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ABSTRACT
The study of cancer prognosis serves as an important part of cancer research. Large-scale cancer studies
have identified numerous genes and microRNAs (miRNAs) associated with prognosis. These informative
genes and miRNAs represent potential biomarkers to predict survival and to elucidate the molecular
mechanism of tumour progression. MiRNAs and transcription factors (TFs) can work cooperatively as
essential mediators of gene expression, and their dysregulation affects cancer prognosis. A panoramic
view of cancer prognosis at the system level, considering the co-regulation roles of miRNA and TF,
remains elusive. Here, we establish 12 prognosis-related miRNA-TF co-regulatory networks. The char-
acteristics of prognostic target genes and their regulators in the network are depicted. Although the
target genes and co-regulatory patterns exhibit cancer-specific properties, some miRNAs and TFs are
highly conserved across cancers. We illustrate and interpret the roles of these conserved regulators by
building a model associated with cancer hallmarks, functional enrichment analysis, network community
detection, and exhaustive literature research. The elaborated system-level prognostic miRNA-TF co-
regulation landscape, including the highlighted roles of conserved regulators, provides a novel and
powerful insights into further biological and medical discoveries.
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Introduction

Prognostic information is important for clinicians treating
patients with cancer; it may inform decisions about reason-
able medical interventions and strategies for precision medi-
cine [1,2]. Owing to recent advances in next-generation
sequencing technology and its emerging application in various
clinical settings, a number of signatures associated with sur-
vival outcomes have been extensively investigated. These mar-
kers, either genetic or epigenetic, carry various indicative
features and clues for further biological and clinical discov-
eries [3,4].

The regulation of gene expression controls developmental,
physiological, and pathophysiological processes in eukaryotic
organisms. Associated dysfunction is tightly related to tumor-
igenesis and progression [5–7]. In the fine-tuned modulation
at multiple levels, transcription factors (TFs) and microRNAs
(miRNAs) have been recognized to play important roles at the
transcriptional and post-transcriptional levels, respectively.
The transcriptional program determines cancer phenotype
and prognosis by shaping the gene signature in cancer cells
[8]. Detectable dysregulated miRNAs in tumour biopsies have
readily emerged as promising diagnostic, prognostic and ther-
apeutic indicators [9–11]. In particular, increasing evidence
suggests the existence of cooperation and crosstalk between
miRNAs and TFs, mainly to buffer gene expression and/or
adjust signalling [12]. Specifically, miRNAs and TFs can coor-
dinatively regulate shared target genes in feed-forward loops

(FFLs) [13]. Indeed, as recent studies have shown, perturba-
tions of the interwoven regulatory system involving miRNAs
and TFs may trigger global alterations in gene expression and
affect cancer prognosis (Fig. S1). For example, in colorectal
cancer, Mullany et al. found the expression of TFs and their
related miRNAs together influence survival [14] and Wang
et al. pointed out abnormal expression of two miRNAs (hsa-
mir-25 and hsa-mir-31), one TF (BRCA1), and two other
genes (ADAMTSL3 and AXIN1) affected patient survival
[15]. Fulciniti et al. exhibited the existence of a novel miRNA-
TF FFL with a critical role in growth and survival in multiple
myeloma [16]. Kong et al. identified an interwoven network
of miRNAs and TFs that regulates CD147, a known risk factor
for breast cancer associated with poor prognosis in breast
cancer patients [17].

