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ABSTRACT: Unsupervised learning is becoming an essential tool to analyze the
increasingly large amounts of data produced by atomistic and molecular simulations, in
material science, solid state physics, biophysics, and biochemistry. In this Review, we provide
a comprehensive overview of the methods of unsupervised learning that have been most
commonly used to investigate simulation data and indicate likely directions for further
developments in the field. In particular, we discuss feature representation of molecular systems
and present state-of-the-art algorithms of dimensionality reduction, density estimation, and
clustering, and kinetic models. We divide our discussion into self-contained sections, each discussing a specific method. In each
section, we briefly touch upon the mathematical and algorithmic foundations of the method, highlight its strengths and limitations,
and describe the specific ways in which it has been used-or can be used-to analyze molecular simulation data.
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1. INTRODUCTION

In recent years, we have witnessed a substantial expansion in the
amount of data generated by molecular simulation. This has
inevitably led to an increased interest in the development and
use of algorithms capable of analyzing, organizing, and
eventually, exploiting such data to aid or accelerate scientific
discovery.
The data sets obtained from molecular simulations are very

large both in terms of the number of data pointsnamely, the
number of saved configurations along the trajectoryand in
terms of the number of particles simulated, which can be several
millions or more. However, we know both empirically and from
fundamental physics that such data usually have much lower-
dimensional representations that convey the relevant informa-
tion without significant information loss. A striking example is
given by the kinetics of complex conformational changes in
biomolecules, which, on long time scales, can be well described
by transition rates between a few discrete states. Moreover,
symmetries, such as the invariance of physical properties under
translation, rotation, or permutation of equivalent particles, can
also be leveraged to obtain a more compact representation of
simulation data.
Traditionally, finding such low-dimensional representations is

considered a task which can be tackled based on domain
knowledge: The analysis of molecular simulations is often
performed by choosing a small set of collective variables (CVs),
possibly complex and nonlinear functions of the coordinates,
that are assumed to provide a satisfactory description of the
thermodynamic and kinetic properties of the system. If the CV is
appropriately chosen, a histogram created from the CV
summarizes all the relevant information, even if the molecular
system includes millions or billions of atoms. The list of possible
CVs among which one can choose is enormous and is still
growing. Tools now exist which can describe phenomena of high
complexity, such as the packing of a molecular solid, the allostery
of a biomolecule, or the folding path of a protein. However,
choosing the right CV remains to some extent an art, which can
be successfully accomplished only by domain experts, or by
investing a significant amount of time in a trial-and-error
procedure.
Machine learning (ML) has emerged as a conceptually

powerful alternative to this approach. ML algorithms can be
broadly divided in three categories.1 In supervised learning, a
training data set consisting of input−output pairs is available,
and a ML algorithm is trained with the goal of providing
predictions of the desired output for unseen input values. This
approach has been extensively used to predict specific properties
of materials and molecules, such as the atomization energy of a
compound or the force acting on an atom during a trajectory. In
unsupervised learning, no specific output is available for the data
in the training set, and the goal of the ML algorithm is to extract
useful information using solely the input values. A typical
application of this approach in the field of molecular simulation
is the construction of low dimensional collective variables, which
can compactly yet effectively describe a molecular trajectory.
Finally, in reinforcement learning, no data at all is used to train the
ML model, which instead learns by “trial and error” and by
continuously interacting with its environment. Reinforcement
learning has proven particularly successful at certain computer
science challenges (such as playing board games), and it is now
beginning to find application in molecular and materials science.
In this Review, we focus exclusively on unsupervised learning

methods. We aim to provide an overview of all algorithms
currently used to extract simplified models from molecular
simulations to understand the simulated systems on a physical
level. The review is oriented toward researchers in the fields of
computational physics, chemistry, materials and molecular
science, who routinely deal with large volumes of molecular
dynamics simulation data, and are hence interested in using, or
extending, the techniques we describe.
Some of the algorithms we review are as old as the simulation

methods themselves, and have been successfully used for
decades. Others are much more recent and their conceptual and
practical power is only now becoming clear. Despite the recent
surge in, for example, machine learning algorithms for
determining CVs, many problems in the field can still be
considered open, making this research area extremely active.
We divide our discussion in five sections, each of which will

include its own introduction section: feature representation,
dimensionality reduction, density estimation, clustering, and kinetic
models. A graphical table of contents depicting the different
methods and how they relate to each other is shown in Figure 1.

In Section 2, we discuss the choice of feature representation
for atomistic and molecular systems, a topic relevant for any
analysis or application of learning algorithm. We, then, turn to
the description of unsupervised learning algorithms, which we
divide in four groups. In Section 3, we review algorithms of
dimensionality reduction, whose primary objective is to provide a
low dimensional representation of the data set that is easy to
analyze or interpret. While in molecular simulations the
probability density from which the configurations are harvested
is in principle known (e.g., the Boltzmann distribution), this
probability density is defined over the whole molecular state
space, which is too high-dimensional to be visualized and
understood. In Section 4, we review algorithms of density
estimation, which enable the estimation of probability distribu-
tions restricted to sets of relevant variables describing the data.
These variables can be chosen, for example, using the techniques
described in Section 3. In Section 5, we review clustering
algorithms. Clustering divides the data set into a few distinct
groups, or “clusters,” whose elements are similar according to a
certain notion of distance in their original space. These

Figure 1. Illustration of the possible steps that can be performed to
analyze data from a molecular simulation with an indication of the
particular section where these are discussed.
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techniques allow to capture the gross features of the probability
distribution; for example, the presence of independent
probability peaks, even without performing a preliminary
dimensionality reduction. Therefore, the techniques described
in this section can be considered complementary to those
described in Section 3. When clustering is viewed as an
assignment of data points to integer labels, clustering itself can
be viewed as an extreme form of dimensionality reduction. In
Section 6, we present kinetic models. While Sections 3-5 focus on
modelingmethods in which the ordering of the data points is not
considered, kinetic models instead exploit dynamical informa-
tion (i.e., ordering of data points in time) to reduce the
dimensionality of the system representation. Altogether, this set
of approaches is qualitatively based on the requirement that a
meaningful low-dimensional model should reproduce the
relevant time-correlation properties of the original dynamics
(e.g., the transition rates). Throughout the review we present
these techniques highlighting their specific application to the
analysis of molecular dynamics, and discussing their advantages
and disadvantages in this context. In Section 7 we list the
software programs which are most currently used to perform the
different unsupervised learning analysis described. Finally, in the
Conclusions (Section 8), we present a general perspective on the
important open problems in the field.
Some other review articles have a partial overlap with the

present work. In particular, ref 2 reviews algorithms of
dimensionality reduction for collective variable discovery,
while refs 3 and 4 also review some approaches to build kinetic
models. In this work, we review not only all these approaches but
also other algorithms of unsupervised learning, namely, density
estimation and clustering, focusing on the relationship between
these different approaches and on the perspectives opened by
their combination. Other valuable review articles of potential
significance to the reader interested in machine learning for
molecular and materials science are ref 5−9.

