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Background: Globally, liver cancer as one of the most frequent fatal malignancies, hits hard and fast. 
And the lack of effective treatments for liver hepatocellular carcinoma (LIHC), activates the researchers to 
promote promising precision medicine. Interestingly, emerging evidence proves that cellular senescence 
is involved in the progression of cancers and is recognized for its hallmark-promoting capabilities. Hence, 
efforts have been made to construct and validate the senescence risk score signature (SRSS) model as a novel 
prognostic biomarker for LIHC.
Methods: The existing databases were mined for the following bioinformatics analyses. GSE22405, 
GSE57957, and senescence-related genes (SRGs) from public databases were utilized as a training set and 
the validation set was constituted by LIHC and pancreatic adenocarcinoma (PAAD) from The Cancer 
Genome Atlas (TCGA). After overlapping differentially expressed genes (DEGs) with SRGs, differentially 
expressed SRGs were identified with the progression of liver cancer through univariate and multivariate Cox 
regression and enrichment analyses. The model that utilized three SRGs was constructed using the least 
absolute shrinkage and selection operator (LASSO) regression algorithm. Next, to evaluate the predictive 
performance of the SRSS model, the overall survival (OS) and survival rates were assessed through Kaplan-
Meier (KM) and the receiver operating characteristic (ROC) curves. The predictive value for LIHC 
prognosis was further evaluated by capitalizing on risk score, nomograms, decision curve analysis (DCA) 
curves, and clinical information including tumor stages, gender, age, and race.
Results: DEGs were revealed as enriching in multiple tumor-related biological processes (BPs) and 
pathways. IGFBP3, SOCS2, and RACGAP1 were identified as the three considerable SRGs for the model. 
The high-risk group had a worse prognosis [both hazard ratio (HR) >1, P<0.001] and ROC curves showed 
a reliable predictive model with area under the curve (AUC) predictive values ranging from 0.673–0.816 for 
different-year survival rates respectively. The univariate and multivariate Cox regression analyses exhibited 
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Introduction

Background

As the most frequent fatal malignancy, liver cancer mainly 
occurs with the risk factor of smoking, cirrhosis, hepatitis B 
or C virus infection, or nonalcoholic steatohepatitis (1,2). 
Regrettably, most liver cancers cannot be caught at an early 
stage, resulting in poor patient outcomes (3). Moreover, the 
incidence of liver cancer is still rising while the treatments 
are still limited and not effective enough (3,4). With the 
booming advancement of the medical realm, numerous 
treatment options are provided for patients with liver cancer, 
including surgical resection, local destructive therapies, liver 

therapy, transplantation, percutaneous ablation, radiation, 
and transarterial and systemic therapies (5,6). However, 
the therapeutic effect, survival benefits, and recurrence of 
liver cancer remain the major problems after those grueling 
treatments (6,7). In a word, the high mortality rates of liver 
hepatocellular carcinoma (LIHC) mainly arise from delayed 
diagnosis, limited accuracy of diagnostic and prognostic 
biomarkers, and shortage of precise treatment. Therefore, 
robust biomarkers are desperately needed to accurately 
diagnose, and forecast patients with LIHC and provide 
promising therapeutic targets.

While well-known biomarkers like alpha-fetoprotein 
(AFP), identified 60 years ago, have been used to predict 
LIHC prognosis and recurrence after liver transplant (8), 
recent years have witnessed extensive research on treatments 
such as AFP vaccine and AFP-specific adoptive T-cell 
transfer for LIHC management (9). However, alternative 
potential solutions need to be sought with an open-minded 
approach. Emerging discoveries have highlighted GINS3 (10),  
and microRNAs signature (11), among other potential 
biomarkers for LIHC diagnosis and prognosis. Additionally, 
the considerable role of senescence-related variables in 
cancers has emerged from recent research (12,13).

Cellular senescence which is not synonymous with aging, 
is a stress response state in the case of exposure to genotoxic 
agents, nutrient deprivation, hypoxia, and oncogene 
activation (14,15). The response could elicit a permanent cell 
cycle arrest and trigger profound phenotypic changes (16).  
Notably, senescence is critical in tumorigenesis when it 
arises within incipient tumor cells versus stromal cells (17).  
Due to the non-negligibility of senescence, efforts have 
been made to investigate its innate correlation with cancers 
(18,19). Moreover, research has concluded that the liver 
has a unique regenerative capacity in response to a damage 
event, which is highly associated with senescence (20).  