The biological network is an integrated and system-level
lens through which researchers may uncover the mechanism
underlying disease [18]. At the network level, miRNA-TF
FFLs are major network motifs (i.e., interconnection patterns
that occur more often by chance in biological networks),
forming the basic building blocks of the miRNA-TF co-
regulatory network [19–21]. Despite substantial efforts to
identify the prognostic signatures and potential roles of FFLs
in prognosis, an integrative and system-level analysis remains
lacking. Hence, we seek to investigate prognostic signatures
and the regulatory mechanism behind them in the context of
the miRNA-TF co-regulatory network.
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In this study, we discerned prognostic FFLs and constructed
12 prognosis-related miRNA-TF co-regulatory networks by
integrating cancer genomics data, prognostic signature find-
ings, and interactome data. The characteristics and features of
the co-regulatory network are summarized. Through a detailed
analysis, we found some miRNAs and TFs are common and
conserved during co-regulation of the prognostic network.
After considering the conserved regulators, we designed
a hierarchical model associated with cancer hallmarks to elu-
cidate the regulatory mechanism affecting cancer prognosis.
Detailed enrichment analysis revealed a common theme
among prognostic signatures in the co-regulatory network.
Several potential prognostic modules were identified inside
the miRNA-TF co-regulatory network. A comprehensive sur-
vey of the conserved regulators, including literature consulta-
tion, was performed to validate and highlight their pan-cancer
prognostic functionality. The investigation of prognostic
miRNA-TF co-regulatory networks provides novel insight
into cancer outcomes, elucidates the commonality among reg-
ulatory mechanisms, and offers implications for clinical bio-
markers and the study of therapeutics.

Results

Construction of prognostic miRNA-TF co-regulatory
networks for human cancers

We developed a five-step pipeline based on the framework in
our previous studies [22] in order to build prognosis-related
miRNA-TF co-regulatory networks across cancers types.

First, we obtained prognostic genes and miRNAs from the
Human Pathology Atlas (HPA) and OncomiR, respectively
(Fig. 1A). We then used the information provided by 10 estab-
lished regulatory databases (Fig. 1B). In total, 72,801 TF-gene,
178,689 TF-miRNA, 305,858 miRNA-gene interactions were
collected. We identified prognostic regulatory interactions
whose target nodes or regulator nodes are known to be relevant
to prognosis and formed a combinatorial network by merging
all interaction types (Fig. 1C). Using the network motif detec-
tion algorithm, we identified three types of FFLs (TF-FFLs,
miRNA-FFLs, and composite-FFLs) in the combinatorial net-
work (Fig. 1D). We then constructed the co-regulatory net-
work, which comprises three types of FFLs (Dataset S1) and
incorporated expression data from The Cancer Genome Atlas
(TCGA) to discern more precise FFL patterns in each network
(Fig. 1E) (Dataset S2). The final information for each prog-
nosis-related network is shown in Table 1 and Figure S2.

The landscape of prognostic miRNA-TF co-regulatory
networks

To assess the topological structure of all 12 co-regulatory
networks, we examined the degree distribution of each net-
work (Table S1). The results showed that each prognosis-
related co-regulatory network followed the power-law distri-
bution, indicating that these co-regulatory networks had
scale-free characteristics, a common feature of most types
of biological networks [23].

We investigated the components of co-regulatory net-
works by examining similarities in FFLs, genes, TFs, and
miRNAs across cancer types. In order to measure the pair-
wise overlap of FFLs, genes, TFs and miRNAs across cancer
types, we used two metrics: Fisher’s p-value and the Jaccard
index (Fig. 2 and Fig. S3). Little similarity of prognostic
FFLs with genes was observed across 12 cancers, suggesting
a relatively limited number of common FFLs and genes. In
contrast, significant overlap was observed among regulators
(i.e., miRNAs and TFs) in the networks. The low conserva-
tion of target genes in the prognostic co-regulatory network
was concordant with previous studies finding that prognos-
tic genes themselves lack cross-cancer conservation [24,25],
which also led to the lack of cross-cancer conservation of
FFLs that comprise prognostic genes. However, when we
focused on miRNAs and TFs that regulate target genes,
some miRNAs and TFs played roles in multiple prognostic
co-regulatory networks. For example, ETS1 had
a regulatory role in 12 co-regulatory networks; ESR1,
MYC, and GATA2 appearing in 11 networks, respectively.
These results indicate that conserved regulators impact
non-conserved prognostic targets. Based on this FFL pat-
tern, some conserved miRNAs and TFs may influence the
cancerous and clinical outcomes for multiple cancers.