2. FEATURE REPRESENTATION

Throughout this Review, we assume to have obtained molecular
data from a simulation procedure, such as Monte Carlo (MC)10

or molecular dynamics (MD).11 In general, the data set comes in
the form of a trajectory: a series of conf igurations, each containing
the positions of all particles in the system. These particles usually
correspond to atoms but may also represent larger “sites”; for
example, multiple atoms in a coarse graining framework. Given a
trajectory data set, before anymachine learning algorithm can be
deployed, we must first choose a specific numerical representa-
tion X for our trajectory. This amounts to choosing a set of
“features” (often referred to as “descriptors” or “fingerprints”)
that adequately describes the system of interest.
The “raw” trajectory data set (the direct output of the

simulation procedure) is represented by a matrix ∈ ×X N D
r

r,
where r stands for “raw”, N is the number of simulation time
points collected, and Dr is the number of degrees of freedom in
the data set. When three-dimensional spatial coordinates are
retained from the simulation, Dr is equal to three times the
number of simulated particles. Whenmomenta are also retained,
Dr is equal to six times the number of simulated particles. It is
from this representation that we seek to featurize our data set;
namely, transform our data into a new matrix ∈ ×X N D. For
later reference, we denote the function that performs the
featurization on each “raw” data point xi,r as  χ →: D Dr , that
is,

χ=x x( )i i ,r (1)

A trivial featurization is to let X = Xr (and thus D = Dr). In this
case, the “raw” data output of the simulation is directly used for
analysis. For molecular systems, however, this is often
disadvantageous, since Dr is typically very large.
When sufficient prior knowledge of the system is available, it is

convenient to choose a feature space such that D≪ Dr that can
appropriately characterize the molecular motion of interest
without significant loss of information. Often, the number of
degrees of freedom required to encode many physical properties
or observables of a molecular system is relatively low.12,13 In the
following, we will review features that have been frequently used
to represent atomic and molecular systems. We can divide these
features into two fundamentally different groups, which we will
discuss in turn. For certain physical systems, such as
biomolecules, each atom may be considered as having a unique
identity that represents its position in a molecular graph. For
such systems, it is often convenient to use features that are not
invariant with respect to permutations of chemically identical
atoms. On the other hand, for most condensed matter systems,
and materials, atoms of the same element should be treated as
indistinguishable, and descriptors should be invariant under any
permutation of chemically identical atoms. We conclude this
section with a brief discussion of representation learning, a
promising new direction for determining features automatically.
It is worth noticing here that an explicit numerical

representation for the molecular trajectory is not always
necessary since some algorithms can work even if only a
distance measure between molecular structures is defined.14−22

The main limitation of this approach is that its computational
cost scales quadratically with the number of data points.
2.1. Representations for Macromolecular Systems

Many of themethods discussed in this Review have been applied
to classical simulation data sets of systems such as DNA, RNA,
and proteins. A macromolecular simulation of such a system will
contain at least one solute (for example, a protein) comprising
100−100 000 atoms connected by covalent bonds which cannot
be broken. The system will also typically include several
thousand water molecules, as well as several ions and lipids.
Other small molecules, for example a drug or other ligand, are
often also included.
In most analyses of macromolecules, the focus is on the solute

and the solvent degrees of freedom are neglected. In the absence
of an external force, we then expect the solute’s dynamics and
thermodynamics to be invariant to translation and rotation of
the molecule (in three dimensions for fully solvated systems and
in two dimensions for membrane-bound systems). A simple
manner of obtaining a set of coordinates obeying this invariance
is to remove the solvent molecules and, then, superpose (i.e.,
align) each configuration in the trajectory to a reference
structure of the molecule (or of the complex), which is known to
be of physical or biological interest. This can be done by finding
the rotation and the translation minimizing the root-mean-
square deviation (RMSD) with the reference structure.23

While in many cases, this simple procedure is adequate, in
many others it is suboptimal; for example, when a reference
structure is not known or when the configurations are too
diverse to be aligned to the same structure. This is the case for
simulations of very mobile systems, such as RNA and
intrinsically disordered proteins, or for the simulation of folding
processes, in which the system dynamically explores extremely
diverse configurations that cannot be meaningfully aligned to a
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single structure. Beyond RMSD-based approaches, an appro-
priate choice of features satisfying rotational and translational
invariance are the so-called internal coordinates, first introduced
by Gordon and Pople.24 For classical simulations of proteins or
nucleic acids, one can consider the bond lengths and the angles
formed by three consecutive atoms as approximately fixed, and
therefore, the configuration of the molecule can be described by
the value of the dihedral angles formed by four consecutive
atoms.25,26 For example, in a protein the configuration of the
backbone is defined by the so-called ϕ- and ψ-dihedral
(Ramachandran) angles.27 Using these coordinates, which by
construction are invariant with respect to system rotation and
translation, enables a significant dimensionality reduction of the
system’s representation. For example, an amino acid residue has
six backbone atoms, which corresponds to 18 degrees of
freedom if one uses their Cartesian coordinates to represent the
residue. On the other hand, their position is determined with
good approximation by the value of only the two Ramachandran
angles.
For larger systems whose dynamics are characterized by more

global changes in conformation (as in protein folding or
allostery), it is more common to use a contact-based
featurization. For example, the “contact distances” between all
monomers can be used according to a predesignated site (e.g., α-
carbons in a protein) or the closest (heavy) atoms of each pair.
These contacts can be also defined by selecting a given cutoff
distance and then using a contact indicator function.25

There are many more specialized feature representations that
can be employed according to the problem under study. For
example, in simulations that involve two or more solute
molecules, such as ligand binding or protein−protein associa-
tion, distances, angles, and other data specific to the binding site
can be used.28,29 In some cases, featurizations involving
assignment to secondary structure elements,30 solvent-acces-
sible surface area,31 or hand-picked features may be most
appropriate.32 Furthermore, different types of features can be
concatenated (and appropriately scaled). In some cases,
featurizations that explicitly or implicitly treat solvent molecules,
lipids or ions are important. Examples include when character-
izing the solvent dynamics around binding pockets,33 ions
moving through ion channels,34,35 or the lipid composition
around membrane proteins.36,37 Several publications have
compared the suitability of various feature sets for protein
data for analyses, particularly in the context of the kinetic models
described in Section 6.38−40

