
A Generative Model for Measuring Latent Timing
Structure in Motor Sequences
Christopher M. Glaze1*, Todd W. Troyer2

1 Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 2 Department of Biology, University of Texas at San Antonio,

San Antonio, Texas, United States of America

Abstract

Motor variability often reflects a mixture of different neural and peripheral sources operating over a range of timescales. We
present a statistical model of sequence timing that can be used to measure three distinct components of timing variability:
global tempo changes that are spread across the sequence, such as might stem from neuromodulatory sources with
widespread influence; fast, uncorrelated timing noise, stemming from noisy components within the neural system; and
timing jitter that does not alter the timing of subsequent elements, such as might be caused by variation in the motor
periphery or by measurement error. In addition to quantifying the variability contributed by each of these latent factors in
the data, the approach assigns maximum likelihood estimates of each factor on a trial-to-trial basis. We applied the model to
adult zebra finch song, a temporally complex behavior with rich structure on multiple timescales. We find that individual
song vocalizations (syllables) contain roughly equal amounts of variability in each of the three components while overall
song length is dominated by global tempo changes. Across our sample of syllables, both global and independent variability
scale with average length while timing jitter does not, a pattern consistent with the Wing and Kristofferson (1973) model of
sequence timing. We also find significant day-to-day drift in all three timing sources, but a circadian pattern in tempo only.
In tests using artificially generated data, the model successfully separates out the different components with small error. The
approach provides a general framework for extracting distinct sources of timing variability within action sequences, and can
be applied to neural and behavioral data from a wide array of systems.
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Introduction

There has been an increasing focus in systems neuroscience on

the role of trial-to-trial variability in the neural code for movement

[1–3]. Motor variability has been of particular interest in songbird

research, including studies on zebra finch song: males exert active

control over song variability, singing more stereotyped song when

courting a female than when singing alone [4–7]. Further

experiments have shown that this control is largely mediated by

the anterior forebrain pathway, a cortical-basal ganglia circuit for

song [5–8].

Interestingly, single unit recordings in singing birds reveal that

bursting in individual neurons is locked to song output with

millisecond precision [9–11], with trial-to-trial variability in inter-

burst intervals being strongly correlated with variability in the

timing of corresponding song features [10]. Several studies have

exploited this relationship and used precise measurements of song

timing to make inferences about the nature and timescale of the

underlying motor code [12–15].

However, studies aimed at linking brain and behavior face the

challenge that variability is likely to be driven by multiple sources

with different timescales and mechanistic explanations. For example,

a natural way to measure timing variability would be to measure the

standard deviation of individual song elements known as ‘‘syllables.’’

While some of that timing deviation is likely due to fast neural and

synaptic noise within the central circuits that generate song timing,

variability in syllable length is also likely to be affected by slower

modulations that alter song tempo. Finally, alterations in timing

introduced downstream from the song pattern generator, either in

motor periphery or by measurement errors in syllable duration, will

contribute to variability in measured syllable duration as well. To

understand the mechanisms of song production one would like to

separate these distinct components of timing variability.

We have developed a statistical model to address this problem,

allowing researchers to distinguish three kinds of timing variability

in repeated action sequences such as zebra finch song: global

timing changes spread across the sequence (‘‘tempo’’), fast,

uncorrelated timing noise in the length of each element of the

sequence (‘‘independent variability’’), and timing ‘‘jitter’’ at the

onsets and offsets of sequence elements that might be caused by

variation in the motor periphery or by measurement error. This

‘‘timing variability model’’ can be seen as an extension of the

Wing-Kristofferson model [16], which separates central and

peripheral components of variability in human interval timing

during a finger-tapping task. Our approach uses a novel variation

on factor analysis, a technique for detecting and measuring latent

variables in high-dimensional data sets [17–19]. We fit the model

PLoS ONE | www.plosone.org 1 July 2012 | Volume 7 | Issue 7 | e37616



to data using an expectation-maximization (EM) algorithm, which

allowed us to estimate the contribution of each of the three latent

factors to the variability of each element of the sequence.

We applied the model to the songs of 11 adult male zebra

finches and found that for most birds the model provides very

good fits to trial-to-trial variability in the durations of individual

song vocalizations (syllables) and the gaps of silence between them.

For individual syllables and gaps, a roughly equal amount of

variability is contributed by each of the three components of

timing variability. For 5 birds, the model appears to be optimal

when including an additional latent variable in which syllable and

gap durations are anti-correlated. We also performed Monte Carlo

simulations to investigate how accurately the model was able to fit

artificial data sets where the underlying timing parameters and

latent variables were known.

Results

This paper develops a statistical model to estimate latent factors

governing trial-to-trial timing variation in repeated action

sequences. We will present our results in three sections. First, we

describe our model which we call the ‘‘timing variability model.’’

We then fit the model to timing data from zebra finch songs, and

present several results regarding the nature of timing variability in

this species. Finally, we describe Monte Carlo simulations designed

to quantify the reliability of the model fits.

Timing Variability Model
The timing variability model can be applied to data consisting

of repeated action sequences that can be divided into consecutive

time intervals, as might be observed during the production of a

stereotyped behavior over multiple trials. Although the model may

be applied to any action sequence, here we apply the model to

quantify timing variability in the songs of male zebra finches. Each

adult produces a song that is highly invariant but unique to that

male (Fig. 1A). The song of each male consists of a stereotyped

string of 3–7 distinct vocalizations we term ‘‘syllables’’ that vary in

duration from approximately 50 to 200 msec; syllables are

separated by gaps of silence that are roughly half the duration of

syllables. We will use the term ‘‘motif’’ to denote a male’s

stereotyped string of syllables, while a song ‘‘bout’’ consists of a

series of motifs produced back-to-back. We restricted the analysis

to the first motif of each bout; however, to examine the gap of

silence between the 1st and 2nd motifs, we included the first

syllable of the second motif in the sequences analyzed. We will use

the term ‘‘time interval’’ to denote the durations of both syllables

and silent gaps, so if a sequence consists of L syllables, it also

contains L{1 gaps and thus 2L{1 time intervals. The duration

of each syllable and silent gap is also fairly stereotyped, varying

across motif renditions by about 1.5–3.5 msec standard deviation

in duration, or ,2–5% coefficient of variation (CV) [15]. This

temporal stereotypy gives each male’s song a very characteristic

rhythm [15,20].

Variance decomposition. To start we describe the model

from the perspective of variance decomposition, generally

following the standard approach known as factor analysis

[17,19,21,22]. As outlined in the introduction, we would like to

write the variance in interval length as a sum of three component

variances: variance in tempo spread across the song, independent

variance that is specific to each timing interval within the song,

and timing jitter in the exact placement of the onset and offset of

each song syllable.

For the first factor, we presuppose a non-observable, latent

factor z that influences song tempo, with zn representing the

deviation in tempo from its mean value on each trial n. If the

change in tempo is spread uniformly over the song, the deviation

in the length of interval k will be proportional to the mean length

of that interval, �xxk; that is, the deviation will equal zn�xxk. However,

the timing variability model is not restricted to uniform changes in

tempo. Rather, deviations in global timing are modeled as Wkzn

where the values Wk are free parameters representing the relative

sensitivity of each interval to variations in global timing. For that

reason, we refer to Wk as the ‘‘global weight’’ for interval k. Under

these assumptions, variations in global timing will contribute a

variance component to interval k equal to W2
kVar(z) where Var(z)

represents the variance of the latent factor z. Importantly, global

timing will also result in a covariance between interval j and

interval k equal to WkWjVar(z). By fitting this pattern of

covariances to the off-diagonal elements of the data covariance

matrix, the model forms an estimate of the global sensitivity of

each interval to global timing (Fig. 1C, left).