Regulators common to multiple prognostic co-regulatory
networks

To systematically investigate regulators that acted across
networks, miRNAs and TFs were grouped into two cate-
gories based on the extent to which a regulator was com-
mon across prognostic-related co-regulatory networks. We
analysed the distribution of target genes, miRNAs, and TFs
in different cancers (Fig. 3A–C). Only 0.19% of target genes
were present in >6 cancers; 3.37% miRNAs and 6.09% TFs
occurred in ≥7 cancers. We defined ‘common’ regulators
(including common miRNAs and common TFs) as
miRNAs or TFs that occurred in ≥7 cancer networks (18
TFs and 11 miRNAs). All others were considered to be
‘specific’ regulators. The 18 common TFs and 11 common
miRNAs were shown in Fig.3D–E, and the lists of prog-
nostic target genes and ‘specific regulators’ were recorded
in Supplementary datasets S3-S5.

Using this classification, we divided the regulatory elements
in each prognostic co-regulator network into two categories.
Nodes with high degree (regarded as hub nodes) are known to
play important roles in networks. We compared the degree of
common vs. specific regulators in each network (Fig. 4A). In
nine cancers, common TFs were hub nodes with significant
high degree, rather than non-common TFs. Common miRNAs
had a significant high degree in five cancers. These results
highlight the pivotal function of common regulators conserved
across prognostic co-regulatory networks. Compared to com-
mon TFs, such tendency of common miRNAs was weaker,
which may be explained by the relatively weaker regulatory
function of miRNAs.

For each co-regulatory network, we further investigated the
number of FFLs and target genes containing common regu-
lators (Fig. 4B). It is noteworthy that common regulators
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controlled broad FFLs (p-value <0.01, Wilcoxon test, paired)
and target genes (p-value <0.01, Wilcoxon test, paired) in
each network. This suggests that common regulators not
only affect multiple cancers but also govern broad targets

through FFLs in each co-regulatory network. Both of these
findings indicate that common regulators may govern and
maintain prognostic co-regulatory networks’ architecture
across cancers.

Compilation of prognostic genes and miRNAs
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Figure 1. An overview of the computational approach to build prognostic miRNA-TF co-regulatory networks in human cancers. (a) We collected prognosis-related
genes and miRNAs for 12 cancers by referring to established databases. (b) Regulatory relationships were obtained from 10 public interactome resources. (c) We
screened out prognosis-related regulatory interactions whose target nodes or regulator nodes are known to be relevant to prognosis, forming an entirely synthetic
network by merging all interaction types. (d) We then identified three types of FFLs from the combinatorial network using a network motif detection algorithm. (e)
We constructed the co-regulatory network which comprises three types of FFLs and incorporated expression data from TCGA to filter out more precise FFL patterns in
each network.
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A hierarchical model to illustrate the roles of common
regulators in cancer prognosis

Despite the daunting complexity and remarkable diversity of
neoplastic diseases, several cancer hallmarks contribute to the
development of human tumours [26,27]. Each cancer hallmark
represents the biological capability for oncogenic progress that
underlies [28] the tumour phenotype. Cancer hallmark genes
also have a tight and subtle relationship with cancer prognosis
[29]. After considering the important role of common regula-
tors in the co-regulatory network, we designed a hierarchical
model related to prognosis in order to elucidate the contribu-
tion of common regulators to the development of cancer and
the effect of prognostic genes on cancer biology (Fig. 5A).

This model lays out a hierarchy for 12 major cancers,
common regulators, the cooperative regulators of common

regulators, target prognostic genes, annotated GO terms
related to biological progress, and nine cancer hallmarks.
Common regulators (top layer), govern prognostic target
genes directly or with the help of their cooperative miRNAs/
TFs, in an FFL pattern. These prognostic genes are enriched
in specific GO (p-value <0.05, Dataset S6) and GO terms are
correlated with various cancer hallmarks, demonstrating the
vivid interaction between cancer hallmarks and clinical
outcomes.

We next enumerated the common regulators and target
genes linked to each GO term related to cancer hallmarks,
across diverse cancer types (Fig. 5B). We found that common
regulators and target prognostic genes tended to appear in
cancer hallmarks for ‘sustaining proliferative signaling’ and
for ‘tissue invasion and metastasis’. Sustaining proliferative

Table 1. Summary of FFLs in 12 prognosis-related co-regulatory networks.