2.2. Representations for Condensed Matter Systems

In many condensed matter systems, such as solvents and
materials, the physical properties of interest are invariant with
respect to the exchange of equivalent atoms or molecules as such
permutations merely exchange the particle labels. In such
situations, it is often essential that the system configurations are
represented in a permutation-invariant way. For example, in a
pure water simulation, water molecules diffuse around and
change places. Comparing different configurations by a simple
RMSD, which depends on the order of molecules in the
coordinate vector, is therefore inadequate.
A direct approach for working with Cartesian coordinates in a

way that preserves permutational invariance is to relabel
exchangeable particles or molecules such that the distance to a
reference configuration is minimized. For example, in a
simulation of water, one could define an ice-like configuration
where water molecules are aligned on a lattice as a reference

configuration. The (arbitrary) sequence in which waters are
enumerated in this configuration defines the reference labeling.
Then, for every configuration visited during the simulation, one
must determine to which label each water molecule should be
assigned (i.e., which permutationmatrix should be applied) such
that the relabeled configuration will have the minimal RMSD to
the reference configuration. This problem can be solved by a
bipartite matching method, such as the Hungarian algorithm.41

Such approaches have been applied to estimate solvation
entropies42 and sampling permutation-invariant system config-
urations.43

Another common strategy for designing permutation-
invariant features is to first represent a system as a union of
low order constituents (“n-plets”) for which a permutation-
invariant descriptor is computed. In this approach, invariance
can be achieved by enumerating all permutations of subsets of
permutable particles or molecules. While this is not possible for
permutations (the number of which scales factorially), it is
relatively straightforward for pairs or triplets of atoms.44−46 As a
simple example, a system of M atoms is first broken down into
theM(M − 1)/2 unique pairs of atoms that constitute it. Then,
the distribution functions of interatomic distances between two
atomic species is computed. Finally, these distribution functions
are binned to produce permutation invariant feature vectors.
Different descriptors have been proposed which build upon

the above idea in the context of specific aims. For example,
Atom-centered symmetry functions (ACSFs)47,48 are obtained
by expanding 2-body (radial) and 3-body (angular) distribution
functions onto specific invariant bases. The ACSF representa-
tion was the first widely adopted representation for materials
systems. ACSFs are very efficient to evaluate numerically and
they have been shown to be able to resolve geometric
information well enough to train highly efficient interatomic
potentials.49,50 ACSFs are now widely used in shallow neural
networks that replace molecular force fields by learning
quantum-chemical energies.47,48,51,52

Another commonly used descriptor for materials system is the
so-called Smooth Overlap of Atomic Positions (SOAP).53,54

The SOAP representation is obtained by expanding a smoothed
atomic density function onto a radial and a spherical harmonics
basis set. This representation can be considered an expansion of
3-body features.55 The SOAP vector has also been shown to
resolve geometric information very precisely.54

Many other representations based on the n-plets principle
have been suggested. They differ in the specific low-order
contributions chosen and in the particular basis in which the low
order information is expanded. Notable examples are the
Coulomb matrix,56 the “Bag of Bonds”,57 the histograms of
distances, angles, and dihedral angles (HDAD),58 and the many
body tensor representation (MBT).59 In general, finding
informative numerical representations for condensed matter
systems is a very hard problem,60,61 and an exhaustive review of
all the approaches which have been proposed to tackle it is
beyond the scope of this work. The interested reader can refer to
refs 62−64 for a more comprehensive analysis of the different
descriptors developed for systems with permutation invariance.

2.3. Representation Learning

In the past few years, substantial research has been directed
toward learning a feature representation rather than manually
selecting it. Good examples of representation learning
algorithms for molecules are given by graph-neural networks
(GNNs)65 such as SchNet,66 PhysNet,67 DimeNet,68 Cormor-
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ant,69 or Tensor field Networks.70 These networks are usually
trained to predict molecular properties, and they do so by
performing continuous convolutions across the spatial neighbor-
hoods of all atoms. In contrast to other neural network
approaches based on fixed representations,47,71 in GNNs the
representations are not predefined but are instead learnable
using convolutional kernels. The feature representation is a
vector attached to each atom or particle. It is initialized to denote
the chemical identity of the particle (e.g., nuclear charge or type
of bead), and it is then updated in every neural network layer
depending on the chemical environment of every particle and
through the action of convolutional kernels whose weights are
optimized during training. The representation found at the last
GNN layer can thus be interpreted as a learned feature
representation which encodes the many-body information
required to predict the target property (e.g., the potential
energy of the molecule).
GNNs have been extensively used to predict quantum-

mechanical properties66−68,72 and coarse-grained molecular
models.73,74 See refs 4 and 75 for recent reviews of these topics.
For the rest of this Review, we will assume that the

featurization step has been performed; and a sufficiently general
numerical representation X, appropriate for the system under
study, has been obtained.

3. DIMENSIONALITY REDUCTION AND MANIFOLD
LEARNING

In this section, we review dimensionality reduction techniques
that have been used most extensively in the analysis of molecular
simulations. All these techniques involve transforming a data

matrix X of dimensions N × D into a new representation Y of
dimensions N × d, with d ≪ D, with the goal of preserving the
information contained in the original data set. It is typically
impossible to achieve this task exactly, and the different methods
reviewed here can only provide different approximate solutions
whose utility needs to be evaluated on a case by case basis. We
first describe linear projection methods: Principal component
analysis and Multidimensional scaling. These are arguably the
simplest and most widely used techniques of dimensionality
reduction. However, if the data do not lie on hyperplanes these
linear methods can easily fall short. In the subsequent sections
we describe a set of nonlinear projection methods that can deal
also with data lying on twisted and curved manifolds. In order,
we will cover Isomap, Kernel PCA, Diffusion map, Sketch-map,
t-SNE, and deep learning methods.
We will present the theory beyond the mentioned algorithms

only briefly; the interested reader can refer to existing specialized
reviews for more information on such aspects.3,76,77 Instead, we
will focus our attention on the practical issues related to utilizing
these methods for the analysis of molecular trajectories and
highlight relative merits and pitfalls of each method.
The mentioned algorithms are grouped together for reference

in Figure 2. The figure emphasizes that a manifold of increasing
complexity can only be efficiently reduced in dimensionality
using methods of increasing sophistication, which however will
typically require a greater computational power and a longer trial
and error procedure to be properly deployed.

Figure 2. Different algorithms of dimensionality reduction discussed, divided in three groups. From left to right, the listed algorithms are capable of
dealing with manifolds of higher complexity, which comes at the price of a higher computational cost and a larger number of free parameters to choose.

Figure 3. Illustration on the working principle of the PCA projection. (A) Two-dimensional linear manifold embedded in a high dimensional space.
(B) Eigenspectrum of a covariance matrix of the data, as the manifold is two-dimensional a clear gap appears after the second eigenvalues (blue line); a
more typical eigenspectrum is shown in orange. (C) Low-dimensional representation of the data obtained through PCA.
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3.1. Linear Dimensionality Reduction Methods

3.1.1. Principal Component Analysis. Principal compo-
nent analysis (PCA)78−80 is possibly the best known procedure
for reducing the dimension of a data set and further benefits
from an intuitive conceptual basis. The objective of PCA is to
find the set of orthogonal directions along which the variance of
the data set is the highest. These directions can be efficiently
found as follows. First, the data is centered by subtracting the
average, obtaining a zero-mean data matrix X̂. This operation
guarantees the translational invariance of the PCA projection.
Second, the covariance matrix of the data is estimated as

= ̂ ̂C X X
N
1 T

. Finally, the eigenvectors of the matrix C are found

by solving the eigenproblem

λ=α α αCv v (2)

It is simple to show that the direction of maximum variance
coincides with v1, the eigenvector corresponding to the largest
eigenvalue λ1.