A similar approach can be used to estimate the variance

contributed by timing jitter. For this component, we presume that

the length of each interval is set centrally, but the measured timing

of the transition between consecutive intervals is subject to

variation downstream of central pattern generator for song, either

in the motor periphery or during the measurement process. We let

ukn denote the jitter in timing between interval k and kz1 on trial

n. As noted by Wing and Kristofferson [16] in the context of

human finger-tapping experiments, such timing jitter introduces a

negative covariance between adjacent intervals in addition to

contributing to the variance in interval duration (Fig. 1C, right). As

before, off-diagonal values in the data covariance matrix can be

used to estimate the magnitude of timing variance at each

boundary in the sequence. We denote the variance at the kth

boundary by Vkk. The variance contributed by jitter the timing of

interval k will be Vkk+Vk{1,k{1.

Finally, we assume that each interval k is subject to its own

degree of independent variation gkn on trial n. This independent

variance can be estimated by calculating the total interval variance

and subtracting the variance contributed by global and jitter

factors. We denote the independent variance for interval k by Ykk.

Variance decomposition in the model is shown in figure 1. Panel

B shows the data covariance matrix from a single bird. Panel C

shows the three matrices of covariance contributed by the global,

independent and jitter terms in the model to the right and how

these sum to equal the model covariance matrix at the left.

The difference between the timing variability model and

traditional factor analysis stems from the explicit incorporation

of the negative covariances between adjacent intervals caused by

timing jitter at syllable onsets and offsets. It should be noted that

since the model can only estimate jitter by recognizing negative

covariation between adjacent intervals, estimates of timing

variability in the first and last intervals of the sequence will be

inherently less accurate. As a result, we discarded the first and last

intervals in the sequence from all reported analyses.

Generative model and maximum likelihood

estimation. We used a maximum likelihood approach to fitting

our model to the data [17,22,23]. More specifically, we view the

timing variability model as a probabilistic model capable of

generating artificial data consisting of N repeated sequences, each

containing the duration of K consecutive time intervals. To generate

such data, we assume that the parameters of the model are fixed and

for each artificial sequence n we generate random values for the

unobserved, latent variables: a single global timing variable, zn,

independent variations for each of K intervals, gkn, and jitter

variations at each of the K{1 boundaries between intervals, ukn.

These are combined to produce K observed interval durations

Latent Timing Structure in Motor Sequences
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xkn~Wkznzgknz

{uk{1,nzukn 1vkvK

u1n k~1

{uK{1,n k~K

8>>><
>>>:

ð1Þ

For convenience we can rewrite this equation in vector notation as:

xn~WznzgnzDun ð2Þ

where D is the K|(K{1) differencing matrix with ones along the

diagonal (Dk,k~1 since boundary k causes deviations in the offset of

interval k), negative ones along the subdiagonal (Dk,k{1~{1 since

boundary k{1 causes deviations in the onset of interval k), and 0
elsewhere.

To allow theoretical derivations of maximum likelihood fits, we

assume that the latent factors are independent and Gaussian

distributed. The free parameters of the model are then the global

weights in W (collectively referred to as the global parameters) and

the variances of gk and uk. We let Y and V be the covariance

matrices of the random vectors g and u respectively; these matrices

are diagonal since the latent variables in g and u are assumed to be

independent. The variance of the global parameter z is fixed at a

value of one, with the magnitude of the global weights W
determining the magnitude of the observed variances. Letting S be

the covariance matrix of interval durations, and using the basic

result that S~
1

N

X
n

xnxT
n , equation 2 implies that in the limit of

large N, the timing variability model will generate K dimensional

Gaussian distributed data with covariance matrix

S~WWTzYzDVDT ð3Þ

In particular, for any given sequence of interval durations, we can

calculate the probability that the timing variability model would

generate that particular sequence.

To fit the model to observed data, we find parameters W, Y
and V that maximize the likelihood that the model would generate

the observed collection of sequence durations. To accomplish this,

we use an Expectation-Maximization (EM) algorithm that was

modified from the standard EM algorithm used to generate

maximum likelihood fits for standard factor analysis [17,23]. (See

Methods for details.) A consequence of this maximum likelihood,

Figure 1. Timing variability and its decomposition. A, Spectrogram of a single song motif from one bird, with syllables indicated above by
letters and silent gaps by ‘‘-’’. B, timing covariance matrix for the same bird, in which the color of each square indicates the pairwise covariance
between the durations of two intervals denoted along the rows and columns. C, Schematic of the different noise sources captured in the model.
Below each noise source is a covariance matrix generated by the model of that source.
doi:10.1371/journal.pone.0037616.g001
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generative approach is that the EM algorithm naturally yields

estimates of the latent variables zn, un and gn on a trial-to-trial

basis. As we will demonstrate below, this allows for an analysis of

the relationship between timing factors and other variables, such

as time of day and behavioral state, that vary across samples but

are not explicitly included in the model. Furthermore, the model

can be used to generate artificial data sets from a model with

known parameters. These artificial data sets can then be fit using

the same class of model. This exercise allows one to estimate the

uncertainty in parameter estimates that are due solely to statistical

variation in finite data sets (see ‘Monte Carlo experiments’ below).

Timing Variability in Zebra Finch Song
We applied the timing variability model to song samples from

11 adult zebra finch males reported in a previous study [15]; one

bird from the previous study was omitted because the sample was

not large enough to yield reliable fits. For each male we collected a

sample of 215–885 song bouts recorded while the bird was alone,

housed with another adult male, or serving as a song tutor to a

juvenile. Data from individual birds often included recordings

from multiple recording sessions, spanning periods that ranged

from 1–6 months. We restricted the analysis to the first motif of

each bout; however, to examine the gap of silence between the 1st

and 2nd motifs, we included the first syllable of the second motif in

the sequences analyzed. We will refer to gaps between motifs as

‘‘inter-motif gaps’’ and distinguish them from ‘‘within-motif gaps’’.

After fitting the model to the data, we then excluded the first and

last syllable of each sequence since the parameter estimates for

these intervals are corrupted by unknown jitter at the beginning

and end of the sequence (see above). The resulting data set

included parameter estimates for 48 syllables, 48 within-motif gaps

and 11 between-motif gaps, for a total of 107 time intervals.

Throughout we will report parameter distributions with med-

ian+median absolute deviation (MAD).

Model fit. We assessed the overall fit of the model to the data

using the standardized root mean-squared residual (SRMR) [24].

This measure is based on the average difference between the

pairwise interval length correlations in the data and those

predicted by the model covariance matrix (see Methods for

formula). As a rule of thumb in factor analysis, a SRMRv0:08 is

considered an adequate fit while SRMRv0:05 is considered an

excellent fit [24]. Across birds, SRMR was a median 0:058, range

of 0:034{0:105. Nine of eleven birds yielded an SRMRv0:08
while 3 yielded SRMRv0:05 (Fig. 2A). Thus, the model fit a large

majority of birdsongs in our sample reasonably well. The

particularly large SRMR values appeared to be due to timing

factors not included in the original model but analyzed below.

Parameter distributions and the contribution of

tempo. Across all time intervals, median global variability was

0:972+0:391 msec, median independent variability was

1:110+0:527 msec, and median boundary jitter was

0:921+0:354 msec. Averaging across intervals produced by a

given bird, respective medians ranged from 0.550–1.456 msec

(global), 0.560–2.348 msec (independent), and 0.638–1.723 msec

(jitter). Thus, each of the three timing factors made similar

contributions to the variation in duration of individual song

elements. In general, timing variability was relatively small in these

songs. It may also be noted that, when respective variances are

summed to estimate total duration variability in song elements

(assuming an interval receives jitter variance from two sources), the

numbers agree with previously reported data: *1 msec2 variance

in each component yields *4 msec2 interval variance total (so

*2 msec st. dev.), on par with what we have previously reported

[15].