Highlight box

Key findings
•	 In this research, the senescence risk score signature (SRSS) model 

was constructed and validated as an independent prognostic 
biomarker for liver hepatocellular carcinoma (LIHC).

What is known and what is new? 
•	 Liver cancer is one of the most frequent fatal malignancies and 

patients are often diagnosed in advanced stages, contributing to its 
poor prognosis. Precise biomarkers and more treatment options 
are desperately needed for liver cancer at an early stage. Moreover, 
cellular senescence plays a critical role in tumorigenesis when it 
arises within incipient tumor cells versus stromal cells.

•	 Comprehensive analyses have selected three senescence-related 
genes (IGFBP3, SOCS2, and RACGAP1) as the SRSS model which 
is a novel prognostic biomarker for LIHC.

What is the implication, and what should change now? 
•	 Early diagnosis and prognosis of LIHC could count on the SRSS 

model by further research. 
•	 New treatments could be developed through the mechanism of 

cellular senescence in LIHC.

that risk score was the only credible prognostic predictor (HR >1, P<0.001) among clinical features such 
as tumor stage, age, etc., in LIHC. The nomograms, and DCA curves, combined with multiple clinical 
information, proved that the predictive ability of SRSS was strongest, followed by nomogram and traditional 
tumor node metastasis (TNM) stage was the weakest.
Conclusions: In summary, comprehensive analyses supported that the SRSS model can better predict 
survival and risk in LIHC patients. Promisingly, it may point out a brand-new direction for LIHC therapy.
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The senescence program involves in tumor immune 
surveillance and the error of this program may facilitate the 
progression of pre-malignant senescent hepatocytes to LIHC 
(21,22). Meanwhile, it is unrealistic to directly incorporate 
senescence-related genes (SRGs) into the LIHC prognostic 
prediction due to the necessity and complexity of revalidating 
robust clinical samples. Consequently, given that senescence 
affects tumor progression and responses to treatment, the 
senescence risk score signature (SRSS) model could offer 
enhanced prognostic assessment compared to traditional 
biomarkers.

Despite the critical role of senescence in LIHC, few 
studies have unveiled and established a senescence-related 
model to improve diagnostic and prognostic accuracy. 
Hence, this study aims to ascertain and construct a novel 
SRSS model to predict the LIHC prognosis effectively 
and identify promising therapeutic targets. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-2373/rc).

Methods

Datasets and data preprocessing

The gene expression profiles of GSE22405 (https://
cdn.amegroups.cn/static/public/tcr-23-2373-1.xlsx) and 
GSE57957 (https://cdn.amegroups.cn/static/public/tcr-
23-2373-2.xlsx) were collected from the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/). The GSE22405 dataset contained 24 non-tumor 
and 24 LIHC samples. The GSE57957 dataset contained 
39 non-tumor and 39 LIHC samples. Moreover, SRGs 
were directly obtained from the Human Ageing Genomic 
Resources (HAGR) (https://genomics.senescence.info/
cells/) (https://cdn.amegroups.cn/static/public/tcr-23-2373-
3.xlsx). The training set was selected after overlapping and 
differential analysis of the above datasets.

The datasets of LIHC and pancreatic adenocarcinoma 
(PAAD) from The Cancer Genome Atlas (TCGA) comprising 
gene expression information, clinical characteristics, and 
survival materials, were downloaded as the validation sets 
from Genomic Data Commons (GDC) Data Portal (https://
portal.gdc.cancer.gov/). A total of 424 LIHC RNA sequencing 
(RNAseq) constitute by 377 tumor samples and 50 adjacent-
tumor samples. Meanwhile, PAAD samples were obtained 
with 183 RNAseq from 185 tumor samples and 4 adjacent-
tumor samples. Based on the model, the above datasets from 

TCGA were recalculated and employed as the validation sets.
The study was conducted in accordance with the 

Declaration of Helsinki (as revised in 2013).

Differential analysis 

To ascertain differentially expressed genes (DEGs) in the 
tumor and non-tumor groups, a differential expression 
analysis was first conducted based on the expressed genes in 
LIHC. The DEGs were collected by the “DESeq2” software 
package in R and log2|fold change (FC)| >1 and the adjusted 
P value <0.05 was set as the criterion. Therefore, DEGs were 
selected and visualized in the volcano map by the “ggplot2” 
package in the R.