80 The direction of maximum variance in the
subspace orthogonal to v1 is v2, and so on. The PCA
representation is ultimately obtained by choosing a number of
components d, and projecting the original data onto these
vectors as Y = XV, where V is a matrix of dimension D × d
containing the first d eigenvectors of C. An illustration of this
procedure is shown in Figure 3a on a data set obtained by
harvesting data points from an 10-dimensional Gaussian
stretched in two dimensions.
Importantly, the eigenvalue λα is exactly equal to the variance

of the data along the given direction vα.
80 For this reason, it is

common to select the dimensionality d most appropriate for a
PCA projection by looking at the eigenvalue spectrum as a
function of the eigenvalue index. A clear gap in such a plot, as
seen in the blue curve in Figure 3b, is an indication that a
dimensionality reduction including the components before the
gap is meaningful. In real world applications, however, it is
common to observe a continuous, although fast, decay of the
magnitude of the eigenvalues (orange curve in Figure 3b). In this
situation the selection of d is more arbitrary. A common rule of
thumb is to choose the smallest d that is able to capture a good
portion of the total variance of the data set. In practice, one can
choose the smallest d such thatΣi=α

d λα/Σi=α
D λα≥ f, where f is a free

parameter, which is often set to 0.98 or 0.95.
The use of PCA to analyze biomolecular trajectories was first

proposed in ref 81−83. In these papers, it was numerically found
that a very small fraction of coordinates were capable of
describing the majority of the motion of the molecules studied.
These coordinates have often been named essential coordinates
and, consistently, the methodology has been named “essential
dynamics”.83 Importantly, the variation along the essential
degrees of freedom was connected to the functional motion of
the protein. In the years that followed, PCA has been extensively
used to characterize both functional motions and the free energy
surface of small peptides and proteins.84−90 In ref 91, the use of
PCA was also proposed in conjunction with metadynamics for
enhanced sampling. In the context of solid state and materials
physics, PCA has been commonly used for exploratory analysis,
visualization, data organization, and structure−property pre-
diction.92−94

In spite of its empirical success, the theoretical foundation of
the use of PCA for the analysis of molecular trajectories has been
the subject of debate. In particular, soon after essential dynamics
was proposed it was argued that the sampling needed to robustly
characterize the essential coordinates was beyond the time-

scales accessible to MD simulations.95,96 Other studies,
however, argued that the convergence time needed for the
characterization of a stable eigenspace of principal components
is reachable and in the range of nanoseconds of simulation
time.97−100 Aside from sampling concerns, the strong
assumption of the existence of a linear manifold which correctly
captures the important modes of variation of a molecular system
can easily fall short, giving rise to systematic errors in analysis
and predictions.101 The approach presented in the next section
provides a manner for overcoming this limitation.

3.1.2. Multidimensional Scaling. Multidimensional scal-
ing (MDS)102,103 is closely related to PCA, and equivalent to it
under certain conditions. MDS will be the basis for the advanced
nonlinear dimensionality reduction techniques which will be
described in the following sections. MDS provides a low
dimensional description of the data by finding the d dimensional
space which best preserves the pairwise distances between
points. It does so by minimizing a cost function quantifying the
difference between the pairwise distance Rij as measured in the
original D dimensional space and the one computed in the low
dimensional embedding

∑= − ∥ − ∥L RY y y( ) ( )
ij

ij i j
2

(3)

If the distance matrix is given by Rij = ∥xi− xj∥, then, it is simple
to show that the vectors yα that minimize eq 3 are found solving
the following eigenproblem104

λ=α α αKv v (4)

and taking λ=α α αy v . The matrix K in eq 4 contains the inner
products of all the centered data vectors Kij = X̂i

T X̂j, where
̂ = − ∑x x xi i N j j

1 . The key trick of MDS is that such a matrix

can be obtained from the matrix of distances Rij = ∥xi − xj∥ in a
simple way, namely104,105

∑ ∑
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2

(5)

It is important to note that the embeddings generated by MDS
and PCA are exactly equivalent if the distance between the
data points is estimated as Rij = ∥xi − xj∥. This follows from
the fact that the eigenvectors of the covariance matrix {vα

c }
and of those of the K matrix {vα

k} are related to each other as

λ =α α αv Xvk k c .76

The covariance matrix C and the matrix of inner products K
have dimensions D × D and N × N, respectively, which greatly
affects the computational cost of the methods. So, for instance, if
the number of points greatly exceeds the number of dimensions
N ≫ D, PCA is more computationally efficient, while the
contrary is true if D ≫ N.
The most important difference between PCA andMDS lies in

the fact that MDS can be used also when the data matrix X is not
available and one is only provided with the matrix Rij of pairwise
distances between points. This is an important feature of MDS,
which allows it to also work in the context of nonlinear
dimensionality reduction as we will describe in the next section.
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3.2. Nonlinear Dimensionality Reduction

3.2.1. Isomap. The Isometric feature mapping (Isomap)
algorithm106 was introduced with the goal of alleviating the
problems of linear methods, such as PCA, which fail to find the
correct coordinates whenever the embedding manifold is not a
hyperplane. The key idea of Isomap is the generation of a low
dimensional representation that best preserves the geodesic
distances between the data points on the data manifold, rather
than the Cartesian distance.
Isomap comprises three steps. First, a graph of the local

connectivities is constructed. In this graph, each point is linked
to its kth nearest neighbors with edges weighted by the pairwise
distances. Second, an approximation of the geodesic distance
between all pairs of points is computed as the shortest path on
this graph. Finally, MDS is performed on the matrix Rij
containing the geodesic distances. The final representation
thus minimizes the loss function in eq 3, and provides the low
dimensional Euclidean projection that best preserves the
computed geodesic distances. An illustration of the working
principle of Isomap is presented in Figure 4.
A drawback of Isomap is its potential for topological

instabilities. Indeed, if the manifold containing the data is not
isomorphic to a hyperplane (for example, it is isomorphic to a
sphere or to a torus) the procedure becomes ill defined, since a
sphere or a torus cannot be mapped to a hyperplane without
cutting it. More generally, the quality of the representation
generated depends on the quality of the geodesic distances,
which can only be estimated approximately. In particular, the
algorithm used to compute geodesic distances requires choosing
which data points can be considered directly connected, namely
close enough that their geodesic distance coincides with their
Cartesian distance. Considering connected points which are too
far apart can bring to a severe underestimation of the geodetic
distance, if the manifold is strongly curved.107

