacy was measured by outcomes

of glycemic control as indicated by the area under the curve

(AUC) of a mixed meal tolerance test (MMTT) at month 6

post-IAT. Secondary outcomes included post-operative insu-

lin use, insulin independence rate, and quality of life (QOL)

as measured by the Short Form 12 (SF-12).

Production of CO-Saturated Medium

Production of CO-saturated medium has been described pre-

viously24. In brief, Hanks’ balanced salt solution (Sigma-

Aldrich, St. Louis, MO, USA) used for preparation of islet

isolation solutions and Viaspan for preserving the islets were

bubbled with 1% CO gas for 10 minutes and filtered before

use. Total exposure of the islets to CO medium averaged 3–4

hours during the isolation process. All mediums were

bubbled fresh, stored in tightly closed bottle without air, and

used within 1 hour to avoid release of CO from the medium.

The final infusion solution (5% albumin with 70 units/kg of

heparin) for subject administration did not have CO

bubbling.

Total Pancreatectomy, Islet Harvest and
Transplantation

Total pancreatectomy, islet isolation, and transplantation

were performed as described previously31. Total islet num-

ber, islet viability, islet size index, endotoxin, and myco-

plasma levels in the final islet product were measured after

islet isolation. Unpurified islets were re-suspended in the

infusion solution, and transplanted through the portal vein

into the liver. Hepatic pressure before, during, and after islet

infusion were recorded. A heparin infusion of 250 IU per

hour was given to all patients for 72 hours.

Monitoring of Adverse Events

Subjects were scheduled to return to MUSC at 1, 2, 3, and 6

months after hospital discharge for study follow-up, and then

yearly as a regular TP-IAT patient. All AEs and severe AEs

(SAEs) were recorded and classified based on the Clavien-

Dindo classification. An independent Data Safety Monitor-

ing Committee reviewed SAEs.

Measurement of OCR

The OCR was measured in a 1000–3000 islet equivalent

number (IEQ) using the MicroOxygen Uptake System, FO/

SYSZ-P175 (Instech Laboratories, Plymouth Meeting, PA,

USA) as described32. The OCR was indexed to the islet DNA

content of each sample, measured by fluorospectrophotome-

try using the Quant-iTTM PicoGreen dsDNA Assay kit

(Molecular Probes, Eugen, OR, USA). Fluorescence was

read by a Synergy HT microplate reader (BioTek, Winooski,

VT, USA). The mean OCR/DNA (nmol O2/min�mg DNA)

values were calculated as previously described32. Samples

were measured in triplicate and the mean was used for the

final calculation.

Serum Chemokine Levels

Serum samples were collected from 10 participants (six from

the CO group and four from the control group) before pan-

createctomy (day 0), and at 1 and 3 days post islet transplan-

tation, allowed to clot, and then centrifuged for 10 min at

1300 � g at room temperature, before storage at �80�C.

Quantification of 40 human chemokines were performed

on serum samples by the magnetic bead-based multiplex

immunoassay using the Bio-Plex ProTM Human Chemokine

Panel, 40-Plex kit (Bio-Rad, Hercules, CA, USA), following

the manufacturer’s instructions.

Unmethylated INS DNA

Concentrations of unmethylated and total INS DNA were

measured in serum samples collected from 10 participants

(six from the CO group and four from control group) as

described29. In brief, DNA was purified from 200 ml of

serum using the QIAamp DNA blood kit (Qiagen, Valencia,

CA, USA), and treated with bisulfite. Levels of unmethy-

lated and total INS DNA was quantified by droplet digital

polymerase chain reaction. The ratios of unmethylated

divided by total INS DNA were calculated.

Assessment of Clinical Outcome

Diabetes onset and insulin requirements after surgery were

measured and compared between subjects receiving CO or

control islets. Because all patients were recommended to

take insulin post transplantation to reduce the stress of trans-

planted islets, patients who were completely weaned off

insulin post IAT were counted as insulin independent as

well. HbA1c, serum C-peptide levels, insulin requirements,

and body weight were measured at each follow-up visit for

the evaluation of glycemic control. Physical QOL and men-

tal QOL were measured by the SF-12 questionnaire.

Oral Glucose Tolerance Test and MMTT

An oral glucose tolerance test (OGTT) was performed in all

subjects before TP-IAT. Fasting subjects were asked to drink

a 75 g glucose solution. Blood samples were collected before

and 30, 60, 90, and 120 minutes after glucose ingestion.

