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Abstract: The formation of gels through the bundling of semi-flexible polymer chains into fiber
networks is ubiquitous in diverse manufactured and natural materials, and, accordingly, we perform
exploratory molecular dynamics simulations of a coarse-grained model of semi-flexible polymers in
a solution with attractive lateral interchain interactions to understand essential features of this type
of gel formation. After showing that our model gives rise to fibrous gels resembling real gels of this
kind, we investigate how the extent of fiber bundling influences the “melting” temperature, Tm, and
the emergent rigidification of model bundled fibers having a fixed number of chains, N, within them.
Based on our preliminary observations, we suggest the fiber size is kinetically selected by a reduced
thermodynamic driving force and a slowing of the dynamics within the fibers associated with their
progressive rigidification with the inclusion of an increasing number of chains in the bundle.
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1. Introduction

Gels are the epitome of soft matter and these materials arise from a diverse range of polymeric
and nanoparticle substituent materials [1]. However, the engineering of gels to fully exploit their
properties for numerous industrial [2] and medical applications [3,4] requires a better understanding
of the process of gel formation [5], factors that influence the gel stability, and the relations between gel
structures and the unique rheological properties of this class of materials.

Gelation encompasses diverse processes in which polymers and particles mutually interact to
become localized in space, leading to the emergence of macroscopic rigidity [6]. This amorphous
solidification process can occur both as an equilibrium or a non-equilibrium process, and both as
a thermally reversible or irreversible process. In accordance, there are diverse types of gels [7].
The present work focuses on a type of gelation that arises rather ubiquitously in suspensions
of semi-flexible polymers with mutual attractive interpolymer interactions [6]. Such systems
characteristically exhibit a tendency to bundle and to form networks due to bundle branching [6],
although branching is not necessary for gelation if the fibers are very long [8]. The diameter of these
bundles, Db, is often rather uniform in many molecular fiber-forming systems where the fiber diameter
typically ranges from a few nm to a few tens of nm [9–13]. In the present work, we introduce a
minimal computational model to explore network formation in semi-flexible polymer suspensions
with attractive intermolecular interactions. First, we show by molecular dynamics simulations that
our model gives rise to a network formation with a morphology similar to that found in experimental
observations on this type of gel, including the tendency to form fibers with a near-uniform diameter,
and which is naturally influenced by the stiffness of the isolated semi-flexible polymers and the
strength of the mutual interaction between the polymer chains.
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To gain insight into the thermal stability of this type of gel, which appears to “melt” upon heating,
we consider the melting of ideal fiber bundles composed of N polymer chains (see Figure 1). The
melting temperature, Tm, of these bundles initially increases sharply with N, reflecting the increased
interchain interaction strength between the chains, but Tm saturates to a finite value for large N.
It occurred to us that this phenomenon might be related the increase of the bending stiffness (κ), of
the bundle with increasing N, and we confirmed this hypothesis in our computational model where
we found that κ likewise first increases strongly with N, but then saturates to a finite value of large N.
Moreover, we found that the magnitude of N at which this saturation occurs is comparable to the
average number of chains, N = 10± 3, in a typical network fiber, formed after a thermal quench of
the semi-flexible polymer solution. Based on these observations, we suggest that the average fiber
diameter, Db, is controlled by two effects: a progressive decrease in the enthalpy of binding per chain
within the fiber bundles with increasing N, and a concomitant increase in the fiber stiffness with
increasing N. Together, these thermodynamic and dynamic fiber characteristics inhibit the unlimited
the growth of diameter fibers. We can get an order of magnitude estimate of these fibers by considering
typical molecular dimensions of assembling molecules. The diameter of the cellulose molecule is
about 1.5 nm or somewhat larger if a hydration layer is included, and fiber former proteins, such as
actin, typically have a diameter of about 5 nm to 6 nm. If we then take the molecular diameter of our
individual chain in our simulation to be σ ≈ 2 nm to 6 nm, then the expected bundle diameter, Db, is
on the order of Db ∼ O(10 nm).

a)

c)b)

Individual semi-flexible chain

Bundle formed by 8 chains

Network of bundles

Figure 1. (a) Representative configuration of semi-flexible chain formed by L = 50 σ connected beads;
(b) Twisted bundle of eight chains with L = 100 σ; (c) Representative configuration of network of
bundles formed by 50 initially dispersed chains with length L = 100 σ.