Cancer TF-FFLs miRNA-FFLs Composite-FFLs TF-Gene TF-miRNA miRNA-Gene nTF nmiRNA nGene

BRAC 77 27 15 93 63 106 32 27 59
CMM 29 14 5 44 28 49 22 16 31
CXSCC 101 27 20 129 59 140 39 31 93
ENAC 542 121 96 571 285 672 93 116 394
HCC 1498 959 188 2048 589 1996 183 194 1107
HNSCC 269 51 36 271 170 294 60 63 179
OVAC 23 3 19 41 24 54 9 18 39
PAAC 487 107 61 469 346 583 101 117 307
PRAC 87 22 43 102 57 150 20 29 85
STAC 206 25 26 176 144 207 36 47 107
THYCA 149 35 25 129 131 183 52 63 77
UC 727 127 119 677 322 867 69 124 518

Figure 2. Heat map showing the Fisher’s -log (p-value) for the pairwise overlap of FFLs, genes, miRNAs and TFs between the prognostic co-regulatory networks.
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signalling plays a fundamental role in cancer. Cancer cells
display autonomous, chaotic growth because of dysregulated
growth signals. Tissue invasion and metastasis are known to

be associated with the progression of carcinoma [30,31]. Our
model suggests that the production and release of growth-
promoting signals and the invasion-metastasis cascade may

a b c

d e

Figure 3. The conserved regulators in prognostic miRNA-TF co-regulatory networks. (a-c) Occurrence of prognostic (a) genes, (b) miRNAs and (c) TFs in 12 co-
regulatory networks. (d-e) The identification of common (d) miRNAs and (e) TFs occurred in ≥7 co-regulatory networks.

Figure 4. Common regulators may govern and maintain prognostic co-regulatory networks’ architecture across cancers. (a) Common regulators tend to have a higher
degree in each network. The left plot shows the node degree comparison of common TFs vs. specific TFs, and the right plot makes a comparison of common miRNAs.
(b) Common regulators controlled broad FFLs (left panel) and target genes (right panel) in each network.
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play key driver roles, reflecting the organizing principle of
common regulators with respect to cancer prognosis.

We sought to further elucidate the biological role of common
regulators and target genes in the model. Pathway enrichment
analysis was performed for common TFs, common miRNAs,
and prognostic genes under the control of common regulators
(p-value <0.05, Fig S4 and S5). In addition to pathways related to
specific cancers, the cell cycle is the most shared enriched path-
way for common regulators and their targets. Disturbance of the
cell cycle has already been proven significant in the prognosis of
several cancers [32,33]. Furthermore, pathways that target genes
enriched, such as focal adhesion, TGF-ß and p53 may be sig-
nificant for prognosis [34–37]. While pathways such as ERBB
signalling and regulation of the actin cytoskeleton are previously

less characterized pathways in prognosis. The results of pathway
enrichment analysis may be used to identify additional regula-
tors and genes related to cancer prognosis.

miRNA-TF cooperative modules as prognostic biomarkers
in multiple cancer types

Networks present modular structure, and decomposition of the
network is beneficial for the elucidation of complex systems [38].
Compared with individual genes, module biomarkers are more
powerful predictors of prognosis [39]. Given the characteristics
of pan-cancer and core roles inside each network, we are inter-
ested in finding modules that comprise common regulators
associated with the survival of cancer patients.

Figure 5. A hierarchical model associated with cancer hallmarks. (a) A hierarchical model considering cancer hallmarks to comprehend the functions of common
regulators in cancer prognosis. (b) Heatmaps containing the number of target genes (under the control of common regulators), common TFs and common miRNAs
that link to cancer hallmarks across cancer types.
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We used the GLay community detection algorithms to
decompose each prognostic co-regulatory network. In total,
115 modules were identified (Dataset S7). The results of survival
analysis for each module identified 32 modules that could pre-
dict overall survival (log-rank test, p < 0.05); 23 out of 32 of these
modules comprised common regulators (Dataset S8).