Blood glucose and serum C-peptide levels were measured

using standard methods. MMTT was performed at 6 months

post transplantation and blood glucose and serum C-peptide

were calculated as described33. Blood glucose AUC during

an OGTT or MMTT test were calculated using the trapezoi-

dal method.

Wang et al 27S



Statistical Analysis

Two-tailed independent sample t tests were used to com-

pare mean differences between the two groups, and var-

iances were conservatively assumed to be unequal.

Difference in insulin independence was compared by Fish-

er’s exact test. Glucose and C-peptide values after MMTT

were compared between groups using general linear mixed

models. The difference in unmethylated INS DNA was

compared by a Mann-Whitney test. All values are presented

as mean and standard deviation (SD) unless otherwise spec-

ified. A p value <0.05 was denoted as statistically

significant.

Results

Subject Characteristics

In total 16 individuals scheduled for TP-IAT signed

informed consent; one failed the initial screening. The

other 15 were randomized into CO (n ¼ 10) or control

(n ¼ 5) groups and all had TP-IAT. Characteristics of

study participants showed no significant differences in

age, body weight, body mass index, HbA1c levels, islet

viability, islet size index, and years of CP (Table 1). The

first 13 subjects enrolled were diabetes free and the last

two subjects were diabetic before surgery, and were ran-

domized into the CO group.

There were no differences between basal line total num-

ber of islets transplanted between CO and control subjects.

On average, controls (n ¼ 5) received 218,545 + 120,422

IEQ islets compared with the CO group, who received

138,471 + 100,036 IEQ (n ¼ 10, p ¼ 0.24 vs. subjects

receiving control islets (CTR)). The IEQ per kilogram body

weight transplanted (IEQ/kg) between both groups was

similar (2657 + 1402 vs. 2360 + 2420, control vs. CO

(Table 1)).

AEs

All AEs and SAEs seen in both CO and control individuals

have been previously seen in the CP patients undergoing

TP-IAT (Table 2). There were four SAEs in four of the 13

CO patients and five SAEs from three control patients. There

were numerically more episodes of day 3 transaminitis

(three) in the CO group. These regressed without therapy

by 14 days. A single event termed hepatic artery thrombosis

was defined 2 months after surgery, when the hepatic artery

failed to visualize on CT angiography. Because the patient

did well for the subsequent 3 years, this event may not be

present. Most adverse events resolved within a couple of

weeks. Because CO exposure was performed during the islet

isolation and there was no CO in the infusion solution, inves-

tigators deemed the adverse events were most likely not

caused by CO exposure to islets.

Pre-Transplant Islet Viability and Post-Transplant
Metabolic Phenotypes

We measured OCR/DNA values in freshly isolated CO and

control islets. The mean OCR/DNA value of CO islets was

182.5 + 65.4 (n ¼ 10), which was significantly higher than

control islets (116.9 + 46.4, n ¼ 5, p¼ 0.04 vs. CO) or islets

from historical patients (n ¼ 11, p ¼ 0.04, Figure 1(a)), sug-

gesting that CO exposure during islet isolation increased islet

viability and quality. We measured insulin requirements dur-

ing the pre-operative period (pre-op), during the hospital stay,

and 6 months after transplantation. Two of the diabetic CO

subjects required an average of 31.5 units insulin per day pre-

op (Figure 1(b)). All TP-IAT patients were given insulin after

surgery and before discharge to maintain blood glucose levels

at around 100 mg/dl. Non-diabetic CO (n ¼ 8) and control (n

¼ 5) patients required similar amounts of insulin at day 1, 2,

and 3 post-transplantation and at discharge to maintain nor-

moglycemia. The two pre-diabetic CO patients required more

Table 1. Baseline Characteristics.