2. Results and Discussion

2.1. Calculation of Bundle Characteristic Rigidity

To explore how the characteristic rigidity of the bundles depends on chain structural parameters
and the number of chains within the chain bundles, we perform a systematic study of the bundle
persistence length, lp, of model bundles containing a fixed number of chains, N (see Figure 1b).
In particular, we vary the chain length, L, the chain intrinsic rigidity, kbend, and chain cohesive
interaction strength, ε.
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2.1.1. Effect of Individual Chain Stiffness on Fiber Bundle Stiffness

We start by calculating the persistence length of an individual isolated chain, lpc, by calculating
the average projection of the chain end-to-end distance, Re, on the first bond of the chain, l1 [14,15],

lpc = 〈Re · l1〉/〈l1〉. (1)

We calculate the persistence length of a bundle formed by N chains, lp(N), by computing by the
average value of the persistence length,〈

lp
〉
= (lp1 + lp2 + lp3 + ... + lpN)/N. (2)

Here, lpi represents the persistence length of the i-chain forming the bundle. Additionally, we
define the relative bundle persistence length, lpr(N), by the ratio

lpr(N) =
〈
lp
〉

/lpc (3)

2.1.2. Effect of the Chain Stiffness on the Bundle Rigidity

Figure 2 shows the bundle persistence length lpr relative to the individual chains for bundles with
a fixed length L = 100 σ, and T = 0.1 ε, as a function of the chain bending energy, kbend. This ratio
quantifies the extent of rigidification that occurs from fiber formation. The symbols in Figure 2 are
numerical estimates and the lines are fits to the empirical crossover relation,

lpr =
l∞
pr N2

l∞
pr − 1 + N2 , (4)

where lpr is the plateau value of lpr when N is large. The initial N2 scaling for small N means that lpr

initially increases linearly with the square of the cross-sectional diameter of the fiber [16], the scaling
expected from the continuum theory of uniform fibers (see our discussion below). In the inset of
Figure 2, we consider the influence of the bending energy of the chains on the stiffness of the resulting
fibers when N is fixed. We see that the relative value of the persistence length, l∞

pr, decreases when
kbend is increased, and that the degree of stiffness increases monotonically with N, the effect saturating
at large N.
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Figure 2. The relative bundle persistence length, lpr, as a function of the number of chains in the
bundle, N. The chain bending parameter, kbend, is varied. The chain length, L = 100 σ, and T = 0.1 ε

are fixed. The inset shows the plateau values of l∞
pr for large N, obtained by fitting the data to

Equation (4). We observe that l∞
pr decreases when kbend increases, so that the increase in stiffness upon

binding is smaller than the increase in stiffness in the individual chains.
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2.1.3. Effect of the Chain Length L on Fiber Bundle Rigidity

Figure 3 shows lpr for bundles formed by N chains having fixed length (L = 100 σ), at a fixed
temperature (T = 0.1 ε), and a fixed chain bending stiffness (kbend = 10.0 ε). The symbols show
simulation estimates of lp, and the lines are fits of this data to Equation (4). Increasing the chain length
also increases lp and the chain rigidity, as observed in our simulations [15], and experiments [17] on
duplex DNA and tubulin [18]. We expect this effect to ultimately saturate for large L, but this expected
“long fiber” regime has not been reached in our simulations. The dotted lines in the main part of
Figure 3 are again shown as fits to Equation (4).
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Figure 3. The relative bundle persistence length, lpr, as a function of the number of chains in the
bundle N, where L = 100 σ and T = 0.1 ε. Here, the chain length (L = 100 σ) and temperature
(T = 0.1 ε) are fixed.

2.1.4. Effect of the Chain Attractive Interaction on the Bundle Rigidity

To study the influence of the interchain interaction strength ε on the bundle persistence length,
lp, we vary ε in the range, (0.8 ≤ ε ≤ 1.8). Increasing ε initially increases lp, and thus the bundle
rigidity, but the effect saturates when ε becomes large. We likewise found that increasing the interaction
strength between model DNA chains increases the persistence length of duplex DNA [15], where the
interaction-induced rigidification saturates for large ε, as in our fiber bundle data shown in Figure 4.
In the context of duplex DNA, this effect was interpreted in terms of a coupling of the elastic distortion
upon binding and associated enhanced cohesive interaction between the chains, and we suggest the
same phenomenon is operative in our fiber networks. The intermolecular interaction strength acting
between the polymer chains within the fibers is evidently an important parameter in this type of
gel, as further indicated in recent experimental studies of fiber-forming gels [19]. The strength of the
cohesive interaction has also been shown to correlate strongly with the occurrence of fiber network gel
formation [10,20].
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Figure 4. The normalized bundle persistence length, lpr, as a function of attractive interaction strength,
ε, for bundles in which N = 4, L = 100 σ, and kben = 7.0 ε at T = 0.1 ε.