The computation of the geodesic distance between all pairs of
points is also the main performance bottleneck when using
Isomap on large data sets of molecular trajectories. For this
reason, when Isomap was first used for the analysis of molecular
data sets,101 it involved the preselection of a small number of
landmark points nL that were assumed to correctly span the data

manifold. This modified procedure, named “ScIMap” (Scalable
Isomap), is much faster than the standard Isomap implementa-
tion since the geodesic distance is computed only between a
small fraction nL ≪ N of landmark points. The scalability of
Isomap to large data sets was further improved with the
introduction of “DPES-ScIMAP” (Distance-based Projection
onto Euclidean Space ScImap) in ref.108 This procedure involves
an initial projection of the points onto a low-dimensional
Euclidean space.
In ref 101, it is shown that using Isomap in place of PCA

allows describing the folding process of a small protein by much
less variables. This result is confirmed in refs 109 and 110, in
which it is shown that Isomap coordinates faithfully describe the
motion of small molecules and the free energy landscape of small
peptides. On the other hand, in ref 111, only small improve-
ments were observed when using Isomap in place of PCA for
describing the folding process of another peptide. In ref 112, an
Isomap embedding was successfully used to generate the
collective biasing variables for a metadynamics simulation. In ref
113, Isomap was employed to construct an enhanced MD
sampling method.
In general it is clear that the extent to which a nonlinear

method like Isomap proves beneficialor even necessary
depends upon the degree of nonlinearity of the manifold in
which the molecular trajectory is (approximately) contained).
This nonlinearity depends on the system under study as well as
on the type of coordinates chosen to describe it (see section 2).
While it is difficult to determine precisely the degree of
nonlinearity of a data manifold, an approximate estimate can be
obtained by comparing its linear dimension, obtained for
instance by an analysis of the PCA eigenspectrum (Figure 3B),
with its nonlinear intrinsic dimension, which can be computed
using several tools.114,115 An intrinsic dimension much smaller
than the linear dimension can then be seen as an indication of
the presence of curvature and topological complexity in the
manifold. Providing a quantitative measure of this complexity
can still be considered an open problem.

3.2.2. Kernel PCA. A different strategy for finding a low-
dimensional representation for data points embedded in a
curved and twisted manifold is Kernel PCA.116 In Kernel PCA,

Figure 4. (A) Illustration of Isomap on a Swiss roll data set. The original 3D data set (left) is projected on a 2D space in a way that optimally preserves
geodesic distances between points (middle and right). (B) Illustration of Kernel PCA on a data set with two segments that are not linearly separable.
The original 2D data set (left) is first represented in a higher dimensional space, where it becomes linearly separable (middle), and finally, MDS is
performed on the transformed data set (right). Note that the transformed data set typically lies in a space of very highand often infinite
dimensionality, and the 3D embedding shown here only serves illustrative purposes.
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data are represented in a new space using a nonlinear
transformation ϕ(x), where ϕ is a high-dimensional vector-
valued function. A linear dimensionality reduction is then
performed in this space. The transformationϕ should be chosen
in such a way that even if the original data manifold is nonlinear,
the transformed data set is approximately linear, allowing for the
usage of MDS in the transformed space. An illustration of this
concept is provided in Figure 4.
In Kernel PCA, the transformation is not performed explicitly,

but obtained through the use of a kernel function κ(x, x′). By
definition, a kernel function represents a dot product in some
vector space. Hence, one sets

κ ϕ ϕ=x x x x( , ) ( ) ( )i j i j
T

(6)

which implicitly defines the function ϕ. One then implicitly
removes the mean from the transformed data105 by the same
procedure used in MDS (see eq 5)

∑ ∑ ∑̂ = − − +K K
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ij ij
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lm

lm2
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whereKij = κ(xi, xj). Finally, theMDS algorithm is used on such a
matrix, providing the principal components of the data in the
transformed space.
It is crucial to note that the transformed data matrix is never

explicitly computed in the algorithm. One only needs to
compute the matrix of dot products K, and this can be done
efficiently through the use of the kernel function. This fact is
known as the “kernel trick”,1 and it allows to transform the data
in spaces of very high and often infinite dimensionality, thereby
enabling the encoding of highly nonlinear manifolds without
knowing suitable feature functions. A drawback, however, is that
the kernel matrix has the dimension of N2, resulting in
unfavorable storage and computing costs for large data sets.
The simplest kernel one can use is the linear kernel κ(xi,xj) =

xi
Txj, which makes Kernel PCA equivalent to standard PCA.
Polynomial kernels of the kind κ(xi,xj) = (xi

Txj)
p can increase the

feature space systematically for larger values of the parameter p.
The use of a specific kernel, allows recovering Isomap.117

Perhaps the most widely used kernel for Kernel PCA is the

Gaussian kernel κ(xi,xj) = e−||xi−xj||
2/2h2. The Gaussian kernel

depends on the parameter h, which determines the length scale
of distances belowwhich two points are considered similar in the
induced feature space.
Kernel PCA is a powerful method for nonlinear dimension-

ality reduction, since in principle it can overcome the limitations
of linearmethods without a significant increase in computational
cost. However, a practical issue in using Kernel PCA lies in its
sensitivity to the specific choice of kernel function used and any
parameters it may have. In ref 118, it is suggested to choose the
kernel by systematically increasing the kernel complexity (from
the simple linear kernel to the polynomial kernel with p = 2 and
so on) until a clear gap in the engenspectrum of the kernel matrix
appears (see discussion of Figure 3b). Although this procedure is
not guaranteed to be successful in general, in ref.118 the authors
successfully identify the reaction coordinate of a protein with the
aid of Kernel PCA and a polynomial kernel. We refer to ref.119

for more information on the use of Kernel PCA and the various
possible choices of kernels to analyze molecular motion.
In the context of materials physics, Kernel PCA has been

particularly fruitful when used in conjunction with the SOAP
descriptors (reviewed in section 2.2). Indeed, SOAP descriptor
forms the basis for accurate interpolators of atomic energies and

forces,120−122 meaning that this descriptor generates data
manifolds in which similar materials lie close to each other.
Kernel PCA has been successfully used for visualization and
exploration of materials databases,123 for identifying new
materials candidates,92 and to predict phase stability of crystal
structures.124

A common feature of PCA, MDS, and Isomap is that their
result is strongly affected by the largest pairwise distances
between the data points. This can be a problem as the distances
deemed relevant for the analysis of molecular trajectories are
often those of intermediate value: not the largest, which only
convey the information that the configurations are different, and
not the smallest, whose exact value is also determined by
irrelevant details (for example bond vibrations). Kernel PCA can
partially accommodate this issue via the choice of kernel, since
the distances which are preserved are those computed in the
transformed space that the kernel implicitly generates. In the
next subsection, we will describe Diffusion map, another
projection algorithm that can be used in these situations.