Identification of senescence-related DEGs

To discriminate differentially expressed senescence genes 
(DESGs) in LIHC, DEGs, and SRGs were overlapped and 
visualized in the Venn diagram by the “ggplot2” package 
in the R. The “survival” software package in R was used 
to analyze the prognosis of LIHC. Fourteen DESGs 
related to the prognosis, which are NUSAP1, CXCL12, 
IGFBP3, CAP2, TOP2A, CDKN3, ASPM, RND3, PRC1, 
EGR1, SOCS2, RACGAP1, FST, and H2AFZ, were initially 
screened for genes mutual to the three datasets.

Enrichment analysis

To determine the underlying functions and pathways of 
DEGs, the “clusterProfilter” R package was utilized to 
perform Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analyses. The GO database is 
a powerful bioinformatics tool to explore functions of genes 
in three classifications: biological processes (BPs), cellular 
components (CCs), and molecular functions (MFs). The 
KEGG is a comprehensive database that can be roughly 
divided into three categories: systematic information, 
genomic information, and chemical information. The 
adjusted P value <0.05 was considered statistically significant.

Construction of the prognostic model

The prognostic DESGs of LIHC were obtained by Cox 
regression analysis using “survival” software package in R.  
Then, three noteworthy prognosis-related senescence 
genes (IGFBP3, SOCS2, and RACGAP1) were discovered 
by the least absolute shrinkage and selection operator 
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(LASSO) regression analysis using 10-fold cross-validation 
to procure independent prognostic genes. Furthermore, 
regression coefficients of independent prognostic factors 
were procured by multivariate Cox regression analysis. 
Eventually, the prognostic model was constructed as 
senescence risk scoring signature (SRSS) = EXPgene1*β1 
+ EXPgene2*β2 + EXPgene3*β3 + … + EXPgenen*βn, 
where EXP represents expression level and β represents the 
regression coefficient from the multivariate Cox.

Validation of the prognostic value of SRSS

First, the risk score of TCGA-LIHC was assessed via the 
Kaplan-Meier (KM) plotter and then patients were divided 
into low- and high-risk groups based on the survival median 
as the cut-off value. To compare the overall survival (OS) 
of patients among two groups, after statistical differences 
were confirmed by Log-rank test and Cox regression, we 
visualized the KM curves using the “survminer” package 
in R. And then to validate the prognostic efficiency, time-
dependent receiver operating characteristic (ROC) curves 
were investigated by the “timeROC” package and visualized 
by the “ggplot2” package in R. The area under the ROC 
curve (AUC) is a probability value, ranging from 0.5 to −1, 
which is used to evaluate the accuracy of model prediction. 
Generally, when the value of AUC is greater than 0.7 and 
closer to 1, it is considered a good prediction model.

Predictive accuracy and benefit of the nomogram

In addition, the model was visualized as a nomogram for 
predicting the occurrence of events, and the probability of 
the individual occurrence time was assessed by the scores 
of each index in the model of independent individuals 
with external data, using the “rms” package. Subsequently, 
the effect of clinical variables on prognosis such as tumor 
stage, gender, age, and risk score of SRSS, was evaluated 
by performing univariate Cox regression analyses, and 
multivariate Cox regression analyses were conducted to 
ascertain whether a variable is an independent prognostic 
indicator. The P value <0.05 was considered statistically 
significant.

The tumor stage was established based on the seventh 
tumor node metastasis (TNM) classification of the 
American Joint Committee on Cancer (23).

Meanwhile, to evaluate the function of the established 
model in clinical benefit, the 1-, 3-, and 5-year decision 
curve analyses (DCA) were conducted. The x-axis is 

the threshold probability, and the y-axis is net income. 
The “survival” and “stdca. R” packages were utilized. 
Furthermore, the concordance index (C-index) ranging 
from 0.5 to −1, could be used to evaluate the predictive 
accuracy of traditional TNM-stage, nomogram, and SRSS. 
The closer the confidence interval (CI) value is to 1, the 
better the model is.