Based on a previous analysis showing generally positive

correlations among the durations of time intervals, we expected

global timing variations in which most time intervals shortened or

lengthened together [15]. Of the 107 song intervals analyzed, only

4 had global weights ,0, with two of the negative weights coming

from a single bird (out of 11 time intervals for that bird). Since

nearly all global weights were positive, global timing variations

indeed were dominated by changes in which time intervals

shortened or lengthened together. Therefore, the global factor

represents changes in a shared tempo across the song and we will

use the terms ‘‘global variability’’ and ‘‘tempo variability’’

interchangeably.

Although global weights were on the same order of magnitude

as the independent variability for individual intervals, the variance

in total motif length was dominated by tempo changes. Because

global tempo is shared by all song elements, the motif length

variance linked with the global variable (equal to (
P

k Wk)2) was

roughly *5 times as much as the length variance linked with the

independent variable (equal to
P

k Ykk). More specifically, tempo

explained 83:2+6:5% of the total variance in motif duration

explained by the model (range 31:0{91:2% by bird). Only one

bird (bird 4) had more motif length variance linked with the

independent variable than with the global; interestingly, this

appeared to be entirely due to independent variance within a silent

gap corresponding to a variable sequence point at which the bird

occasionally transitioned to a different syllable.

Overall, the motif length variance in the model (equal to the

sum of global and independent variance) deviated from measured

motif length variance by only 0:245+0:240% across birds

(maximum of 3:6%).

Length scaling. A wide range of studies, from human finger-

tapping experiments to previous work in birdsong, have found that

variability in the duration of a learned motor gesture tends to scale

with the average duration of the gesture [13,15,16,25–28]. This is

to be expected from any process that consists of a causal sequence

of activity with noise at each time point: the longer the process, the

more variability accumulates. We hypothesized that variability

would scale with average duration for the tempo and independent

timing parameters, as these parameters are expected to alter

timing throughout the duration of a given interval. In contrast, we

did not expect any relationship between average duration and the

variability linked with boundary jitter. To quantify the boundary

jitter linked with interval k, we calculate the square root of the sum

of jitter variances at the two ends:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VkkzVk{1,k{1

p
.

Indeed, the data confirmed that only tempo-based and

independent variability scale with average interval duration

(Fig. 3): the correlation between global variability and average

interval duration was 0.701 (Spearman, pv0:0001), between

independent variability and duration, 0:293 (Spearman,

pv0:005). In contrast, average duration showed no significant

correlation with jitter-based variability (Spearman’s r~0:060,

p~0:54). Although the relationship between independent vari-

ability and average duration was significant, it was far weaker than

what we found with tempo-based variability. There are a number

of reasons why this might be, including greater error in

independent parameter estimates as well as real factors in the

neural system that may contribute noise in a way that is not

dependent on process duration.

Model parameters distinguish syllables from silent

gaps. Previous research has shown that silent gaps stretch and

compress with song tempo more than syllables after dividing out

average duration, i.e. they are more ‘‘elastic’’ to trial-to-trial tempo

variability [13,15] (although see [12]). We examined whether the

global parameters from our model indicated the same difference

Latent Timing Structure in Motor Sequences
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between syllables and gaps. Here, we computed tempo elasticity

for interval k as Wk=�xxk, where �xxk is the mean duration of the kth

time interval. This measure may be viewed as a partial CV with

respect to tempo so we will occasionally refer to it as ‘‘global CV’’.

For example, a global CV of 0:01 in an interval would indicate

that the standard deviation of global timing expressed in the

interval is 1% of its average duration.

Indeed, the model verified that syllables were less elastic to

tempo than gaps (Fig. 3A), with most gaps falling above the

regression line of global variability on mean duration and most

syllables falling below. Syllable tempo elasticity was 0:011+0:003,

Figure 2. Goodness of fit between the timing model and data from 11 zebra finch birds. A, SRMR by bird (see Results). B, Color plots of the
timing covariance matrices from the data and model for 3 representative birds.
doi:10.1371/journal.pone.0037616.g002

Figure 3. Scaling of timing parameters with average length. A, Scatter plot of global tempo variability by average interval duration across all
syllables and silent gaps. Silent gaps within motifs and between motifs have been separated out. B, C, Analogous plots for the independent and jitter
parameters respectively. In each plot solid lines come from a regression of timing parameters on average interval duration, calculated across birds.
Overall, plots show that global and independent variability scale with average duration, while jitter does not. The plots also show systematic
differences among interval types with respect to how much each parameter scales with average duration.
doi:10.1371/journal.pone.0037616.g003
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while gap tempo elasticity was about 1:5 times greater on average,

0:017+0:003 (pv0:0001, Wilcoxon rank-sum test).

Although previous research has focused on elasticity with

respect to shared, tempo-based variability, our timing variability

model also allowed us to investigate the pattern of sensitivity to

independent variability as well. (We did not analyze jitter

differences because syllables and gaps share the same set of

interval boundaries and there is no relationship with average

duration to begin with.) Because the independent parameters

scaled with length we derived an analogous quantity that may be

viewed as a partial CV with respect to independent variability,ffiffiffiffiffiffiffiffi
Ykk

p
=�xxk. Interestingly, here we found that as with tempo CV, the

independent CV was smaller for syllables than for gaps (Fig. 3B):

independent CV was 0:009+0:005 among syllables, and about

twice as great on average among gaps, 0:019+0:008 (pv0:0001,

Wilcoxon rank-sum test).

Inter-motif gaps express more independent

variability. In a hierarchically arranged motor code the onsets

of entire motifs may be triggered by mechanisms that are different

from what triggers the onsets of individual syllables. There is

electrophysiological evidence for this segregation [29], while

previous analysis has suggested increased timing variability at

motif boundaries [15]. Therefore, we examined whether the

variability in duration of silent gaps between motifs differed from

the gaps between syllables within a motif (Fig. 3A–B). Indeed, the

11 inter-motif gaps we investigated had a significantly greater

independent CV, 0:035+0:016, vs. 0:017+0:007 among within-

motif gaps (pv0:05, Wilcoxon rank-sum test). Interestingly, we

did not find the same difference with respect to global CV: inter-

motif gaps had a median 0:018+0:006 vs. 0:017+0:005 among

within-motif gaps (p~0:54, Wilcoxon rank-sum test).

Thus, the model revealed timing properties that systematically

vary by interval type, with gaps expressing proportionally greater

tempo changes and independent variability, and inter-motif gaps

expressing an especially large amount of independent variability.

Circadian Influence and day-to-day Drift in Latent Timing
Variables

The analyses above examined the relative magnitudes of three

components of timing variability and their distribution across song

elements. One advantage of using the EM algorithm is that it

Figure 4. Circadian rhythm and day-to-day drift in the latent timing variables. A, Average tempo by hour of the day (defined from lights
on) by bird (blue lines) and averaged across birds (black). B, example of day-to-day drift in tempo for one bird over a 1-month period. C, example of
drift in independent variability for two different song segments in the same bird. All data in plots A-C are group means from a two-factor ANOVA that
have been adjusted for unequal samples of factor combinations (see Results), while dotted lines in B and C indicate adjusted means 6 standard error.
D, The estimated amount of variance in tempo explained by both hour of the day (black) and day (white) across all 11 birds. E and F, histograms of
the amount of variance in the independent and jitter variables respectively, explained by both hour of the day and day (same color code). Generally
the data show significant circadian variation in tempo only, and day-to-day drift in all three latent timing variables.
doi:10.1371/journal.pone.0037616.g004
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naturally provides maximum likelihood estimates of the latent

variables on a trial-by-trial basis. This allows investigations in

which these unobservable, latent factors are correlated with other

biologically relevant variables. For example, changes in song

timing can be tracked over periods ranging from hours to days and

even months.