Average of CTR subjects (n ¼ 5) Average of CO subjects (n ¼ 10)

Characteristics Mean SD Mean SD p

Age (yr) 49 13.1 44.1 11.8 0.48
Body weight (kg) 81 15.2 77.6 30.8 0.82
BMI (kg/m2) 29.2 5.8 26.6 9.8 0.59
HbA1C pre-op (%) 5.7 0.3 6.2 1.4 0.29
Years of CP 7.6 3.7 8.1 7.6 0.86
Islet product weight (g) 8.6 3.0 6.3 5.5 0.32
Total islets infused IEQ 218,545 120,422 138,471 100,036 0.24
IEQ/kg 2,656.9 1,402 2,360 2,420 0.77
Hepatic pressure (mmHg)

Pre-infusion 11.6 5.0 9.3 4.8 0.43
During infusion 15.5 5.9 12.2 4.1 0.37
Post-infusion 16 5.3 13.3 5.6 0.39

BMI: Body mass index; yr: years; HbA1c: hemoglobin A1c; IEQ: islet equivalent number, SD: standard derivation; CO: all subjects receiving CO islets; CTR:
subjects receiving control islets; CP: chronic pancreatitis.
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insulin to maintain normoglycemia during the peri-transplant

period (Figure 1(b)). At 6 months post transplantation, one

subject in the CO group did not require any insulin. Two were

taking two units of insulin per day at the 6-month visit and

weaned off after, therefore were also considered insulin free

(Figure 1(c)). The insulin independence rate in the CO group

was 37.5% (three in eight subjects who were diabetes free pre-

op, p ¼ 0.23 vs. control, Fisher’s exact test) or 30% (three in

10 total CO subjects, p ¼ 0.51 vs. control). In contrast, all

subjects in the control group required insulin at 6 months post

TP-IAT, receiving a mean insulin dose of 25.2 + 4.5 units per

day (n ¼ 5, Figure 1(d)). Non-pre-diabetic CO subjects

required a mean dose of 10.7 + 3.5 units insulin per day

(n ¼ 8, p ¼ 0.02 vs. control). The two pre-diabetic CO

patients required an average of 43.0 + 21.2 units per day

(n ¼ 2, Figure 1(d)). There were no differences in fasting

blood glucose and HbA1c levels between both groups at

6 months post TP-IAT, although values in both groups were

increased compared with pre-op (Figure 1(e) and (f)).

Change of Islet Function at 6 Months
Post-Transplantation

Individuals in the control group (n ¼ 5) had similar blood

glucose levels compared with non-pre-diabetic CO partici-

pants (n ¼ 8), with the two pre-diabetic CO participants

Table 2. Adverse Events at 6 months.

Subject ID AE description Severity Casual relationship Action taken SAE? SAE reason Outcome

002-CO Chyle leak 1 1 2 2 1
004-CO Transaminitis 3 1 2 Y – 5

Biliary leak 1 1 2 2 1
005-CO Diabetic ketoacidosis 1 1 1 Y 2 1
008-CO Cellulitis of abdominal wall 2 1 2 Y 2 1
011-CO Acute cystitis 1 1 2 1
012-CO Wound dehiscence 1 1 3 1
014-CO Transaminitis 2 1 2 1
015-CO Transaminitis 2 1 2 1

Hepatic artery thrombosis 3 1 2 Y 2 1
003-CTR GI Hemorrhage 1 1 3 1
006-CTR Hyperglycemia 3 1 2 Y 2 1

Jejunostomy-tube obstruction 1 1 3 Y 2 1
010-CTR Dizziness 2 1 1 Y 2 1

Rectal bleeding 2 1 2 Y 2 1
Pulmonary embolism 2 1 2 Y 2 1

AE: adverse events; CO: all subjects receiving CO islets CTR: subjects receiving control islets; SAE: serious AEs.
Severity

Grade 1 ¼ mild
Grade 2 ¼ moderate
Grade 3 ¼ severe
Grade 4 ¼ life threating
Grade 5 ¼ death

Casual relationship
1 ¼ unlikely
2 ¼ possibly
3 ¼ probably

Action taken
1 ¼ none
2 ¼ medication
3 ¼ other

SAE reason
1 ¼ life threatening
2 ¼ required hospitalization
3 ¼ prolonging existing hospitalization
4 ¼ resulting in persistent significant disability or incapacity
5 ¼ congenital anomaly or birth defect
6 ¼ medically significant or important medical condition
7 ¼ death

Outcome
1 ¼ recovered
2 ¼ ongoing
3 ¼ recovered with sequela
4 ¼ fatal
5 ¼ unknown
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having higher fasting blood glucose levels during a routine

OGTT test (Figure 2(a) and (b)). Control subjects (n ¼ 5)

had higher C-peptide levels compared with both non-pre-

diabetic (n ¼ 8) and diabetic CO (n ¼ 2) participants during

the OGTT (Figure 2(c) and (d)). Mean C-peptide AUC was

1.67 times higher in control subjects (n ¼ 5) compared with

all 10 CO subjects (p ¼ 0.06).