2.2. Melting of Model Fiber Bundles

We next explore bundle thermodynamic stability by increasing the temperature of thermal
equilibrated chain bundles in the temperature range 0.01 ≤ T ≤ 1.5. To achieve this characterization,
we compute the normalized bonding energy, Ebond = Ubond(T)/Np, as a function of T for bundles
with a fixed number of chains N within the bundle, and results for Ebond are shown in Figure 5a.
Unexpectedly, we found the bundles first exhibit a “melting” transition into globular structures before
separating into individual strands at higher temperatures. The location of this melting transition can
be determined by calculating the first derivative of Ebond(T) with respect to T, illustrated in the inset
of Figure 5a. We define Tm as the temperature at which the fiber bundle transforms into a globule.
Figure 5b shows our Tm estimates as a function of N. We observe that Tm at first increases with N, and
then saturates to a constant value, an evidently repeating behavior.
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Figure 5. (a) Normalized bonded energy Ebond(T) = Ubond(T)/Np for bundles formed by different
number of chains N. The inset shows the first derivative of −Ebond with respect to T as a function
of T. We identify the melting bundle–globule transition temperature, Tm, as the peak position of the
fitted function; (b) shows Tm as a function of N for chains with fixed length (L = 100 σ) and fixed
kbend = 7.0 ε. The insets are representative of an eight-chain bundle at a temperature above and
below Tm.
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Unsurprisingly, larger bundles melt at a higher temperature, as normally found for nanocrystals,
but there is a limit to this effect. On the other hand, the inset shows that the differential change of
energy per chain upon binding, dEbond(T)/dT, at Tm decreases sharply with N. In Figure 6, we plot
the peak values of this energy derivative as a function of the number of chains in the bundle, where we
see that this quantity approaches 0 for N ≈ 15. The inset to Figure 6 also shows the overall change of
the chain enthalpy at the transition, relative to the bundle energy at low temperature. This measure of
the enthalpy change upon melting evidently becomes minimized for N at about N ≈ 8. The change of
enthalpy upon bundling per chain rapidly decreases for N ∼ O(10), a scale consistent with the fiber
bundle average size found in the non-equilibrium fiber networks (see Section 4.2).
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Figure 6. The peak value of the first derivative of the bundle energy at the melting transition
temperature, Tm, as a function of the number chains in the bundle, N. The inset shows the relative
change in energy, ∆Ebond = |Ebond(T = 0)− Ebond(T = Tm)|, which exhibits a minimum near N ≈ 8.
The energetic driving force per chain evidently rapidly decreases with N; the enthalpy change upon
melting is minimized for N ≈ 8, a value on the order of the observed average number of chains in the
non-equilibrium fiber network bundles (see Figure 1c).

We next offer a tentative interpretation of the origin of the fixed average fiber diameter. Apparently,
the rate of growth of the fibers slows down abruptly after some point since the enthalpy change per
chain upon adding polymers the fiber becomes progressively small with increasing N, resulting in
metastable fibers having a well-defined average diameter. The twisting on the chains in the bundles
appear to play a significant role in this general trend. The more flexible the fiber, the more readily the
chains within it can twist to achieve more interchain contacts, thus lowering the enthalpy per chain.
At some value of N, the fiber becomes so rigid that the chains within the fiber lose their capacity to twist
so that this mechanism of lowering the energy per chain is attenuated [21]. Claessens et al. [22] and
and Bruss and Grayson [23] have likewise recently suggested that an interplay between fiber twisting
and lateral intermolecular interactions regulates bundle diameter in fiber networks. There have also
been interesting arguments recently suggesting that the diameter of self-assembled nanofibers arises
from packing frustration [24,25]. We do not see how these mechanisms of fiber formation apply to our
fiber networks. At the same time, we appreciate that multiple distinct mechanisms might give rise to
fibers having a nearly fixed diameter.