We focused on two significant modules of cervical cancer
(CXSCC), a common gynaecological cancer. The two modules
comprised the common regulators MYC and GATA2 (Fig S6),
and the elements contained in the two modules are closely
related to cancer progression. Amplification and overexpres-
sion of MYC are related to CXSCC progression and GATA2
mutations cause a multifaceted disorder [40,41].In the first
module, GATA2 regulates both hsa-mir-30e and the target
genes IL1A and ITGA5, with the hsa-mir-30e repressing the
target genes. The target IL1A can promote tumour growth,
invasion and migration [42] and the ITGA5 expression is
induced in transformed epithelial cells during epithelial to
mesenchymal transition (EMT) process which fuels metastasis
by endowing cells with enhanced migratory and invasive
potential [43–45]. In the second module, MYC and hsa-mir
-342 control a joint target TFRC. Hsa-mir-342 has the poten-
tial to suppress cell proliferation, migration and invasion of
human cervical cells [46]. Clinical data have shown that high
TFRC expression in cervical cancers is related to advanced
clinical pathologic characteristics, and the TFRC is also an
independent predictor for survival in cervical cancer [47].

The above results showed that larger clusters of FFLs may
play a role in prognosis stratification. Furthermore, common
regulators may affect prognosis in larger modules.

A comprehensive survey of common regulators

After establishing the significant roles of common regulators,
we investigated the association between common regulators
and pan-cancer signatures (Fig.6A, B). We collected four
consensus lists of pan-cancer gene data [48–51]. Notably,
the overlap result showed that 14 out of 18 common TFs
have been identified as pan-cancer genes. The most notable
TF is EZH2, which occurred in all four data sets. Although
current studies do not provide enough data on pan-cancer
miRNAs, the overlap between common miRNA and two pan-
cancer-related miRNA datasets [52,53], namely ‘Pan-cancer
miRNA superfamily’ and ‘SDEmiRNA’, showed that common
miRNA hsa-mir-93 is oncogenic in multiple cancers. These
results suggest the dual function of several TFs and miRNAs
in oncogenesis and prognosis.

We then carried out a detailed literature survey of com-
mon regulators. We searched the PubMed database with
keywords including ‘prognosis’, ‘prognostic’, ‘survival’, and
‘clinical outcome’ for each common regulator that we
found. We manually extracted analyses related to cancer.
As a result, we consulted about 130 published studies
describing the associations between common regulators
and cancer prognosis (Table 2, 3). Common TFs are report-
edly associated with the prognosis of 3–7 cancers.
Remarkably, the most common TFs reported are ETS1
and EZH2; the former is a common TF that plays roles in
12 co-regulatory networks, while the latter is the significant

one who has a dual function in both oncogenesis and
prognosis as noted before. The most heavily studied prog-
nostic common miRNA is hsa-mir-34a, which is related to
18 cancers. Common miRNAs such as hsa-mir-9–2, hsa-
mir-23b, and hsa-mir-361 have not previously been inves-
tigated, and further study will be necessary to verify their
pan-cancer prognostic potential. These findings validate
and support the pan-cancer prognostic functionality of
conserved regulators.

Discussion

In the present study, integrated data and network-based
methods were used to identify miRNA-TF cooperative
events for cancer prognosis. Twelve prognosis-related co-
regulatory networks were identified by our multi-step
pipeline. Since the incorporation of multi-omics data,
prognostic signatures, mechanistic regulatory information,
and careful refinement in the pipeline of network con-
struction, the prognostic miRNA-TF co-regulatory net-
work is powerful and reliable. MiRNAs and TFs may
jointly regulate gene expression in the form of FFLs,
which impact many aspects of cellular processes and dis-
ease progression. The miRNA-TF co-regulatory network

Pan-cancer miRNA 
superfamily

SDEmiRNA

Common miRNA

a

b Cosmic

Cancer 5000

neGOtnI0005gisteN

Common TF

Figure 6. Overlap between common regulators and pan-cancer signatures. (a)
A Venn diagram showing the overlap between common miRNAs and two pan-
cancer miRNAs datasets, namely pan-cancer miRNA superfamily and SDEmiRNA.
(b) A Venn diagram showing the overlap between common TFs and four pan-
cancer gene datasets, namely Cosmic, Cancer5000, Netsig5000 and IntOGen.
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brings a system-level heuristic view of gene expression
regulation to cancer prognosis. A panoramic view of the
functional networks may help to characterize prognostic
targets and conserved regulators. We observed that com-
mon regulators maintain the structure of the co-regulatory
network. This motivates us to move the focus from het-
erogeneous prognostic genes to their regulators –

Table 2. Published studies describing the associations between common TFs
and cancer prognosis.