MMTT tests were performed in six CO and five control

subjects who returned for the test at 6 months post IAT. No

difference in mean glucose or C-peptide, or the mean

C-peptide AUC divided by IEQ/kg of islets transplanted were

observed between the CO and the control subjects (Figure

2(e)-(h)). C-peptide AUC was similar in CTR subjects com-

pared with CO subjects during the MMTT (Figure 2(h)).

SF-12 QOL

QOL measured by the SF-12 questionnaire was improved at

6 months after surgery compared to pre-op for physical and

mental domains in all subjects (Figure 3(a) and (b)). The

mean physical QOL increased from 27.67 + 9.9 to 31.62

+ 8.90 at 6 months in CO, and from 25.5 + 8.3 to 44.67 +
11.23 in control subjects (p ¼ 0.046 favoring control, Figure

3(a)). The mental health QOL was increased from 33.6 +
2.7 to 47.0 + 3.8 in the CO group and 41.0 + 2.8 to 49.3 +
4.1 in the control group (Figure 3(b)).

Serum Chemokine and Unmethylated INS DNA
Levels during the Peri-Transplant Period

Inflammation leads to islet cell death post-transplantation.

We measured the serum concentration of cytokines and

chemokines in serum collected from CO and control sub-

jects before, at day 1, and day 3 post-IAT. Subjects

receiving CO islets had reduced myeloid progenitor inhi-

bitory factor 1 (MPIF1 or CCL23) at day 1 post-

transplantation (Figure 4(a)), a cytokine that often

increased in subjects with inflammatory diseases34,35.

Figure 1. CO islets showed higher oxygen consumption rate (OCR) values and more patients receiving CO islets were insulin independent.
(a) OCR/DNA in freshly isolated human islets using CO medium (n¼10) or normal medium (CTR, n¼5), and in islets from historical control
patients (n¼11). p<0.05, analysis of variance (ANOVA) test followed by Tukey’s multiple-comparisons analysis. (b) Mean insulin needs in
non-pre-diabetic CO (CO-non-diabetes mellitus [DM], n¼8), control (CTR, n¼5), and pre-diabetic CO (CO-DM, n¼2) subjects during
pre-op, post operation day 1 (POD1), POD2, POD3, and at hospital discharge. (c) Percentage of subjects who were insulin independent
before and 6 months after total pancreatectomy and islet autotransplantation (TP-IAT). (d) Mean daily exogenous insulin use in
non-pre-diabetic CO (n¼8), pre-diabetic CO (n¼2), and control (n¼5) subjects during pre-op and 6 months after IAT. (e) Fasting blood
glucose and (f) mean hemoglobin A1C (HbA1c) levels in CO and CTR subjects during pre-op and 6 months after TP-IAT, n¼10 for
CO subjects, and n¼5 for CTR. *p<0.05 compared to control. Student’s t test assuming unequal variances. CO: all subjects receiving
CO islets; CTR: subjects receiving control islets.
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Moreover, CO subjects had significantly higher CXCL12,

a chemokine that can limit inflammation, at both day 1

and 3 post transplantation (Figure 4(b)). There were no

significant differences in levels of other cytokine/chemo-

kines including monocyte chemoattractant protein 1

(MCP 1/CCL2), TNF-a, IL-10, and INF-g, etc. at both

times checked (Supplemental data, Figure S1).

To decipher whether reduced chemokine levels are cor-

related with b-cell death, we measured serum concentrations

of unmethylated INS DNA, a b-cell death marker. As seen in

Figure 4(c), lower unmethylated INS DNA was observed in

subjects receiving CO islets at 3 days post transplantation,

suggesting a trend toward reduced b-cell death in CO islets

compared with control islets. Together, these data suggest

that CO islets caused less inflammation and survived better

after transplantation than control islets.