Here, we investigated whether any of the latent timing variables

underwent consistent patterns of modulation over the course of the

day [15] or drifted over the 1–6 months of song recording.

Specifically, for each latent variable and each bird we used a

Bonferroni corrected two-factor ANOVA to test for significantly

different averages by both hour of the day and day of song

production. If we found significant differences, we then examined

the pattern of changes related to a given factor by calculating a

mean and standard error of the latent variable; we adjusted these

estimates for unequal sample numbers across factor combinations

using the ‘‘multcompare’’ function Matlab.

All 11 birds showed significant tempo changes that were

affected by both time of day and day of singing (Fig. 4A,D),

indicating both a circadian variation and slow drift in song tempo

(Bonferroni-corrected pv0:05). Across birds, the amount of

variance explained by hour of the day was a median 17.069.9%

(range 4.9–38.8% by bird), by daily drift, 24.165.1% (8.7–45.6%).

Consistent with our previous study [15], the pattern of circadian

variation in tempo was similar across birds (Fig. 4A), with songs

speeding up until mid-morning and slowing down over the

afternoon.

The model also allowed us to test for circadian changes and

day-to-day drift in the independent and jitter latent variables g and

u (Fig. 4B,C,E,F). In contrast to tempo, neither showed consistent

changes by hour of the day, with only 5 of 107 independent

components and 3 of 118 jitter components showing significant

change by that factor (Bonferroni-corrected pv0:05). Interesting-

ly, many intervals did show significant drift in those variables, with

54/107 independent and 50/118 jitter components reaching

significance (Bonferroni-corrected pv0:05). Of the intervals with

significant drift, that factor explained 13.064.1% of the indepen-

dent variation (range 3.1–23.4%) and 9.762.4% of the boundary

jitter (range 3.5–30.5%).

Thus, the data indicated day-to-day drift in all three types of

latent timing variables, and a significant circadian pattern in

tempo only.

Multiple Global Timing Factors
Our original construction of the model incorporated a single

global factor, motivated by an a priori expectation of variation in

song tempo which was confirmed by the data. However, the factor

analysis framework also allowed us to search for additional global

factors whose influence is spread across the song sequence. The

existence of such additional factors was suggested by a qualitative

examination of the data from several birds as well as correspond-

ingly high SRMR values for those model fits. The EM algorithm

easily accommodated the inclusion of multiple global factors

simply by increasing the number of dimensions in z and W and

fitting parameters as before (see Methods).

By adding parameters to our model, we are assured of

improving the fit to the data. To avoid over fitting, we ran

models with 1–4 global dimensions, and used the minimum

Bayesian Information Criterion (BIC; see Methods) to determine

the optimal tradeoff between better fits to the data and model

complexity. Across our sample, 6 of 11 birds had a BIC lowest for

just 1 global factor. Of the remaining 5 birds, 4 produced models

that had a lowest BIC for 2 global factors while the remaining bird

had 3 global factors. As expected, additional global factors

improved the fit to the data: of the 5 birds with w1 global factor,

median SRMR dropped from 0:064 to 0:021 (Fig. 5A); across all

birds, median SRMR after using the BIC was 0:038, range

0:016{0:063.

As in traditional multi-dimensional factor analysis, the model fit

can only determine the subspace spanned by the matrix W. Within

this subspace there are an infinite number of variations of W that

will give the same pattern of covariances in WWT. Based on our

previous analysis with one global factor, we sought a solution that

separated out tempo-based variability from any additional timing

factors. In particular, we used a transformation of W in which

global factors affecting total sequence length would be confined to

the 1st dimension, with additional timing factors chosen orthog-

onal to this tempo dimension (see Methods). In the one bird with 3

global factors, we chose as the 2nd factor the one which explained

the most interval variance after factoring out the tempo

dimension. We then analyzed the distributions of parameters

from the 2nd global factor across the 5 birds with w1 global

dimension.

The second factor tended to have weights of the opposite sign

across syllables and silent gaps (Fig. 5B,C). Since factors are

ambiguous with respect to overall sign, the second global factor

was chosen so that the sum of the syllable weights was positive.

With that convention, 26 of 30 syllable weights were w0 and 23 of

25 gap weights were v0. Median syllable weight was

0:329+0:219 msec, vs. {0:389+0:274 msec across gaps

(pv0:0001, Wilcoxon rank-sum test), and the difference was

consistent across all 5 birds. Interestingly, this pattern corroborates

a previous finding of significant length correlations in syllable-

syllable and gap-gap pairs after subtracting out the influence of

tempo [15]. Unlike the tempo-based weights, we found no

relationship between magnitude of the weight for the second

component and the mean length of the interval (Spearman’s

r~{0:14, p~0:30). Thus the second global factor showed

properties that were similar to jitter: it yielded a tradeoff between

syllable and gap lengths and did not scale with average interval

duration.

In all 5 birds, the second global variable showed a significant

daily drift, and there was a significant circadian component in 3 of

5 birds (Bonferroni-corrected two-way ANOVA, pv0:05;

Fig. 5D,E). Hour of day explained 25.0–50.4% (median 28.5%)

of the variance in the 3 birds for which the circadian component

was significant, while daily drift explained 39.1–69.0% (median

45.1%) across the 5. The trend in the circadian component was for

syllables to get longer and the expense of gap duration over the

afternoon. Overall, these longer timescales explained a remarkably

large amount of variance in the component.

Finally, we examined whether the inclusion of additional global

factors significantly changed any parameter estimates from the

original model with only 1 global dimension. Among the 5 birds

with w1 global factor included from the BIC analysis, tempo-

based weights changed only slightly, with the median decrease of

0:003 msec failing to reach significance (p~0:136, Wilcoxon

signed-rank test). The median absolute magnitude of the change

was 0:015+0:008 msec, much smaller than the median weight of

0:972 msec. Independent parameters changed more, with median

absolute change of 0:049+0:040 msec. However, as with the

tempo weights, the direction of change was variable so that the

median change of {0:003 msec over all intervals was not

significant (p~0:64, Wilcoxon signed-rank test). Jitter parameters

also showed a larger absolute change of 0:042+0:038 msec. But

unlike independent parameters, jitter parameters tended to get

smaller, with 34 of 50 boundaries showing decreased jitter,

resulting in a small but statistically significant median decrease of
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{0:027 msec (pv0:0005, Wilcoxon signed-rank test). This

suggests that a small amount of the estimated boundary jitter in

the single-global factor model may be explained by the song-wide

anti-correlation between syllables in gaps that was uncovered in

the 2nd global factor.

Monte Carlo Experiments
One of the difficulties in using latent variable models is that the

model fit cannot be directly validated by comparison with

observed data. As an alternative, we investigated how accurately

the model was able to fit artificial data sets where the underlying

timing parameters and latent variables were known. Specifically,

for each bird we selected parameter values that were fit to the

experimental data. Then using the model in generative mode, we

created an artificial data set with the same number of samples by

randomly generating latent variables from a unit normal

distribution, scaling the independent and jitter variables by the

corresponding parameters, and combining these into observed

interval lengths according to equation (1). Focusing exclusively on

this artificial data set, we reapplied our algorithm to find the

parameters that provided the best fit to the artificially generated

data. In order to derive statistics of how well the model fit the

artificial data, we generated 200 distinct artificial data sets for each

bird.