Common TFs Reported cancer PMID

AR Breast cancer 26526356
Osteosarcoma 28262798
Colorectal cancer 25376484
Prostate cancer 30105831

BRCA1 Breast cancer 24258259
Ovarian cancer 25398451
Non-small-cell lung cancer 27179511

CEBPA Prostate cancer 30430607
Cervical squamous cell carcinoma 24913332
Acute myeloid leukemia 15746035
Hepatocellular carcinoma 25363290

CREB1 Gastric cancer 29870889
Breast cancer 17786359
Prostate cancer 26743006
Colorectal cancer 27046651
Ovarian cancer 22596241

E2F1 Cervical cancer 28559983
Lung carcinoma 29754146
Ovarian cancer 28667302
Gastric cancer 28569791

E2F4 Breast cancer 25440089
Bladder cancer 26032289
Lung cancer 29754146

ESR1 Thyroid carcinoma 28124274
Breast cancer 29482551
Ovarian cancer 24368280

ETS1 Breast cancer 26392377
Cervical cancer
Colorectal cancer
Gastric cancer
Lung cancer
Oral cancer
Ovarian cancer

EZH2 Cervical cancer 27697098
Head-and-neck squamous cell carcinoma 26604082
Renal clear cell carcinoma 30405850
Non-small cell lung carcinoma 24097870
Hepatocellular carcinoma 27920552
Colorectal cancer 29061982
Oral squamous cell carcinomas 18619895

GATA1 Clear cell renal cell carcinoma 25230694
Acute erythroid leukemia 27086927
Breast cancer 22020876

GATA2 Clear cell renal cell carcinoma 25230694
Acute erythroid leukemia 19097174
Colorectal cancer 26287967
Hepatocellular carcinoma 24498120

HIF1A Hepatocellular carcinoma 26115041
Non-small cell lung cancer 24631267
Oral cancer 19449077
Pancreatic cancer 18362831

MYC Breast cancer 24316975
Gastric cancer 25618371
Acute myeloid leukaemia 26856970
Colorectal cancer 24503701
Lung adenocarcinoma 21148746

RELA Pancreatic cancer 17622249
Chronic lymphocytic leukemia 19124804
Non-small cell lung cancer 18215193

SP1 Hepatocellular carcinoma 28028181
Glioma 21469139
Colorectal cancer 22821729
Gastric cancer 15217947

STAT3 Gastric cancer 27938379
Diffuse large B-cell lymphoma 21806788
Cervical cancer 19638983
Ovarian cancer 17063503

TFAP2A Bladder cancer 21489314
Nasopharyngeal carcinoma 24335623
Breast cancer 21375726
Gastric adenocarcinoma 21966377

TP53 Glioblastoma 24248532
Breast cancer 26910472
Colorectal cancer 22038927
Thymic carcinoma 25299233
Head and neck squamous cell carcinoma 25108461
Pancreatic cancer 25428385
Hepatocellular carcinoma 21616106

Table 3. Published studies describing the associations between common
miRNAs and cancer prognosis.