Discussion

The exposure of islets or solid organs to CO-saturated solu-

tions protected them from ischemia-reperfusion injuries and

cell death in animal models24,36. Based on these studies, we

performed the first clinical trial evaluating the effects of

CO-saturated solutions in preserving islet cell viability and

function in CP patients undergoing TP-IAT. This pilot study

has demonstrated that CO intervention is safe in this patient

population. The documented AEs have been observed in

historical patients undergoing TP-IAT. All AEs observed

were determined as most likely not related to CO islet

transplantation.

A notable trend found in this study is that more patients

receiving CO islets were insulin independent at 6 months

post transplantation, evident in the observation that 37.5%
CO (three in eight) patients who were diabetes free pre-op

remained insulin independent at 6 months post TP-IAT. In

contrast, none of the five control patients were insulin inde-

pendent at month 6. The insulin independence rate is also

higher than our historical patient population, which was 22%
(n ¼ 101) at 6 months post IAT33. In addition, although the

two pre-diabetic CO patients required a higher amount of

insulin, non-diabetic CO patients required significantly

lower insulin than control patients, which suggests a better

function of CO islets.

In this pilot study, subjects with preoperative diabetes

were disproportionately enrolled to the CO arm of the study.

The CO subjects also had numerically higher baseline

HbA1c levels, lower C-peptide AUC values at baseline, and

fewer islets infused. The 2:1 randomization led to a better

Figure 2. Pre-op oral glucose tolerance test (OGTT) and month 6 mixed meal tolerance test (MMTT). Changes in glucose (a) or C-peptide
levels (c) and area under the curve of glucose (b) or C-peptide (d) during the pre-op OGTT tests in pre-diabetes carbon monoxide (CO)
(CO-diabetes mellitus [DM], n¼2), non-pre-diabetic CO (CO-non-DM, n¼8) and CTR (n¼5) subjects. Changes in glucose (e) or C-peptide
levels (g) and area under the curve of glucose (f) or C-peptide (h) during the MMTT test at month 6 post total pancreatectomy and islet
autotransplantation (TP-IAT) in CO-non-DM (n¼5), CO-DM (n¼1), and CTR (n¼5) subjects. CO: all subjects receiving CO islets; CTR:
subjects receiving control islets.
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understanding of CO mechanisms, but lower-power results

with this trial design. Despite these limitations, CO patients

trended toward better islet function and less insulin use at 6

months post TP-IAT.

OGTT, which uses glucose stimulation to provide an

abrupt maximal stimulus for insulin release, was performed

before TP-IAT in all CP patients as part of the standard of

care. MMTT, which uses boost stimulation, provides a

slower and more sustained stimulus due to the administration

of carbohydrates, protein, and fat and was performed at

month 6 post-IAT for subjects who participated in this study

to avoid stress on transplanted islets. We realize it is not

optimal to compare data from two different tests. Therefore,

we compared relative islet function (C-peptide AUC)

between the control and the CO groups pre-op and 6 months

after IAT. The C-peptide AUCs in controls were 1.6 times

higher than CO during the OGTT. In contrast, subjects in

both groups showed similar C-peptide AUC (1.1 times

Figure 3. Patients quality of life (QOL) in CO and CTR subjects. Physical (a) and mental (b) QOL of CO (n¼10) and control (n¼5) subjects
at pre-op and 6 months post-op. Error bars represent standard errors, p values are from Student’s t test assuming unequal variances. The p
values were calculated based on QOL at 6 months versus pre-op in all patients. CO: all subjects receiving CO islets; CTR: subjects receiving
control islets.

Figure 4. Chemokine and unmethylated insulin DNA concentrations in CO and CTR subjects. Serum concentrations of CCL23 (a),
CXCL12 (b), and unmethylated/total insulin DNA (c) in CO or CTR subjects at pre-op, and 1 or 3 days post transplantation. *p<0.05,
**p<0.01 vs CTR, n¼6 in CO and n¼4 in CTR. CO: all subjects receiving CO islets; CTR: subjects receiving control islets.
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difference favoring controls) at 6 months post TP-IAT.

Taken together, these data suggest that CO islets did have

better survival and function post-transplantation compared

to control islets.

Despite missing the primary statistical endpoint of

6-month changes in MMTT outcomes, we remain encour-

aged by other findings in the study. The difference in insulin

independence between the groups was not reflected in the

MMTT results because two of the insulin-independent sub-

jects did not return for this MMTT test, whereas one of the

preoperative diabetic subjects did. Although it is possible

that subjects who did less well did not return for the MMTT

test either, these data suggest that CO islets trended toward

better survival and function post-transplantation compared

to control islets. However, a study with a larger cohort of

subject is needed to confirm this hypothesis.