Validation of SRSS model in PAAD

Liver cancer and pancreatic cancer were both digestive 
gland tumors, and metastases are commonly detected in 
PAAD (24). Considering the histological similarities, degree 
of malignancy, and intimate connection with the liver, 
TCGA-PAAD (n=183) was utilized to further substantiate 
the SRSS model and its general applicability in other 
tumors. Therefore, the risk scores of patients with PAAD 
were recalculated using the SRSS formula and then the 
samples were distributed into low- and high-risk groups 
based on the survival median as the cut-off value. The 
survival differences and the accuracy of SRSS in PAAD were 
evaluated through KM-plotter and ROC curves. Similarly, 
a nomogram integrating the risk score of SRSS with clinical 
characteristics such as tumor stage, status, race, and age, 
was employed to further comprehensively determine the 
probability of survival in PAAD patients. Furthermore, 
the DCA diagrams were constructed for 1-, 3-, and 5-year 
survival to confirm the accuracy and clinical benefit of 
nomogram in PAAD.

Statistical analysis

Most statistical analyses were performed using R software 
(version 3.6.3). Excel software was utilized for the simple 
mathematical analysis and processing. A P value less than 
0.05 was considered statistically significant.

Results

Analysis and identification of DEGs

To perform differential expression analysis, GSE22405 
and GSE57957 were utilized as the training set. Based on 
the screening criteria: |log2FC| >1 and P<0.05, a total of 
196 and 421 DEGs were identified respectively in LIHC 
(https://cdn.amegroups.cn/static/public/tcr-23-2373-4.xlsx, 
https://cdn.amegroups.cn/static/public/tcr-23-2373-5.xlsx)  
were selected and visualized in the volcano map (Figure 1A,1B).  

https://cdn.amegroups.cn/static/public/tcr-23-2373-4.xlsx
https://cdn.amegroups.cn/static/public/tcr-23-2373-5.xlsx
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Then DEGs were overlapped with SRGs and then 14 
DESGs were procured (Figure 1C, https://cdn.amegroups.
cn/static/public/tcr-23-2373-6.xlsx). The results suggested 
that the DESGs might somehow participate in the 
progression of LIHC and it was worth further research. 

Enrichment analyses

Enrichment analyses were conducted to ascertain the 

underlying biological function of DEGs in LIHC, including 
GO and KEGG analyses. As shown in Figure 2A-2C, the 
noteworthy terms of BP, MF, and CC (2) enrichment 
analyses were demonstrated. Interestingly, DEGs were 
enriched in cell proliferation, such as organelle fission, 
nuclear division, microtubule, tubulin binding, and so on. 
Moreover, according to the KEGG pathway analysis, DEGs 
were involved in growth hormone synthesis, secretion, and 
action pathways in LIHC (Figure 2D). Those biological 

Figure 1 Differential analysis in LIHC. (A) The volcano map demonstrated DEGs in GSE22405. (B) The volcano map demonstrated 
DEGs in GSE57957. (C) The Venn diagram was employed to identify DESGs. SRGs, senescence-related genes; LIHC, liver hepatocellular 
carcinoma; DEGs, differentially expressed genes; DESGs, differentially expressed senescence genes.

Figure 2 Enrichment analysis of senescence genes in LIHC. (A) The top 3 enrichment terms of BP in LIHC. (B) The top 3 enrichment terms 
of CC in LIHC. (C) The top 3 enrichment terms of MF in LIHC. (D) The KEGG enrichment pathway in LIHC. BP, biological process; CC, 
cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; LIHC, liver hepatocellular carcinoma.
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enrichment analyses showed that DEGs could regulate the 
process of cell proliferation and are further associated with 
the development of cancer cells.

Establishment and prognostic value of SRSS

To discover the underlying senescence genes that could 
serve as effective biomarkers, univariate and multivariate 
Cox regression analyses were conducted on the 14 DESGs 
(Table 1). However, due to insufficient information on 
H2AFZ, the Cox analyses were undertaken eventually on 
the other 13 DESGs presented in Table 1. Subsequently, 
to establish the model of SRSS, 7 DESGs were employed 
for LASSO regression analysis. As shown in Figure 3A,3B, 
when the penalty coefficient was 3 the model fit the best, 
and the equivalent three senescence genes (IGFBP3, 
SOCS2, and RACGAP1) were adequate for establishing the 
model (https://cdn.amegroups.cn/static/public/tcr-23-2373-
6.xlsx). The heat map, survival status, and risk score of three 
senescence genes in patients with LIHC also confirmed the 
prognostic value of SRSS (Figure 3C). Moreover, univariate 
and multivariate Cox regression analyses were conducted on 
three senescence genes, and the corresponding regression 
coefficients were obtained, β1–β3, which were 0.11674, 
−0.36518, and 0.29059, respectively. Based on the above 

results, the model was established as follows:
SRSS = EXP IGFBP3*0.11674 + EXP SOCS2*−0.36518 

+ EXP RACGAP1*0.29059 (EXP: expression level of gene). 