3.2.3. Diffusion Map. Diffusion map125,126 is another
technique similar to Kernel PCA, which enables the discovery
of nonlinear variables capable of providing a low-dimensional
description of the system. The diffusion map has a direct
application to the analysis of molecular dynamics trajectories
generated by a diffusion process, as the collective coordinates
emerging from it approximate the eigenfunctions of the Fokker−
Planck operator of the process. In ref 127, it has been shown that
the diffusion map eigenfunctions are equivalent, up to a
constant, to the eigenfunctions of an overdamped Langevin
equation.
To compute a diffusion map, one starts by computing a

Gaussian kernel

= − −K hx xexp( /2 )ij i j
2 2

(8)

identical with the one introduced in the previous section. The
length scale parameter h entering eq 8 has here a specific physical
interpretation. It can be seen as the scale within which
transitions between two configurations can be considered
“direct” or without any significant barrier crossing. In principle,
all pairs of configurations enter eq 8, but in practice, only the
pairs closer than h are relevant in the definition of the kernel Kij,
as the contribution of pairs further apart decays exponentially
with their distance. For this reason, in practical implementations
usually a cutoff distance multiple of h is defined and only the
distances of pairs within this cutoff are computed.
To provide an approximation of the eigenfunctions of the

Fokker−Planck operator, the kernel (eq 8) needs to be properly
normalized128

̃ =
∑ ∑

K
K

K K
ij

ij

k ik s js (9)

We note that different normalizations are possible and
commonly used to approximate different operators (e.g., graph
Laplacian or Laplace−Beltrami instead of Fokker−Planck).129
From this normalized kernel, one estimates the diffusion map
transition matrix as

=
̃

∑ ̃P
K

Kij
ij

j ij (10)
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The resulting elements Pij can be thought of as the transition
probability from data point i to data point j. Indeed ∑jPij = 1.
We now consider the spectral decomposition of P

λ=α α αPv v (11)

Since P is a stochastic matrix, it is positive-definite, only one of
its eigenvalues is equal to 1, and all the others are positive and
smaller than 1. If the collection of configurations used to
construct the diffusion matrix samples the equilibrium
distribution, in the limit of h → 0 and infinite sampling, the
eigenvectors vα converge to the eigenfunctions of the Fokker−
Planck operator associated with the dynamics. In practice, for
finite h and finite sampling, the eigenvectors vα provide a discrete
approximations to these eigenfunctions, and are called “diffusion
coordinates”. Reweighting tricks can be used to apply the
diffusion map approach to analyze molecular dynamics
trajectories out of equilibrium.130

It can be shown that the Euclidean distance in the diffusion
coordinates space, scaled by the corresponding eigenvalues,
defines a “natural” distance metric on the diffusion manifold, the
so-called dif fusion distance:

∫
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where pτ(x′|xi) is the probability of being in configuration x′ after
a time τ for a diffusion process started at position xi, and π is the
equilibrium distribution. Because of the equivalence expressed
in eq 14, the diffusion coordinates provide an accurate
description of the diffusion process, and are usually robust to
noise.
Similarly to the other dimensionality reduction algorithms

discussed so far, Diffusion map is particularly useful if the
spectrum of λ exhibits a gap, say after the d-th eigenvalue, with
λd+1≪ λd. In this case, the sum over the eigenvectors in eq 14 can
be truncated including only the first d terms and the first d
diffusion coordinates can be used to characterize the system.
The diffusion distance (eq 14) has inspired the definition of a
“kinetic distance”,131,132 where the same mathematical form is
retained but eigenvectors obtained with different spectral
methods for the approximation of the dynamics eigenfunctions
are used instead.133,134

The local scale parameter h entering the definition 8 is crucial
in determining the transition probability between two
configurations. Data configurations coming from the Boltzmann
distribution are typically distributed very nonuniformly as they
are highly concentrated in metastable states and very sparse in
transition states. Therefore, a uniform h may be inadequate in
MD applications. To address this, the “locally-scaled diffusion
map” has been developed by Rohrdanz et al.,135 where the
parameter h becomes position-dependent. The density adaptive
diffusion maps approach136 is a related technique to deal with
highly nonuniform data densities.
Diffusion map has been applied to analyze the slow transitions

of molecules,137,138 guide enhanced-sampling methods,139−141

and have been combined with the kinetic variational principles
described in section 6.142

3.2.4. Sketch-Map. While building a low dimensional
representation of a molecular trajectory, we might be interested

in preserving the distances falling within a specific windowwhich
is assumed to characterize the important modes of the system
under study. This is the main motivation for the introduction of
the Sketch-map algorithm.143 Sketch-map finds the projection Y
which minimizes the following loss function:
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(15)

The above equation differs from the standardMDS loss function
(eq 3) in two ways. First, the parameters w are introduced to
allow to control the importance of the distance between any two
points. Second, the distances in the original space and in the
projected space are passed through the sigmoid functions sx and
sy before being compared in the loss. Each sigmoid function
depends on the three parameters, σ, a, and b:

σ= − + − −s d d( ) 1 (1 (2 1)( / ) ))a b a b a/ / (16)

The parameter σ represents the transition point of the sigmoid
(s(σ) = 1/2), and it should be chosen as the typical distance that
is deemed to be preserved. The parameters a and b determine
the rate at which the functions approach 0 and 1, respectively.
With a careful choice of these parameters, the Sketch-map

projection will depend very weakly on distances that are too
small or too large, since these will always be squashed either to 0
or to 1, thus giving little or no contribution to the loss of eq 15.
Contrary to the other projection methods described so far,

Sketch-map requires solving a highly nonconvex optimization
problem (eq 15). In practice, to find a sensible solution, one is
forced to use a combination of heuristics,143 and in general, there
are no guarantees on the computation time needed to find a
sufficiently good solution.
The advantage of Sketch-map is that, with a proper selection

of the parameters in eq 16, it enables the extraction of relevant
structures from a trajectory even when simpler methods fail.
However, an adequate choice of parameters can require a
lengthy trial-and-error operation, which can be particularly
challenging given the absence of guarantees on the time
complexity of solving eq 15. Sketch-map has been successfully
applied for visualization of free energy surfaces,143 biasing of
molecular dynamics simulations,144 building “atlases” of
molecular or materials databases,145 and for structure−property
prediction.146

In the following sections, we describe an approach which
allows finding a low dimensional representation of the data
working on a very different premise: that relative distances
between points are harvested from a stochastic process. This
method, like Sketch-map, also works if the data manifold is not
isomorphic to a hyperplane.