These Monte Carlo simulations allowed us to evaluate the

reliability of the model in two distinct ways. First, we compared the

overall fit of the timing variability model to the real vs. artificially

generated data by comparing the model covariance calculated

Figure 5. The influence of additional global factors on model fit and song timing. A, Goodness of model fit with additional global factors
included (black) vs. 1 global factor (white) for the 5 birds for which BIC was lowest for w1 factor. Numbers above black bars indicate the number of
factors associated with the lowest BIC for that bird. B, Distribution of global parameters for the 2nd factor (sign-normalized, see Methods), separated
by whether the song segment was a syllable or silent gap. Across birds syllable and gap parameters tended to be of opposite sign. C, Timing
covariance matrices generated for the 2nd global factor in 3 representative birds. D, Average changes in the 2nd global variable in the 3 birds that
showed significant circadian variation for that factor. The circadian pattern showed that syllables tended to elongate at the expense of gaps over the
afternoon. E, Example of day-to-day drift in the 2nd global variable for one bird over a 1-month period. As in figure 4, hour-of-day and daily averages
in D and E have been adjusted for unequal sampling of factor combinations while dotted lines in E represent adjusted means 6 standard error.
doi:10.1371/journal.pone.0037616.g005
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from equation (3) to the data covariance matrix for both the

artificial and real data sets. In all birds, SRMR was smaller for the

fit to the simulated data than to the actual data (Fig. 6E). Median

SRMR computed across simulations ranged from 0:009{0:054
by bird, roughly two thirds of what we found in the real data. This

suggests that about two thirds of the difference between real and

model covariance matrices resulted from idiosyncratic components

of the covariance matrix due to random sampling, while a third of

the difference resulted from patterns in the data that did not

conform to the assumptions of the model. It is unclear whether

these patterns represent additional global timing factors, specific

dependencies between the factors that are not included in the

model, or limitations due to other model assumptions.

Second, we compared the parameters and latent variables from

the best-fit model to the (known) parameters and latent variables in

the artificial data set. This allowed us to assess the reliability of

model estimates due purely to statistical variation in the timing of

interval resulting from the posited latent factors. We report

reliability using the median absolute deviation of estimates from

the true values. In the 5 birds with multiple global parameters, we

generated artificial data for both the single-global and multiple-

global factor models; however, because error was similar across

both approaches (see below) we focus on the multiple global factor

models in order to include estimates of the 2nd global factor.

All parameters had similar magnitudes of error (Fig. 6F–I):

across bird simulations, tempo parameter error was

0:072+0:026 msec, while error in the 2nd global parameter was

a 0:056+0:012 msec; independent parameter error,

0:093+0:028 msec; and jitter error, 0:062+0:025 msec. In the

five birds with multiple global factors, the average error was

similar in the single-global factor model, with no significant

differences among independent and jitter parameters (p~0:10 and

0:44 respectively, Wilcoxon signed-rank test), and a small albeit

significant decrease of 0:002 msec in error in the tempo-based

parameters (pv0:0005, Wilcoxon signed-rank test). We also

verified that the error in parameter estimates reliably decreased

with the square root of sample size: For 3 representative birds we

ran 200 simulations at each of several sample sizes ranging from

50 to 5000 (N~50,100,200,500,1000,2000,5000). A regression of

median parameter error with the square-root of sample size

Figure 6. Results of Monte Carlo simulations based on real parameter distributions in the song data. For plots A-D, F-I and K-N,
parameter type is designated by labels on the far left. A-D, Real parameter values (black lines), along with parameter estimates from 20 randomly
selected simulations (blue) for one bird. E, Median SRMR across simulations for each bird (black bars, errorbars indicate median absolute deviation) vs.
SRMR values from the real data (white bars). F-I, Median absolute deviation in parameter estimates from real parameters across all birds. J, Parameter
error and SRMR as a function of sample size for simulations selected from 3 birds. Here, parameter error was taken as the median MAD across
simulations and birds. Solid lines represent a regression of error and SRMR with the square root of sample size. K-N, Distribution of Pearson’s
correlation between the real and simulated latent variables. O, Median latent variable correlation from the same 3 birds taken as a function of sample
size. Color legend is the same as in panel J.
doi:10.1371/journal.pone.0037616.g006
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showed a qualitatively close fit (Fig. 6J). We also computed the

dependency of SRMR on sample size and found a similar

relationship. Overall, deviation between estimated and known

parameters tended to fall below 10 percent as song sample size

increased above 200–500.

We then examined the accuracy of trial-by-trial maximum

likelihood estimates of latent variables by computing Pearson’s

correlation between the real and simulated variables and taking

the median across simulations (Fig. 6K–N). Global tempo showed

remarkably strong correlations between 0:879 and 0:978 by bird

(median r~0:953), while the 2nd global factor showed a weaker

correlation between 0:610 and 0:786 (median r~0:740). Across all

time intervals, independent and jitter latent variables showed

correlations of 0:661+0:156 and 0:684+0:150. Interestingly,

correlations were only weakly dependent on sample size and

appeared to reach a ceiling by *500{1000 samples (Fig. 6O).

Finally, we tested the sensitivity of the model to the assumption

that the underlying distributions of latent variables were Gaussian.

To do this we reran simulations the same way as above (using

actual sample sizes), except that for each simulation, and each

latent variable, we randomly chose among a set of distributions

that included a Gaussian and two Weibull distributions [30], one

with significant negative skew (alpha = 10, beta = 2), and the other

with positive skew (alpha = 2, beta = 10). Weibull distributions

were mean-subtracted and scaled to have the same variance

specified by the model. Interestingly, model fits and parameter

error were similar to error when all distributions were Gaussian.

SRMR ranged from 0:009 to 0:054 (median 0:022). Tempo

parameter error was 0:065+0:037 msec, while error in the 2nd

global parameter was a 0:054+0:0149 msec; independent

parameter error, 0:085+0:040 msec; and jitter error,

0:054+0:051 msec. Correlations with the latent variables were

also similar, with a median global tempo correlation of

0:954+0:019, while the 2nd global correlation median was

0:744+0:066, independent, 0:655+0:201 and jitter

0:677+0:179. We next tested a more extreme violation of the

Gaussian assumption by assigning exponential distributions to all

latent variables (mean-subtracted and scaled as above). Even in

this case model error was similar to when all distributions were

Gaussian, with SRMR between 0:008 and 0:053 (median 0:021);

respective errors among the tempo, second global, independent

and jitter parameters of 0:065+0:037, 0:054+0:015,

0:080+0:039 and 0:053+0:048 msec; and respective correlations

with latent variables of 0:954+0:018, 0:743+0:065,

0:663+0:201 and 0:679+0:179.

Thus, the simulations indicated that the model was reasonably

accurate at estimating parameters and trial-to-trial values of the

latent variables, and robust to violations of the Gaussian

assumption.

Discussion

We have presented a statistical model of action sequences that

separates trial-to-trial variability in global timing, uncorrelated

variation in the duration of individual sequence elements, and

timing jitter at the boundaries between elements. We derived an

algorithm based on expectation-maximization to find maximum

likelihood estimates of both model parameters and trial-to-trial

values of each latent factor. Applying the model to the songs of 11

adult male zebra finches, we found that the model provided very

good fits to trial-to-trial variability in the durations of song syllables

and the gaps of silence between them, with each of the three

factors contributing roughly equal amounts of variability to

individual song elements. In contrast, measurements of motif

length were dominated by the global factor since such variability

accumulates in a correlated manner across song elements. Given

that the neural mechanisms driving global variability are likely to

be distinct from those driving both independent and jitter factors,

experiments designed to evaluate the effect of behavioral or

pharmacological manipulations of the system on timing variability

may reach different conclusion based on whether timing variability

is evaluated at the level of individual syllables or entire motifs [8].