Validation of SRSS in LIHC clinical prediction

According to the established formula, the risk score of 
each patient was calculated directly, and then the high- 
and low-risk groups were divided based on the median and 
interquartile range. The KM curve (Figure 4A) showed a 
worse prognosis [P<0.001, hazard ratio (HR) =2.08, 95% 
CI: 1.46–2.96] in the high-risk group. Meanwhile, the AUC 
values of 1-, 3-, and 5-year ROC curves were 0.779, 0.726, 
and 0.673, respectively (Figure 4B). Moreover, the AUC 
values of different combinations were also investigated  
(Table 2). The above results preliminarily indicated SRSS as 
a novel and promising prognostic biomarker in LIHC.

To determine the prognostic significance of SRSS, 
further univariate and multivariate Cox regression analyses 
were conducted for clinicopathological features of LIHC 
associated with OS (Table 3). Results substantiated that age, 
tumor status, tumor stage, and risk score were prognostic 
predictors in TCGA-LIHC, but not gender and race. 
Significantly, in multivariate Cox regression analysis, the 
only independent predictor was the risk score. The above 

Table 1 Univariate and multivariate Cox regression analysis of 13 DESGs in LIHC (N=373)

Genes
Univariate analysis

 
Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

NUSAP1 0.747 (0.221–2.529) 0.64  

CXCL12 0.957 (0.859–1.067) 0.43  

IGFBP3 1.178 (1.048–1.326) 0.006 1.127 (1.002–1.268) 0.046

CAP2 1.053 (0.921–1.205) 0.45  

TOP2A 1.229 (1.103–1.368) <0.001 1.036 (0.766–1.400) 0.82

CDKN3 1.253 (1.103–1.423) <0.001 0.893 (0.689–1.158) 0.39

ASPM 1.291 (1.123–1.483) <0.001 1.002 (0.722–1.391) 0.99

RND3 1.091 (0.945–1.261) 0.24  

PRC1 4.842 (1.111–21.109) 0.04 0.492 (0.069–3.519) 0.48

EGR1 1.010 (0.908–1.123) 0.86  

SOCS2 0.688 (0.584–0.810) <0.001 0.680 (0.574–0.806) <0.001

RACGAP1 1.403 (1.199–1.641) <0.001 1.485 (1.027–2.146) 0.04

FST 1.004 (0.910–1.107) 0.94  

DESGs, differentially expressed senescence genes; LIHC, liver hepatocellular carcinoma; CI, confidence interval.

https://cdn.amegroups.cn/static/public/tcr-23-2373-6.xlsx
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Figure 3 Construction of SRSS model. (A) Ten-time cross-validation for screening the LASSO model. (B) LASSO variable trajectory 
diagram. (C) The risk score, survival status, and heat map of three immune genes in patients with LIHC. SRSS, senescence risk score 
signature; LASSO, least absolute shrinkage and selection operator; LIHC, liver hepatocellular carcinoma.

results further supported SRSS as a novel and credible 
biomarker for predicting prognosis in LIHC.

Simultaneously, the nomogram was made as a scale 
to visualize the model for calculating and predicting the 
prognosis of patients with LIHC (Figure 4C). As shown in 
Table 4, the C-index of TNM-stage, SRSS, and nomogram 
were in order of 0.639, 0.696, and 0.686. In conclusion, the 
predictive ability of SRSS was strongest, followed by the 
nomogram combined with multiple clinical information 
and the tradit ional  TNM stage was the weakest . 
Furthermore, the decision curve analysis (DCA) figures 
showed that the nomogram integrating multiple clinical 
information has a better clinical application value, which 
was also consistent with the above result (Figure 4D). The 
results supported that the value of clinical application was 
better with SRSS.

Validation of SRSS in PAAD

In consideration of the innate connection with LIHC, 

TCGA-PAAD was utilized as the external validation set, 
and risk scores for each patient in the PAAD cohort were 
calculated according to the established SRSS formula. The 
KM curve showed a worse prognosis in the high-risk group 
which is consistent with the result of LIHC (Figure 5A). 
The AUC of the 1-, 3-, and 5-year survival ROC curves 
(0.697, 0.776, and 0.816 respectively) demonstrated a high 
level of consistency in predicting OS (Figure 5B). Moreover, 
the predictive nomogram of PAAD was constructed utilizing 
clinical features and SRSS (Figure 5C). The C-index values 
(Table 4) and the DCA figures (Figure 5D) demonstrated 
that the predictive ability of SRSS was weaker than the 
comprehensive nomogram in PAAD but stronger than 
traditional TNM-stage.