2.3. Temperature Dependence of Bundle Persistence Length

Figure 7 shows the T dependence of the bundle persistence length lp for N = (2, 3, 4, 8, 10, 16, 32)
chains within the bundles. Here the chains have fixed length and chain stiffness, L = 100 σ and
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kbend = 7.0 ε, respectively. The T dependence of the bundle persistence length (lp(N)) is evidently
dominated by the fiber melting process so that its T variation is quite unlike the predictions of the
worm-like chain model. In particular, we see that increasing N leads to an increase of lp(N, T) that
progressively weakens with increasing N, while an increase of fiber rigidity increases the persistence
length without limit in the worm-like chain mode, particularly since lp for a continuum fiber scales as
lp ∼ κ/T, where κ is the fiber-bending stiffness. It is well known that κ scales as the bending moment,
I, times the Young’s modulus, Y, of the fiber, κ, so that κ should scale as κ0 ∼ N2, where κ0 is the
fiber stiffness of an individual chain within the fiber [26]. This scaling results from the scaling of a
circular fiber with a radius r, as ∼ r4 [26] since the fiber and the radius scale as r ∼ N1/2 when N
becomes large.
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Figure 7. (a) The bundle persistence length, lp, as a function of T for bundles formed by N fibers
indicated in the figure legend. The inset shows lp in the low temperature regime; (b,c) lp0 and
A, respectively. Both parameters were obtained by fitting lp in the low temperature regime to a
linear relationship.

The T dependence of lp shown in Figure 7a can be described by the phenomenological expression
for the Young’s modulus of the fiber, Y, that is widely applicable to ordinary crystalline materials [27],

lp(N, T) = lp0 − A T exp (−TD /T) , (5)

where lp0 is the persistence length value in the limit of low temperature, lp0(T → 0), and A and TD are
N-dependent fitting parameters, given a theoretical interpretation in terms of the Gruneisen parameter
(a measure of crystal anhamonicity) and the Debye temperature, respectively, by Anderson [28].
To obtain lp0 and A with reasonable confidence, we consider the low temperature regime shown
as an inset in Figure 7b. In this low-T regime, it is clear that the dominant terms in Equation (5),
lp(N, T) = lp0(N) − A T provide a good approximation. Figure 7b shows the values of lp0(N)

estimated from fits in the low-T regime; we see that the fiber persistence length in the low temperature
limit follows the same trend as in Figure 2, where T was fixed to T = 0.1 ε. As noted above, when N
is small, we find a scaling consistent with the continuum theory of worm-like fibers, lp0 ∼ N2, but
this stiffening effect with increasing N ultimately saturates, i.e., N ∼ O(10). Figure 7c shows A as a
function of N, where A saturates for N ∼ O(10). In this figure, we note that A ∼ N−2, that is a trend
completely contrary to expectations of the worm-like chain model where A is predicted to increase
with fiber rigidity. A diminished anharmonic interaction strength provides a natural interpretation
of the decrease of A with N. The T dependence of lp(N, T) decreases with increasing N, an effect
associated with an upward shift in the melting temperature with increasing N. Approximate N2

scaling has been observed in actin bundles [29] while lp for collagen fibers has shown a regime in
which lp is insensitive to fiber diameter [30], so there seems to be some fragmentary experimental
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evidence supporting the trend indicated in Figure 7. Further experimental and computational studies
are warranted, however, to better understand this counter-intuitive phenomenon.

3. Conclusions

We have investigated the formation of fiber networks from molecular dynamics simulations of
initially dispersed semi-flexible chains with attractive interchain interactions that favors the formation
of fibrous bundles of polymeric chains. After verifying that our model gives rise to the formation
of fibrous networks composed of bundled polymers with a relatively uniform diameter, along with
branching defects, we then sought to understand the emergent rigidification and thermodynamic
stability of model fibers of N chains and the factors that lead to a saturation of the fiber diameter in
this type of network formation.

Our exploratory simulations indicate that the relative persistence length lpr saturates to a constant
value of N ≈ 8 with increasing numbers of chains within the bundle having a fixed interchain
interaction strength, ε, and length, L. This saturation value of N is reasonably consistent with the N
value found in the fibers formed in the formation of a non-equilibrium fibrous networks, N ∼ O(10)
and this phenomenon is consistent with the order of magnitude of the diameter of fibers observed
experimentally. We also find that increasing the strength of the cohesive interaction parameter, ε,
also increases the fiber bundle persistence length somewhat, but this increase likewise saturates for a
sufficiently large ε. Chain rigidity and intermolecular cohesive interaction strength are evidently key
physical parameters governing chain bundling.