3.2.5. t-Distributed Stochastic Neighbor Embedding.
The t-distributed stochastic neighbor embedding147 (hence-
forth “t-SNE”) performs dimensionality reduction on high-
dimensional data sets following a different route with respect to
the approaches discussed so far. The underlying idea (already
present in the original Stochastic neighbor embedding
(SNE)148) is to estimate, from the distances in the high-
dimensional space, the probability of each point to be a neighbor
of each other point. Then, the algorithm goal is to obtain a set of
projected coordinates in which these “neighborhood proba-
bilities” are as similar as possible to the ones in the original space.
The probability that point j is a neighbor of i is estimated as
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=
∑ ≠

P
K

Kij
ij

k i ik (17)

where Kij is a Gaussian kernel. In this approach, contrary to what
happens in the diffusion map (see eq 10), the length scale
parameter hi is chosen independently for each point i by setting

=− ∑2 PerpP Plogj ij ij2 (18)

where Perp is a free parameter called “perplexity”, which roughly
represents the number of nearest neighbors whose probabilities
are preserved by the projection. Adaptively changing the length
scale to match a given perplexity, hence, allows the method to
preserve smaller length scales in denser regions of the data set.
These probabilities Pij are then transformed into a joint
distribution by symmetrizing the matrix:

̅ =
+

P
P P

N2ij
ij ji

(19)

The neighborhood probabilities in the original space defined in
this manner are then transferred to the projected space. For
doing this, one needs to choose a parametric form for this
probability distribution. At variance with the original SNE
implementation, in which a Gaussian form is assumed, in t-SNE,
a Student’s t-distribution with one degree of freedom is
employed:
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The shape of this distribution is chosen in such a way that it
mitigates the so-called “crowding problem”,147 namely the
tendency to superimpose points when projecting a high-
dimensional data set onto a space of lower dimensionality.
Indeed, the heavy tails associated with this distribution allow
relaxing the constraints in the distances at the projected space,
therefore allowing to a less “crowded” representation.
The two distributions are compared by measuring their

Kullback−Leibler (KL) divergence:149
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ij
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The feature vectors y entering in eq 20 are initialized (randomly
in the original formulation, other possible schemes have been
proposed150) and iteratively modified to minimize the loss
function KL(P̅||Q̅) with a steepest descent algorithm.
The t-SNE loss function eq 21 is nonconvex, making its

optimization difficult. In particular, if one uses steepest descent
the low-dimensional embedding can differ significantly in runs
performed with different initial conditions. This makes t-SNE a
method that is, in principle, very powerful and flexible but
difficult to use in practice.
Recently, the t-SNE method has been adapted to better fit the

needs of molecular simulations. In ref 151, the authors propose a
time-lagged version of the method, in the same spirit of TICA
(see section 6.1). However, as the authors comment, the time-
lagged version distorts the densities from the ones in the original
space, which makes the method inappropriate for computing
free energies. In ref 152, it is claimed that t-SNE provides a
dimensionality reduction which minimizes the information loss
and can be used for describing a multimodal free energy surface

of a model allosteric protein system (Vivid). The same authors
further employ this approach to obtain a kinetic model.153

3.2.6. Deep Manifold Learning Methods. Deep learning
methods are now frequently used to learn nonlinear low-
dimensional manifolds embedding high-dimensional data, and
these techniques are also starting to be adopted for analysis and
enhanced sampling of molecular simulations.
A popular deep dimensionality reduction method is the

autoencoder.154 Autoencoders work by mapping input config-
urations x through an encoder network E to a lower-dimensional
latent space representation y, and mapping this back to the
original space through a decoder network D

=Ey x( ) (22)

̅=Dx y( ) (23)

The network learns a low-dimensional representation y by
minimizing the error between the original data points xi and the
reconstructed data points x ̅i. Note that if E and D are chosen to
be linear maps rather than nonlinear neural networks, then the
optimal solution can be found analytically by PCA (section
3.1.1): indeed, the encoder E is given by the matrix of selected
eigenvectors, and the decoder D is given by its transpose.
More involved deep learning approaches to obtain a low-

dimensional latent space representation are generative neural
networks. Key examples include Variational Autoencoders
(VAEs)155 and Generative Adversarial Networks (GANs).156

VAEs are structurally similar to autoencoders, but involve a
sampling step in the latent space that is required in order to draw
samples from from the conditional probability distribution of
the underdetermined high-dimensional state given the latent
space representation, p(x|y). VAEs and other neural network
architectures have been widely employed to extract nonlinear
reaction coordinates and multidimensional manifolds for
molecular simulation.157−170 The first goal of these approaches
is to aid the understanding of the structural mechanisms
associated with rare events or transitions. See section 6 for a
deeper discussion of variationally optimal approaches to identify
rare-event transitions. Second, the low-dimensional representa-
tion of the “essential dynamics” learned by these methods is
poised to serve the enhance sampling of events that are rare and
particularly important to compute certain observable of interest.
This has been approached by constructing biased dynamics in
the learned manifold space and reweighting the resulting
simulations to obtain equilibrium thermodynamic quanti-
ties,162,164−166 as well as by selecting starting points for unbiased
MD simulations which can then be similarly reweighted to
obtain equilibrium dynamical quantities.160,161,163,171

GANs implicitly learn a low-dimensional latent space
representation in the input of a generator network. Classical
GANs are trained by playing a zero-sum game between the
generator and a discriminator network, where the generator tries
to fool the discriminator with fake samples and the discriminator
tries to predict whether its input came from the generator or was
a real sample from a database. In the molecular sciences, GANS
have (so far) primarily been used for sampling across chemical
space; e.g., to aid the optimization of small molecules with
respect to certain properties.
For completeness, we mention that there is a third very

popular class of generative neural networks called normalizing
flows,172 which have recently been combined with statistical
mechanics in the method of Boltzmann generators,43 which
facilitate rare-event sampling of molecular systems. However,
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flows are invertible neural networks and are thereby not
inherently performing any dimensionality reduction but rather a
variable transformation to a space from which is it easier to
sample, but still of the same dimension as the original input.
Recently, it has been proposed to combine flows with
renormalization group theory to gradually marginalize out
some of the dimensions in each neural network layer.173 This is a
promising direction for combining the tasks of dimensionality
reduction and rare-event sampling in the molecular sciences.

4. DENSITY ESTIMATION

After the configurations have been projected into a low
dimensional space, one can use the representation in this
space for estimating the probability density function of the data
set. Furthermore, if the representation is of dimension smaller
than three, one can directly visualize the probability density ρ.
Equivalently, one can also visualize its logarithm which, if the
simulation is performed in the canonical ensemble at temper-
ature T, is equal to the free energy; that is, F(y) = −kBT
log(ρ(y)).
Density estimation is of great interest well beyond molecular

simulations, and is a key working tool in unsupervised machine
learning. Density estimation consists of estimating the under-
lying probability density function (PDF) from which a given
data set has been drawn. Although its main applications relate to
data visualization (as in the case of visualizing the free energy
surface), it is also part of the pipeline of other analysis methods

such as kernel regression,174 anomaly detection,175 and
clustering (see Section 5).
The natural connection between density estimation and free

energy reconstruction can be exploited to increase the efficiency
of simulation analyses. For example, many kinetic analysis
methods rely on density estimation176−180 (see Section 6).
In the case of equilibrium molecular systems, the PDF as a

function of a feature vector y is in principle known exactly. In the
canonical ensemble, this is given by,