Discussion

LIHC, not only is the most frequent primary liver cancer 
but also the fourth most common cause of cancer-related 
death (1,25). Meanwhile, cellular senescence plays a pivotal 
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Figure 4 Validating the prognostic value and precision of SRSS. (A) KM curve of low- and high-risk score groups. (B) ROC curve for 
predicting the sensitivity and specificity of 1-, 3-, and 5-year survival rates. (C) Nomogram combined clinical characteristics with the risk 
score of SRSS. (D) DCA diagrams for the evaluation of the net benefits of the TNM-stage, SRSS, and nomogram. HR, hazard ratio; CI, 
confidence interval; AUC, area under ROC curve; TPR, true positive rate; FPR, false positive rate; SRSS, senescence risk score signature; 
TNM, tumor node metastasis; KM, Kaplan-Meier; ROC, receiver operating characteristic; DCA, decision curve analysis.
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Table 3 Univariate and multivariate Cox regression analysis of clinicopathological features of LIHC associated with OS

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age 368 1.012 (0.998–1.026) 0.09 1.013 (0.998–1.029) 0.10

Gender 368

Male 249 Reference

Female 119 1.261 (0.885–1.796) 0.20

Race 357

White 183 Reference

Black or African-American 17 1.198 (0.520–2.760) 0.67

Asian 157 0.756 (0.519–1.101) 0.14

Tumor status 350

With tumor 151 Reference Reference

Tumor free 199 0.432 (0.296–0.629) <0.001 0.587 (0.389–0.886) 0.01

Pathologic stage 344

Stage I 172 Reference Reference

Stage II 85 1.417 (0.868–2.312) 0.16 1.093 (0.645–1.850) 0.74

Stage III 83 2.734 (1.792–4.172) <0.001 1.831 (1.145–2.927) 0.01

Stage IV 4 5.597 (1.726–18.148) 0.004 3.316 (0.782–14.066) 0.10

Pathologic N 367

NX 113 Reference Reference

N0 250 0.676 (0.467–0.980) 0.04 0.713 (0.451–1.125) 0.15

N1 4 1.466 (0.355–6.062) 0.60 0.535 (0.121–2.368) 0.41

Risk score 368 3.959 (2.642–5.933) <0.001 3.226 (2.044–5.092) <0.001

LIHC, liver hepatocellular carcinoma; OS, overall survival; CI, confidence interval.

Table 2 The AUC values of different combinations

Gene combination
AUC value

1 year 3 years 5 years

IGFBP3 0.619 0.654 0.542

SOCS2 0.320 0.344 0.344

RACGAP1 0.732 0.654 0.600

IGFBP3 + SOCS2 0.710 0.707 0.665

IGFBP3 + RACGAP1 0.733 0.693 0.603

SOCS2 + RACGAP1 0.780 0.709 0.670

IGFBP3 + SOCS2 + RACGAP1 0.779 0.726 0.673

AUC, area under the curve.

Table 4 The C-index values of the TNM-stage, SRSS, and nomogram

Cohorts Variables C-index (95% CI)

LIHC TNM-stage 0.639 (0.607–0.671)

SRSS 0.696 (0.672–0.720)

Nomogram 0.686 (0.660–0.712)

PAAD TNM-stage 0.561 (0.535–0.587)

SRSS 0.657 (0.628–0.687)

Nomogram 0.694 (0.662–0.727)