We observed significantly increased OCR/DNA levels in

freshly isolated CO islets compared to control islets, support-

ing that CO exposure enhanced islet viability/quality. We

cannot exclude the possibility that higher OCR/DNA in

CO islets might have been caused by stresses during islet

isolation that reflect a toxicity37. However, this likelihood is

small because a much higher CO dose had been used and

showed profound protection in other disease models10,16.

The survival advantage of CO islets was further con-

firmed in vivo by reduced unmethylated INS DNA con-

centration in the serum of CO patients compared to

control patients at 3 days post-IAT. However, serum

unmethylated INS DNA may reach its peak within 3

hours post IAT30, therefore, unmethylated INS DNA at

earlier time points needs to be measured in future clinical

trials to confirm the CO effects on islet cell death post

transplantation. Nevertheless, it seems reasonable to

assume that CO exposure increased islet viability so these

islets could better resist stress-induced cell death during

the peri-transplant period.

Patients receiving CO islets showed reduced serum levels

of CCL23 and increased CXCL12, two chemokines related

to inflammation. CCL23 is a newly identified chemokine

that can attract monocytes/macrophages, dendritic cells,

lymphocytes, and endothelial cells, and can upregulate

inflammatory cytokines such as TNF a and MCP-1 in human

monocytes. Increased expression of CCL23 was found in

patients with inflammatory bowel disease34, rheumatoid

arthritis, and systemic sclerosis35. CXCL12 reduced inflam-

mation in experimental autoimmune encephalomyelitis38.

It protected b cells from death by promoting islet neovascu-

larization, reduced oxidative stress, and increased cell sur-

vival in allogeneic and xenogeneic islet transplantation

models39–42. Therefore, the significantly decreased CCL23

and increased CXCL12 levels observed in the CO group in

our study suggested less inflammation in CO islets post-

transplantation. We did not observe notable changes in

inflammatory cytokines including MCP-1, IL-8, TNF-a, and

INF-g as often observed in islet grafts after transplantation.

A possible explanation is that pro-inflammatory cytokines

are more concentrated locally around transplanted islets

within a liver and might not be detectable in serum. Because

islet sampling in this patient population is not possible, the

answer to this question remains unanswered in a human

model. Nevertheless, it appears that islets harvested in a

CO-rich environment ex vivo can protect human islets from

cell death and inflammation after transplantation, and ulti-

mately increase long-term islet survival and function.

One limitation that may hinder the clinical application of

this approach is that CO is only stable in solution for a few

hours before it is released from the medium43. Therefore,

each medium used must be prepared fresh and used imme-

diately. This limitation was overcome by this study using a

simple bubbling procedure. Another strategy is to utilize

CO-releasing molecules in lieu of CO gas bubbling to

achieve a longer effect44. The limitation remains that the

beneficial effects of CO-saturated solutions may offer tran-

sient islet protection from cell death during the peri-

transplant period, but not have longer-term effects. In the

future, CO exposure combined with other approaches that

are effective in preventing chronic islet cell death could

further improve the efficacy of IAT.

This study refined a potential novel approach to improve

the efficacy of IAT. We demonstrated the feasibility of

enrolling and randomizing study subjects and obtained pre-

liminary estimates of its success by comparing outcomes

between the two treatment arms. The data gathered in this

study provide key information that can be utilized for the

design of a larger multicenter clinical trial. Our preliminary

power analysis using an 80% power with a 5% type I error

for an intervention that was successful in 3/8 subjects (37%)

compared to the average 22% success rate in our large local

dataset would require approximately 300 patients to be

enrolled in a prospective randomized trial. This would

require multicenter efforts.

In conclusion, the results of this study suggest the possi-

bility of procuring human islets in CO-saturated solutions for

improving the quality of isolated islets and likely made them

more resistant to stresses during islet procurement as well as

post-transplant, thus increasing insulin independence in

patients undergoing TP-IAT. This study demonstrated a sim-

ple, safe, and potentially effective treatment protocol that

can be applied to clinical islet transplantation. This treatment

option can potentially be applied to allogeneic islet trans-

plantation and other cellular therapies.
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