Common miRNAs Reported cancer PMID

hsa-mir-9–2 Hepatocellular carcinoma 23364900
26046780

hsa-mir-23b Ovarian cancer 24997860
Colorectal cancer 26269151

hsa-mir-30d Ovarian cancer 30095616
Prostate cancer 28241827
Hepatocellular carcinoma 26046780

hsa-mir-34a Acute myeloid leukemia 29945348
Cholangiocarcinoma 30050323
Chronic lymphocytic leukaemia 30111844
Hepatocellular carcinoma 29303511
Colorectal adenocarcinoma 28624481
Cervical cancer 28615991
Ewing sarcoma 25015333
Bladder cancer 25556547
Laryngeal squamous cell carcinoma 27450916
Sinonasal squamous cell carcinoma 22624980
Glioma 23529798
Gastric lymphomas 24232982
Non-small-cell lung cancer 19736307
Colon cancer 23243217
Ovarian cancer 21516127
Renal cell carcinoma 29104726
Prostate cancer 25053345
Breast cancer 22439831

hsa-mir-93 Non-small cell lung cancer 29309884
Gastric cancer 28842285
Breast cancer 28518139
Colon cancer 23354160
Lung cancer 24037530
Cervical cancer 30098344

hsa-mir-150 Hepatocellular carcinoma 28811864
Pancreatic cancer 25906450
Prostate cancer 25778313
Esophageal squamous cell carcinoma 23013135
Colorectal cancer 22052060

hsa-mir-155 Clear cell renal cell carcinoma 30278113
Cervical cancer 27470551
Lung cancer 16530703
Prostate adenocarcinoma 25938433
Acute myeloid leukemia 25428263
Head and neck squamous cell carcinoma 28347920
Oral squamous cell carcinoma 27035278
Bladder cancer 27035278
hepatocellular carcinoma 27035278
Glioblastoma 23302469
Colorectal cancer 29361687

hsa-mir-221 Multiple myeloma 28168095
hepatocellular carcinoma 22009537
Breast cancer 30110679
Ovarian cancer 28350128
Bladder cancer 29181884
Colon cancer 25932237
Glioma 25636684
Thyroid cancer 28061868
Gastric carcinoma 27712596
Prostate carcinoma 19676045

hsa-mir-335 Glioma 22644918
Gallbladder carcinoma 24250228
Gastric cancer 29075357
Breast cancer 24132943

hsa-mir-361 Non-small cell lung cancer. 28051257
Breast cancer 27959953

hsa-let-7g Head and neck squamous cell carcinoma 30171046
Non-small cell lung cancer 23820752
Oral cavity squamous cell carcinoma 25050621
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especially conservative regulators. MiRNAs and TFs have
been treated as diagnostic, prognostic, and therapeutic
objects. Evidence shows that therapies targeting TFs con-
stitute an important part of the most commercially suc-
cessful drugs approved by the US Food & Drug
Administration. A broader effect was found when thera-
pies targeting miRNAs and TFs were compared with those
targeting a single gene [54].

Although the prognosis of cancer is as complex as cancer
itself, the results presented above pertaining to common reg-
ulators demonstrate the cascaded regulatory principle among
regulators, prognostic targets, and cancer hallmarks. We note
that ‘sustaining proliferative signaling’ and ‘tissue invasion
and metastasis’ are vital to cancer prognosis as cancer hall-
marks. Pathways enrichment analysis and network commu-
nity detection were used to elucidate the biological and
topological roles of conserved regulators. Finally, we con-
ducted a comprehensive survey of common regulators,
emphasizing evaluation of the pan-cancer prognostic function
of conserved regulators.

Conclusion

In this study, we investigated 12 miRNA-TF co-regulatory
networks in the context of cancer prognosis, in order to
elucidate prognostic signatures and the regulatory mechanism
behind them. This network-based study highlights conserva-
tive regulators (beyond the prognostic genes that vary across
cancers), highlighting the clinical importance of regulatory
mechanisms in prognosis. We hope our work opens new
avenues for the study of cancer prognosis and accelerates
the development of precision medicine.

Materials and methods

Collection of prognostic miRNAs and genes

In this study, we focused our analysis on 12 tumour types. We
used open resources to obtain the genes and miRNAs for 12
major clinical cancer outcomes. Prognostic genes were iden-
tified using the Human Pathology Atlas [29]. MiRNAs asso-
ciated with clinical outcomes were identified using OncomiR
[55] (significance threshold:0.05) (Table S2).