Our timing variability model can be seen as an extension of the

Wing-Kristofferson [16] model of timing in humans. The latter

model has been used to investigate motor variability in studies

where human subjects produced isochronous timing intervals via

finger taps or other basic gestures [16,25–28,31,32]. The key

insight of Wing and Kristofferson [16] was to exploit the fact that

variability in event timing that is introduced downstream of the

motor pattern generator necessarily introduces negative covari-

ance between the intervals surrounding the event. This insight was

used to separate the measured timing variance into a component

that was attributed to the central clock, and motor variability

introduced at the motor periphery. In general, clock variability

scales with the duration of the interval, consistent with a process of

accumulating variability of the time course of the interval, while

motor variability shows little or no change with duration,

consistent with variability introduced in a specific event that does

not accumulate over time [16]. Consistent with these ideas, we

were able to use negative covariance to segregate out a component

of timing variance in zebra finch song that did not scale with

interval duration. In contrast, the global and independent timing

variability, hypothesized to relate to central circuits for song

generation, did scale. Importantly, previous extensions of the

Wing-Kristofferson model have also included a ‘‘tempo’’ variable,

in which the speed of tapping slowly drifts over the course of an

experiment [31–33].

In contrast to the original Wing-Kristofferson model and its

extensions, the timing variability model yields data on heteroge-

nous action sequences and can measure how variability in each

latent factor is spread across different sequence elements. Indeed,

we found prominent and systematic differences in the variability of

syllables and inter-syllable gaps. We also found that the gaps

between motifs were more variable than within-motif gaps, and

that this enhanced variability is expressed only in the independent

component of timing variability, not in its sensitivity to global

timing. Given the millisecond scale linkage between the timing of

neural activity and song behavior [9–11], these data may be used

to constrain mechanistic models of song production.

These findings may bear on how precise patterns of neural

activity remain synchronized over disparate song nuclei. While

several studies have suggested that HVC controls the timing of all

neural activity [11,13,34,35], both left and right HVC appear to

make independent contributions to song tempo [13]. Moreover,

lesions to LMAN, the output of a basal ganglia circuit, decrease

variability in syllable duration [8], suggesting that this nucleus

contributes to timing variability as well. One idea for how areas

remain in temporal alignment comes from electrophysiological

evidence that left and right HVC are synchronized at specific time

points within the song, and generally near syllable onsets [36].

Thus, while each HVC could run at a slightly different tempo,

they may be periodically reset to a global tempo. If such resetting

occurs preferentially at syllable onsets, this in turn would lead to a

tradeoff between the durations of syllables and gaps, with the

magnitude of the tradeoff depending on the mismatch between

HVC and global tempo. If this mismatch were to undergo slow

changes over time, then the tradeoff between syllable and gap

lengths would be quite similar to the properties of the second

Latent Timing Structure in Motor Sequences

PLoS ONE | www.plosone.org 10 July 2012 | Volume 7 | Issue 7 | e37616



global factor in our behavioral data: it would not scale with syllable

length but would show circadian modulation and slow drift. It may

be the case that the tempo mismatch is smaller in some birds than

others, explaining why the second factor reached significance in

just 5 of 11 birds. This notion of a reset is consistent with recent

recordings of air sac pressure during gaps, in which ongoing

patterns of negative pressure are rapidly terminated near syllable

onsets [12]. Finally, there is electrophysiological evidence for a

separate source of signals that triggers the onset of motifs [29],

which would be consistent with the especially large independent

timing variability we find in inter-motif gaps because that source

could introduce additional variability to the onset time of the first

motif syllable.

In using the EM algorithm to separate the three hypothesized

components of timing variance, the timing variability model also

yields maximum likelihood estimates of the latent variables on a

trial-to-trial basis. These values can then be related to variables

that influence song timing but were not included in the original

model. Here we have used this approach to quantify slow drift in

timing that occurs on timescales much longer than between the

production of individual songs. It is important to note that the

original data used for this model consisted of songs collected in a

variety of behavioral conditions (males were either alone, or

singing in the presence of another adult or juvenile male). Both

drift, as well as the magnitude of variability components, could

conceivably be affected by this factor; future investigations could

either track latent variables across conditions or estimate

parameters separately for each. Regardless, timing drift has been

previously been reported in zebra finch song, and was shown to be

highly correlated with drift in the duration of interburst intervals in

the song nucleus RA [10]. That study did not decompose

variability into different sources; it would be interesting to examine

whether the tight correlation specifically stems from any of the

individual components we have presented here.

Our use of EM for timing analysis falls within a broader

theoretical effort in fitting probabilistic generative models to data

[17,37]. This work suggests several extensions to the current

timing variability model, including the use of Gaussian process or

Kalman filters to explicitly model slower trial-by-trial drift in

timing [37,38]. Another advantage of the generative model

approach is that Monte Carlo simulations can be used to

understand the reliability and limitations of the underlying model.

Here we have examined the statistical reliability of the model by

generating artificial data sets and then fitting the model to these

data. Further insight into the robustness of the model can be

obtained by altering key model assumptions, generating artificial

data sets with the altered model, and then examining how well the

original model fits these altered data. We have used this approach

to argue that the model is robust to alterations in the assumption

that the shape of the latent variable distribution is Gaussian.

Further such investigations are beyond the scope of the present

paper.

Behavioral and neural variability are often affected by multiple

sources whose effects are shared by many different areas of the

given system. Generative models address this problem by assigning

latent variables to these different sources, and thus have the

potential to help quantify the activity of hypothesized synergies in

sensorimotor systems [39–41]. For precisely timed tasks such as

zebra finch song, the coordination of activity throughout the

system is a challenge, and the examination of timing variability

may be particularly valuable in understanding the functional

organization of the song circuit. By applying the methods

developed here to a joint analysis of neural and behavioral timing,

future studies may yield a more complete understanding of the

mechanisms linking neural activity and song behavior.

Methods

Ethics Statement
All bird care and housing was approved by the institutional

animal care and use committee at the University of Maryland,

College Park.

Model and Derivation
We fit the timing variability model using an EM algorithm

similar to what has been used for for maximum likelihood factor

analysis [17,23,42]. We begin by rewriting equations 2 and 3 for

the row-vector of mean-subtracted interval durations for sample n,

and the resulting model covariance matrix S:

xn~WznzDunzgn ð4Þ
S~WWTzDVDTzY ð5Þ

where D is the differencing matrix described in Results. We will

use ~SS to denote the data covariance matrix, in order to distinguish

it from S.

The free parameters of the model are the global weights W and

the expected jitter and independent variances along the diagonals

of V and Y. We use vector h to refer to the entire set of these

parameters. For K time intervals in a sequence, K{1 modeled

boundaries between intervals, and Q global variables, the

dimensions of W are K|Q; V, (K{1)|(K{1); and Y,

K|K . The total number of parameters in the model is thus

(Qz2)K{1. In the original formulation of the model we assumed

a single global dimension representing tempo, so in that case Q~1
and the total number of parameters is 3K{1.