The melting of the fiber bundles is more complicated than we initially expected. We find
that bundle persistence length drops sharply as the fibers start to unbind, but the lateral attractive
interactions between the semi-flexible polymers at first lead to the formation of a droplet-like structures
rather than dispersed polymers, although at very high T the chains ultimately dissociate into solution.
The melting temperature shows a tendency to saturate for a large number of chains N within the
bundles N ∼ O(100) so that there is no obvious link between the saturation in lp with increasing N,
discussed above, and the fiber melting temperature, Tm. On the other hand, we can see that changes
in enthalpy change per chain slow down rapidly with increasing N, leading to a decrease of the
thermodynamic driving force for more chains to be incorporated into the bundles. We tentatively
suggest that this thermodynamic effect leads to a kinetic bottleneck that selects out bundles with
a definite average diameter in fiber networks formed under non-equilibrium temperature-quench
conditions. We also observe that the chain persistence length lp saturates for a similar N value,
i.e., N ≈ 8. Based on our previous experience of melting DNA [15], where a saturation in lp with
inter-base interaction strength ε and the chain length was observed, we propose that the tendency of
the fibers to exhibit a limited diameter derives both from a sharp drop in the enthalpy per chain and
progressive rigidification upon forming bundles. There are both thermodynamic and kinetic factors
leading to a kinetic bottleneck that results in fiber-diameter formation being self-limiting in the degree
of chain association.

4. Materials and Methods

4.1. Computational Model

We utilize molecular dynamics (MD) simulations of a semi-flexible chain coarse-grained model
to explore the chain bundling and networks formed by semi-flexible chains, as well as the bundle
thermodynamic stability upon varying temperature. In this model, we represent each semi-flexible
chain as a set of connected “beads” (gray spheres in Figure 1a [31]). The soft core–excluded volume
interaction among all the beads is given by the Weeks–Chandler–Andersen potential (UWCA),

UWCA = ULJ (r)−ULJ (rc)− (r− rc)
dULJ (r− rc)

dr

∣∣∣∣
rc

, (6)
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where ULJ is the 12-6 Lennard-Jones potential, and ε and σ are the LJ energy and length parameters,
respectively. The distance between two beads is given by r, and rc is a cutoff distance. All the beads
interact attractively since rc = 2.5 σ. The “beads” of the polymer are connected by a finitely extensible,
non-linear elastic (FENE) anharmonic spring potential,

UFENE (r) = −
kFR2

0
2

ln

[
1−

(
r− rs

R0

)2
]

. (7)

where kF = 30 ε/σ2 and R0 = 1.5 σ. We control chain stiffness by using a three-body angular potential,

Ubend(θ) = kbend(1 + cos θ), (8)

where the potential strength kbend can take the values kbend = (4, 5, 7, 10, 20, 40, 60, 80) ε. We consider
chains with chain lengths L = (100, 120, 150, 160) σ. To study thermodynamic stability of the bundles,
we generate bundles formed by N = (1, 2, 3, 4, 5, 8, 10, 16, 32) semi-flexible chains. Figure 1b shows a
representative image of a bundle formed by eight chains. For the rest of the paper, Np refers to the
total number of beads in the bundle, so that Np = NL.

All our simulations are performed in a canonical ensemble (NpVT) with temperature T in the
range (0.1 ≤ T ≤ 1.5) ε/kB, where kB is the Boltzmann constant, and for simplicity, we choose reduced
units, where kB = 1.0, T and energy are given in ε units, and length is given in units of σ. We control
T by using the Nosé–Hoover method [32,33]. To study the bundle stability, we run MD simulations
for periods of ≥ 108 time steps to ensure all systems have reached thermal equilibrium, or at least
achieving a steady state condition whose properties are not aging at a detectable rate. We then compute
average properties for three randomly initiated sets of 2× 106 thermal equilibrated configurations.
All our MD simulations were performed using the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) [34] using periodic boundary conditions and we render the images of Figure 1
using the Visual Molecular Dynamics (VMD) program [35].

4.2. Exploratory Study of the Formation of Fiber Networks

To study the average diameter of the bundles, Db, formed in the network, we consider model chain
solutions with 50 chains, where each chain is formed by L = 100 σ, and kbend = 0.7 ε, corresponding to
systems with the volume fraction φ = 2.61× 10−3. We quench the 12 copies of randomly generated
systems using three values of cooling rate of (10−7, 10−5, 10−4) (1/time steps) for temperatures in the
range of (0.1 ≤ T ≤ 2) ε. Figure 1c shows a rendered image of a network formed using the protocol
described above. We found that the average bundle diameter, Db, derived from our model of fiber
assembly lies in a broad range, (7 ≤ Db ≤ 13) σ. Smaller fibrils apparently arise from “tie-chains”
that span distinct fiber bundles, creating branch points in the network. The conformations of these
tie chain bundles have a rather distorted shape and their diameters are normally smaller than in the
main bundles. In the next sections, we attempt to understand the origin of the nearly “fixed” average
diameter, Db, of the bundles in the network and the thermodynamic stability of the fiber network.
Animations of the process fiber network formation are given in the Supplementary Materials.

Supplementary Materials: The Supplementary Materials are available online at http://www.mdpi.com/2310-
2861/4/2/27/s1.
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