Regulatory relationships among miRNAs, TFs, and target
genes

Regulatory relationships among miRNAs, TFs, and target
genes were determined from public databases, as follows: (i)
TF-gene: ITFP, TRED, TRRUST, HTRIdb [56–59]; (ii)
miRNA-gene: miRTarBase, miR2Disease, miRecords [60–62];
(iii) TF-miRNA: mirTrans, PuTmiR, TransmiR [63–65] (Table
S3). In this paper, the term ‘TF’ refers specifically to TF genes;
the term ‘gene’ includes both TF and non-TF genes; ‘target
gene’ refers to only non-TF genes. We unified TF/miRNA/
target gene symbols in the regulatory relationship by referring
the Hugo Gene Nomenclature Committee (HGNC) [66], the
approval TF list [67,68], and miRBase [69].

Omics data across multiple cancers

We capitalized on expression data from TCGA [70] to filter
more precise co-regulatory interactions. The TCGA clinical
data were used for survival analysis of network clusters (Table
S4). The R package RTCGAToolbox [71] was used to assess
TCGA data (run date Jan. 2016) provided in the Firehose data
repository and to perform survival analysis. The RNA-Seq
expression values were transformed by the log2(x + 1) trans-
formation, where ‘x’ is the original expression value. These
values were used for subsequent analyses.

Network motif detection

Based on the collected prognostic signatures and regulatory
relationships, we filtered out prognostic regulatory interactions
whose target nodes or regulator nodes are known to be relevant
to prognosis. We then pooled the prognostic regulatory relation-
ships including TF-gene, TF-miRNA and miRNA-gene, generat-
ing a combinational network. Using a high-efficiency FANMOD
algorithm for network motif detection [72], we detected three
types of three-node FFLs: TF-FFLs, miRNA-FFLs, and compo-
site-FFLs and formed the raw co-regulatory network.

Prognostic co-regulatory network construction and
refinement

The preliminary co-regulatory network comprises three types of
FFLs. A single TF-FFL has a master TF that regulates a partner
miRNA and their joint target. A miRNA-FFL contains a master
miRNA regulator, which represses its partner TF and their joint
target gene. In a composite-FFL, themiRNA and TF regulate each
other, thereby controlling their joint target.

We used TCGA expression data to discern more precise co-
regulatory interactions in the raw co-regulatory network. We
calculated pairwise Spearman correlation values among TFs,
miRNAs, and genes for each FFL in the raw co-regulatory net-
work. For TF-genes and TF-miRNA pairs, we retained p < 0.05 as
the level of statistical significance. For miRNA-gene, we retained
p < 0.05 and correlation coefficient <0, because most miRNAs are
assumed to inhibit the expression of their targets. We removed
less-significant FFLs from the raw co-regulatory networks in
order to yield the final prognosis-related co-regulatory networks.

Classification of network regulators

For systematic analysis of the regulators in co-regulatory net-
works, we split the intra-network miRNAs and TFs into two
groups: (i) common regulators: miRNAs or TFs that occurred
in ≥7 co-regulatory networks; (ii) specific regulators: regula-
tors with frequency <7 across 12 networks.

Network visualization, topological measurements, and
identification of network modules

The miRNA-TF co-regulatory networks and the cancer hall-
mark-associated model were visualized with Cytoscape 3.7.0
[73]. Topological measurements of the networks were
obtained using the NetworkAnalyzer plugin for Cytoscape.
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We used the GLay community clustering algorithm to gen-
erate clusters from large complex networks [74].

Functional annotation and enrichment analysis

The R/Biocondutor software ClusterProfiler [75] package was
used for enrichment analysis. Data from MSigDB(v6.2) [76],
miEAA (release date Apr.2016) [77] were utilized in enrichment
analysis. Specifically, we selected MSigDB GO gene sets for GO
enrichment analysis, and chose MSigDB KEGG gene sets for
pathway enrichment analysis. We utilized miEAA pathway anno-
tation to perform miRNA pathway enrichment analysis. To build
a linkage between target genes and cancer hallmarks, we referred
to a previous study [78] to determine a list of GO terms related to
the hallmarks (Table S5).
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