For a given parameter set, the model can be run in generative

mode in which latent variables zn, un, and gn are generated and

then combined to according to equation (4) to produce mean-

subtracted interval durations xn. Our goal is to find a set of

parameters h that maximizes the likelihood of generating the set of

interval durations that were actually observed, i.e. we want to

maximize p(xDh). Although there is no closed-form solution to this

problem in general, EM provides an iterative procedure for

changing parameters so that each step of the algorithm increases

the probability of generating the real data, i.e. p(xDhnew)§p(xDhold ).
Our derivation considers the independent variables gn sepa-

rately from the global and jitter variables zn and un, and

concatenating the latter two into a single (KzQ{1)|1 row

vector vn. We also let A denote the K|(KzQ{1) matrix

obtained by concatenating W and D and let W denote the

(KzQ{1)|(KzQ{1) expected covariance matrix for v:

vn~
zn

un

� �
, A~ W D½ �, W~

I 0

0T V

� �
ð6Þ

where I is the Q|Q identity matrix, representing the assumed

unit covariance of zn, and 0 is a Q|(K{1) matrix of zeroes. So

Avn~WznzDun and

xn~Avnzgn ð7Þ

S~AWAzg ð8Þ

Latent Timing Structure in Motor Sequences

PLoS ONE | www.plosone.org 11 July 2012 | Volume 7 | Issue 7 | e37616



Equation 8 may be viewed as a kind of ‘‘confirmatory factor

analysis’’ or ‘‘covariance structure analysis’’ [18,19,21,22], which

are generalizations of factor analysis in which A and W contain a

combination of free and fixed parameters.

The basic idea in the EM algorithm stems from obtaining the

probability we seek to maximize, p(xDh), by marginalizing over the

latent variables v, i.e. p(xDh)~
Ð

p(x,vDh)p(vDx,h)Lv. Instead of

dealing with both terms in this integral at the same time, EM is an

iterative algorithm that addresses each term separately. In the ‘E’

step, one fixes the parameters and finds the probability distribution

(q) of latent variables in each sample at the current values of the

parameters, q(vn)~p(vnDxn,h). The structure of the model implies

that the conditional distribution of the data p(xnDvn,h) is a

Gaussian with mean Avn and covariance matrix equal to the

independent covariance matrix Y. From Bayes’ Theorem for

Gaussian variables [17], it follows that q(vn) is also a Gaussian with

covariance defined by

G~(W{1zATg{1A){1 ð9Þ

and expected mean

Efvng~GATY{1xn ð10Þ

where we use the notation Efyg to denote the expected value of

any given variable y under the distribution q(v). We also require

the 2nd moment of q(vn), which is given by

EfvnvT
n g~EfvngEfvngT

zG ð11Þ

using the basic result that EfyyTg~EfygEfygT
zcov(y).

In order to analyze the global and jitter variables separately we

can simply separate out the expected values from

Efvng~ Efzng Efung½ �. Below we will also make use of the

2nd moments of the original latent variables and use the fact that

EfvnvT
n g~

EfznzT
n g EfznuT

n g
EfunzT

n g EfunuT
n g

" #
ð12Þ

It is important to note that while the latent variables are

independent of each other by definition, they are not necessarily

independent under the posterior distribution q(vn). For example,

EfznuT
n g=0. Thus, while we seek to separate the global and jitter

parameters as well as corresponding latent variables, the E step is

facilitated by their concatenation.

In the ‘M’ step, one finds new values for q that maximize the

expected log likelihood of the joint distribution of the data and the

latent variables under q(vn). That is, we want to find hnew that

maximizes

L~Eflog ( P
n

p(xn,vnDh))g

~
X

n

Eflog (p(xnDvn,h))gzEflog (p(vnDh))g
ð13Þ

Using the standard log likelihood function of a multivariate

Gaussian distribution, along with our definition of p(xnDvn,h) as a

Gaussian with mean Avn and covariance matrix Y,

X
n

log (p(xnDvn,h))~{
N

2
log (2p){

N

2
log ( det Y)

{
1

2

X
n

(xn{Avn)T Y{1(xn{Avn)

ð14Þ

Conditioned solely on the parameters h, the distribution of v is

also Gaussian with covariance matrix W. So

X
n

log (p(vnDh))~{
N

2
log (2p){

N

2
log ( det W)

{
1

2

X
n

vT
n W{1vn

ð15Þ

We seek values of W, V, and Y that maximize L. Thus, for

each variable, we take the partial derivative of L with respect to

the variable, set the derivative equal to zero and solve for the

variable. Below we will make use of the fact that taking expected

values is a linear operation, so the derivative of the expected value

is equal to the expected value of the derivative.

We begin with V, noting that the variable is contained in W so

the partial derivative only depends on the last two terms of

equation 15. Since W is simply a concatenation that includes

diagonal matrices I and V as in equation 6, we can make use of

the fact that det W~( det I)( det V)~ det V. Also,

vT
n W{1vn~zT

n znzuT
n V{1un, and we can discard the term with z

for the partial derivative. Therefore,

LL=LV~L=LV ½Ef{ N

2
log ( det V){

1

2

X
n

uT
n V{1ung�

~{
N

2
V{1z

1

2

X
n

V{1EfunuT
n gV{1

ð16Þ

which makes use of the identity L=LB½yT B{1y�~{B{1yyT B{1

when B is symmetric. Setting the derivative to zero and solving for

V we have

Vnew~
1

N

X
n

EfunuT
n g ð17Þ

This is simply the standard solution for the expected 2nd moment

of any Gaussian distribution (in this case p(vnDh)) and follows

directly from the fact that the partial derivative does not depend

on any terms in p(xnDvn,h).

To maximize L with respect to W we first note that the variable

is contained in A, so the only term that is relevant to the partial

derivative is the quadratic in equation 14, which can be rewritten

as (xn{Avn)TY{1(xn{Avn)~(WznzDun{xn)TY{1(Wznz
Dun{xn). We also make use of the identity L=LB

½(Byzw)TC(Byzw)�~2C(Byzw)yT, to give

LL=LW~Ef2Y{1(WznzDun{xn)zT
n g ð18Þ

Setting the derivative to 0 and solving for W, we have

Wnew~
X

n

xnEfzngT
{DEfunzT

n g
" # X

n

EfznzT
n g

" #{1

ð19Þ
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To maximize L with respect to Y we require the first two terms

of equation 15 and use Wnew as well as the identity used to derive

Wnew, finding:

LL=LY~Ef{ N

2
Y{1zX

n

Y{1(xn{Anewvn)(xn{Anewvn)T Y{1g
ð20Þ

where Anew~½WnewD�.
Setting the expected value of the partial derivative to zero and

solving for Y:

Ynew~

diag ~SSz
1

N

X
n

AnewE vnvT
n

� �
(Anew)T{2AnewxnE vT

n

� �( )
ð21Þ

where we have used ~SS~
1

N

X
n

xnxT
n and ‘‘diag’’ is the operation

that creates a diagonal matrix by setting all off-diagonal elements

to zero.

Model Implementation
We implemented the model with custom code written for

Matlab (Mathworks, Natick, MA). Like all ‘‘hill-climbing’’

algorithms, EM is subject to getting stuck in a local maximum.

Therefore, for each optimization we ran EM 100 times starting

from different sets of initial parameter values, chosen from a

uniform distribution ranging from zero to a maximum value

determined by the variability of the corresponding interval. For

the global weight Wk initial values ranged from 0 to the standard

deviation of xk. Initial values of the independent variance for

interval k ranged from 0 to the sample variance of that interval.

Since a jitter parameters are not associated with unique intervals

and overall contribute twice as much variance to intervals as other

parameters, initial values for the jitter variances ranged from 0 to

half of average interval variance. For each set of initial conditions,

we stopped the algorithm when it satisfied the relatively loose

convergence criterion that the log-likelihood of the data given the

parameters (L) increase by v0:1% over a given iteration. Here,

L~
P

n log (p(xnDh)), which is a Gaussian with a mean of 0 and

covariance S. Using the standard formula for the likelihood

function of a Gaussian and the fact that ~SS~
1

N

X
n

xnxT
n , it is

easily verified that

L~{N=2½D log (2p)z log ( det ~SS)zTr((~SSS){1)� ð22Þ

After running the algorithm from 100 initial conditions we

picked the 5 parameter sets with the highest log-likelihoods and

continued running the algorithm on those parameters until the

global and timing jitter parameters changed by v0:01% from the

previous iteration. We omitted independent variability because we

expected that parameter set to converge more quickly; we have

verified that assumption and note that there is no significant

difference in parameter estimates or error in Monte Carlo

simulations when independent parameters are directly required

to converge in the code. After parameters converged, we then

picked the parameter set associated with the highest log-likelihood

under that criterion. Across song data and Monte Carlo

simulations the algorithm never failed to converge within a

10,000 iteration limit specified in the computer code. The number

of iterations required to meet the looser convergence criterion

typically ranged from *50{150, while for the stricter criterion

the range was *300{3000 with the large majority being v1000.