C-index, concordance index; TNM, tumor node metastasis; SRSS, 
senescence risk score signature; CI, confidence interval; LIHC, liver 
hepatocellular carcinoma; PAAD, pancreatic adenocarcinoma.
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Figure 5 Validation of SRSS with TCGA-PAAD. (A) KM curve of low- and high-risk score groups in PAAD. (B) Time-dependent ROC 
curve for predicting the sensitivity and specificity of 1-, 3-, and 5-year survival rates. (C) Nomogram combined clinical characteristics with 
the risk score of SRSS. (D) DCA diagrams for the evaluation of the net benefits of the TNM-stage, SRSS, and nomogram. HR, hazard 
ratio; CI, confidence interval; AUC, area under ROC curve; TPR, true positive rate; FPR, false positive rate; SRSS, senescence risk score 
signature; TNM, tumor node metastasis; TCGA, The Cancer Genome Atlas; PAAD, pancreatic adenocarcinoma; KM, Kaplan-Meier; 
ROC, receiver operating characteristic; DCA, decision curve analysis. 
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role in liver homeostasis, disease, and regeneration (26). 
Currently, there are deficient indexes for early diagnosis, 
accurate prognosis, and more effective treatments for 
patients with LIHC (27). Therefore, more and more 
researchers have made efforts to search underlying 
biomarkers for precise prognoses and treatments, however, 
not adequate biomarkers have been found (28-30). As 
cellular senescence is considered to be a promising strategy 
for liver diseases including cancer (31,32), hence, we 
involved ourselves in constructing and validating a SRSS 
model of LIHC for early diagnosis, prognostic prediction, 
and providing a promising therapeutic target.

Firstly, to investigate the innate connection between 
LIHC and the senescence mechanism, GSE22405 and 
GSE57957 were selected as the training sets. Differential 
analysis was then conducted to identify 196 and 421 DEGs 
and 14 DESGs. Following this, DEGs were employed for 
enrichment analyses. Results showed that those DEGs 
were significantly enriched in cell proliferation, such as 
organelle fission, nuclear division, microtubule, tubulin 
binding, and so on. As exhilarating as the results are, cell 
proliferation has already been widely known to involve 
in multiple BPs including tumor development (33,34). 
Moreover, sustained proliferation is a common property 
of human cancer (35). The results shed light on the 
possibility of constructing senescence-related biomarkers 
in LIHC.

Consequently, among DEGs, three senescence genes, 
including IGFBP3, SOCS2, and RACGAP1, were identified 
to be strongly related to prognosis in LIHC based on Cox 
regression analysis and lasso regression analysis. After 
preliminary verification of prognostic value in LIHC, 
the SRSS model was constructed for efficient diagnosis 
and predicting prognosis. IGFBP3, a kind of protein 
with pleiotropic ability, could regulate cell proliferation, 
apoptosis, and differentiation (36,37). Moreover, researchers 
have found IGFBP3 upregulation in the senescent cells (38).  
As for SOCS2, it could enhance the efficiency of liver cancer 
radiotherapy by promoting ferroptosis and improving the 
prognosis of patients (39). Notably, Yang et al. discovered 
that overexpressed RACGAP1 promoted the proliferation 
of LIHC cells by reducing the activation of the Hippo and 
YAP pathways (40). In conclusion, the function of those 
three promising biomarkers is consistent with the results of 
the enrichment analysis, which showed that it could regulate 
the proliferation of cancer cells in a certain mechanism. 
Therefore, we hypothesized that the established SRSS 
model might be a robust biomarker in LIHC and more 

validation is as follows.
The KM curve showed a worse prognosis in the high-

risk group. Meanwhile, the time-dependent ROC curve 
demonstrated that the prognostic prediction of the SRSS 
model was in good consistency with the actual results. 
Furthermore, the risk score of SRSS integrating with 
clinicopathological features of LIHC was analyzed via 
univariate and multivariate Cox regression analysis and the 
result supported the risk score of SRSS as an independent 
prognostic biomarker in LIHC. For further comprehensive 
evaluation of the prognosis, the survival probability was 
scored individually through the nomogram with multiple 
clinical information and risk scores. Consequently, the 
C-index and DCA figures thoroughly proved that the 
predictive ability of SRSS was stronger than the nomogram 
combined with multiple clinical information and traditional 
TNM-stage. 

As another advanced cancer of the digestive system, 
PAAD is known for its capability of invasion and metastasis 
with a high fatality rate (41,42). In consideration of the 
histological similarities, biological function, pathogenesis, 
and other intimate connections with the liver (43-45), 
PAAD was selected as the validation set to further evaluate 
the SRSS. Based on the data from TCGA-PAAD, the results 
of the KM curve, ROC curve, nomogram, calibration, and 
DCA diagram were consistent with the above results.

Conclusions

In this study, three SRGs were screened out after exploring 
the underlying association with LIHC. The SRSS model 
based on the three SRGs was constructed and validated to 
be a novel and promising prognostic model independently 
for LIHC. Hopefully, groundbreaking treatments will be 
brought out by targeting this novel biomarker of LIHC.
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