Model fit evaluation. Model fits were evaluated using the

standardized Root Mean Squared Residual (SRMR) between the

data and model correlation matrices [24]. We let the residual

correlation Rjk for time intervals j and k equal the difference

between Pearson’s correlation coefficient for j and k determined

from the data, minus the covariance of these intervals predicted by

the modeled normalized by the standard deviations in the data (sj

and sk):

Rjk~
~SSjk

sjsk

{
Sjk

sjsk

ð23Þ

SRMR is just the root mean square average of Rjk, where we

only consider values with j§k since R is symmetric:

SRMR~½(
X
j§k

R2
jk)=(K(Kz1)=2))�

1
2 ð24Þ

Additional global factors. Initially, all model fits were

performed with only 1 global timing factor, i:e: z is one

dimensional. However, the song data yielded a few SRMR values

that we considered relatively large, and a qualitative examination

suggested that significant structure in the off-diagonal elements of

the data covariance matrix was not being captured by the model.

We thus considered additional global timing factors by increasing

the number of dimensions (Q) in z. Here, each dimension of z
remains unit-Gaussian and is independent of the other dimensions,

so the expected covariance of z is the Q|Q identity matrix. The

derivation of the EM algorithm is unchanged; W is simply a K|Q
dimensional matrix rather than a K|1 dimensional column

vector.

To determine the optimal number of global factors per bird, we

ran the entire EM algorithm (including 100 initial conditions) for

each value of Q ranging from 1–4. We then computed the

Bayesian Information Criterion (BIC) [43], and chose the

dimensionality associated with the lowest BIC. Specifically, we

calculated BIC as {2LzM log (N) where L is the log-likelihood

defined in equation 22, M is the total number of model

parameters ~(Qz2)K{1 and N is the number of samples as

before.

For a number of birds the BIC analysis indicated that w1 global

timing factor provided the best fit to the data. However, the

columns of W, and hence the global factor weights are not

uniquely specified by the algorithm: multiple estimates of W can

yield the same global covariance matrix WWT. This interpretive

difficulty is common in factor analysis and is typically addressed

using various transformations, called factor rotations, that are

based on a priori assumptions about the relationship among latent

variables. Here, we consider an orthonormal transformation (U) in

latent variable space. In this new basis, the transformation from

latent to observable space is given by the matrix V~WU, so

VVT~WUUTWT~WWT.

We chose a transformation U such that all the global variability

in total sequence length was captured by the first dimension in

latent variable space. For any latent vector y, the global

contribution to total sequence length can be determined by taking

the inner product of the image of y under W with the D
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dimensional column vector of ones ½1,1,1:::�T, which we designate

as 1, i.e. global sequence length is 1TWy. Thus, all global variation

in sequence length is determined by variation in the direction of

the unit-length latent vector

y1~WT1=EWT1E ð25Þ

Importantly, any other direction yr in latent variable space that

is orthogonal to y1 will yield no variation in global sequence

length: by definition of y1, this is equal to EWT1EyT
1 yr~0.

Therefore, a rotation matrix U whose first column is given by y1

yields a transformation where all global sequence length variation

is confined to the first factor, and the first column of V should be

the image of y1 under the transformation W:

V1~Wy1~WWT1=EWT1E.

For Q~2 global factors, we need only to complete the basis by

setting the second column of U to be a unit vector in the unique

direction perpendicular to y1. However, for the one bird with

Q~3, there were an infinite number of solutions since there is no

unique orthonormal basis to the remaining w1 dimensional latent

space, so we sought a more general solution. Thus, to fill out the

remaining columns of V, we subtracted off the variations in the

direction of V1 by calculating the covariance matrix

WWT{V1VT
1 . We then performed a principal components

analysis on this covariance matrix by computing L, the

(Q{1)|(Q{1) diagonal matrix of non-zero eigenvalues, and

P, the K|(Q{1) matrix of associated eigenvectors. Then we set

V~ V1 Vr½ � ð26Þ

where

Vr~PL1=2 ð27Þ

By convention we can sort the columns of Vr from largest to

smallest eigenvalue. Thus, when comparing the 2nd columns of Vr

across birds we are effectively choosing the dimensions that

maximize the sum of the global data variances that remain after

subtracting out global sequence length variability. Note that by

construction, VrV
T
r ~WWT{V1VT

1 , ensuring that VVT~WWT.

Song Data
We used song data from 11 adult zebra finch males .400 days-

post hatch. All care and housing was approved by the institutional

animal care and use committee at the University of Maryland,

College Park. Our basic procedure for collecting and extracting

song data was based on custom code written in Matlab and has

been previously reported in [14,15]; we provide a brief description

below.

Recordings were made from sound isolation chambers (Indus-

trial Acoustics, Bronx, NY), which contained two cages separated

by 18 cm and two directional microphones (Pro 45; Audio-

Technica, Stow, Ohio). Signals were digitized at 24,414.1 Hz, and

ongoing data were selected using a circular buffer and a sliding

window amplitude algorithm. ‘‘Sound clips’’ separated by

,200 msec were included in the same ‘‘recording’’ and clip onset

times were indicated by filling the gaps between clips with zeros.

For each bird, we gathered an initial random sample of 1000

recordings .2 sec long and had maximum power from the side on

which the target bird was housed. We analyzed recordings using

the log-amplitude of the fast-Fourier transform (FFT) with a 256-

point (10.49 msec) window moved forward in 128-point steps and

excluded frequencies outside the 1.7–9 kHz range from all

subsequent analysis because song structure is less reliable outside

that range. We then used an automated template-matching

algorithm [14] to identify individual song syllables, and selected

out recordings which contained repeated sequences of the most

commonly produced motif. Our final sample of songs ranged from

215–885 per bird.

After we identified syllables and syllable sequences we measured

the onset and offset times of each syllable with a more fine-grained

algorithm: First, we recalculated spectrograms from the original

signal using FFTs with a 128-point window slid forward in 4-point

steps, yielding 0:16 msec time bins. Although previous research

[14,15] had been based on log-amplitudes, for this study we used

raw amplitudes, which we have found to be more reliable for

timing measurements. We then computed time-derivative spec-

trograms as differences in amplitude in time-adjacent bins. We

next smoothed in time the resulting spectrograms with a 64-point

Gaussian window that had a 25.6-point (,5 msec) standard

deviation. This windowing was found to be a good compromise

between the competing demands of averaging out extraneous

peaks and troughs in the time-derivative vs. preserving the peaks

and troughs that we had defined as syllable onsets and offsets.

Finally, for each syllable we constructed a new template based

on the time-derivative spectrogram and used a novel dynamic

time-warping algorithm to determine the precise times at which

onsets and offsets occurred in individual recordings of those

syllables; see [14] especially for more detail on this process.

Onsets/offsets were generally identified as salient time-derivative

peaks/troughs in the template spectrogram; these correspond to

inflection points in the rise and fall of energy at the beginning and

ends of syllables.

Supporting Information

Matlab S1 A.zip file containing Matlab functions for model

implementation. Also contains a.txt file giving an overview of the

functions.
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