∫ρ δ∝ − −
i
k
jjjjj

y
{
zzzzz

V
k T

y x
x

y x( ) d exp
( )

( ( ))
B (24)

where x( ) is the function which enables the computation of
the feature vector y as a function of the coordinates x. In practice,
however, calculating this integral is not possible, and the
resulting PDF can only be estimated approximately following
one of the procedures described in this section.
Density estimation methods can be grouped into two

categories, namely, parametric and nonparametric methods
(see Figure 5). In the first one, a specific functional form for the
PDF is chosen and its free parameters are inferred from the data.
In contrast, nonparametric methods attempt to describe the
PDF without making a strong assumption about its form.181

The choice between parametric and nonparametric methods
is heavily problem dependent. As a general rule, when the origin
of the data permits a reasonable hypothesis for the functional
form of the PDF, parametric density estimation should be

Figure 5.Graphical summary of the density estimationmethods. Different density estimates on 20 1D data points (green) extracted from amixture of a
Laplace and a Cauchy distribution (black line).
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preferred, since it quickly converges with relatively few data
points. If the functional form is unknown, however, it is often
better to sacrifice performance than to risk introducing bias into
the estimation.

4.1. Parametric Density Estimation

In parametric density estimation a fixed functional form of the
PDF is assumed and one estimates its parameters from the data.
For example, if one assumes that the data are sampled from a
Gaussian distribution one can then estimate the density by
simply computing mean and variance of the data. Such a
procedure is common throughout various scientific branches.
However, this procedure can lead to an error in the estimate that
cannot be reduced by increasing the number of observations,
since the error can be brought to zero only if the data points are
truly generated from a Gaussian distribution. To add flexibility
to this approach and, therefore, alleviate the bias inherent in
assuming the form of the distribution a priori, a common
technique is to model the PDF as a mixture of K distributions

∑

∑

θρ π ψ

π π

= { }

≥ =

y y( ) ( ; )

0, 1

l

K

l l

l
l

K

l
(25)

where ψ(y;{θl}) is a function that depends upon the set of
parameters θl and πl is the weight of this function in the estimate.
A common choice for ψ is a Gaussian, leading to the Gaussian
mixture model (GMMs).182

The parameters {θl,πl} can be estimated by a maximum
likelihood method, namely

∑ ∑θ θ θπ π π ψ··· =
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k
jjjjjj

y

{
zzzzzzy, , , argmax log ( ; )K K

i

N

l

K

l i l1 1
(26)

where the sum over i runs over theN observations yi, i = 1, ...,N.
This likelihood function can then be optimized through (for
example) an expectation-maximization scheme.182

A general problem of GMMs is that, since the likelihood to be
optimized is a nonlinear function of the parameters, finding its
global maximum is typically very difficult. Another critical issue
in this approach is the choice of the hyperparameter K, that is,
the number of functions used in the mixture. There is no
straightforward relationship between the quality of a density
estimate and K because the best choice strongly depends on the
shape of the PDF. The choice of K is a model selection
problem,183 which can be approached by maximizing the
likelihood on a validation data set.184 Alternative Bayesian
approaches for this problem involve maximizing the marginal
likelihood with respect to K or using a Dirichlet process prior
distribution for the hyperparameter K.185

There are numerous applications of mixture models in the
analysis of molecular simulation. In refs.,186,187 the free energy
surfaces of biomolecules are reconstructed as a sum of Gaussian
functions. In refs.,188,189 GMMs are employed as a basis for an
enhanced sampling algorithm in a way that follows the spirit of
metadynamics190 but in which the bias potential is updated to be
the sum of few Gaussian functions. In this case, the number of
basis functions can be adjusted by using variationally enhanced
sampling.191 Moreover, in ref.,180 GMMs are used as basis for
the MD propagator in a kinetic model (see section 6), while in

ref 192, they are used for atomic position reconstruction from
coarse-grained models.

4.2. Nonparametric Density Estimation

4.2.1. Histograms. Nonparametric methods avoid making
strong assumptions on the functional form of the PDF
underlying the data. The most popular nonparametric method,
especially in the molecular simulation community, is the
histogram.193−197

In this method, the space of the data is divided into bins and
the PDF is estimated by counting the number of data points
within each bin. In one dimension, denoting the center of bin I as
yI, and taking yI = y0 + IΔ, where Δ is the bin width, we have

ρ ∼
·Δ

y
n

N
( )I

I
(27)

where nI is the number of configurations within bin I, and can be
computed as χ= ∑ [ − + ]Δ Δn y( )I i y y i,I I2 2

, where χ[a,b](y) = 1 if y∈ [a,

b] and 0 otherwise.
Under the assumption that the different observations are

independent, nI is sampled from a binomial distribution nI ∼
B(N, pI) where (in a one-dimensional feature space)

∫ ρ=
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+Δ
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y
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I

I is the probability of observing a config-

uration in the bin. The expected value of nI/N is equal to pI,
which implies that the estimator in eq 27 is correct only if

∫ ρ
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I

I can be approximated with Δ·ρ(yI). If Δ is too

large, this approximation is not valid and the density estimation
becomes too coarse-grained, thereby inducing a systematic
error, which is referred to as bias.
The variance of nI is Var(nI) =N pI (1− pI), and the statistical

error on the density estimate in eq 27 can be estimated as
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I (29)

where to go from the first to the second line we used the fact that
pI ≪ 1 and pI ≅ ρ(yI)Δ. If one chooses a value of Δ that is too
small, the number of configurations within the bin nI becomes
small, and the resulting error, commonly referred to as variance,
becomes large. In practice, the value of Δ can be chosen by
considering the so-called bias/variance trade-off in which both
small variance and small bias are desired, but decreasing one
often increases the other.181 This trade-off is common to all
nonparametric density estimators.
Histograms are typically used to estimate the density for d≤ 3

since in higher dimensions the estimator becomes noisy since an
increasing number of bins will be either empty or only visited a
few times. This problem can be alleviated only if one
exponentially increases the number of data points with d: a
manifestation of the curse of dimensionality.198 Finally, another
drawback of the histogram is that its estimate of the PDF is not
differentiable.

4.2.2. Kernel Density Estimation. Kernel density
estimation (KDE) partially overcomes the problems associated
with histogramming. KDE approximates the PDF of a data set as
a sum of kernel functions centered at each data point. In one
dimension, the approximation reads
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where the kernel function κ is chosen as a unimodal probability
density symmetric around 0. Particularly, it satisfies the
properties

∫κ κ κ κ≥ = − =
−∞

∞
y y y y y( ) 0, ( ) ( ), ( ) d 1

(31)

The estimator depends on the kernel function of choice and the
hyperparameter h > 0 (i.e., the bandwidth). Some popular
examples of kernels are summarized in Table 1.

The Gaussian kernel is arguably the most used. The
Epanechnikov kernel is optimal in the sense that it minimizes
the mean integrated squared error (MISE).199 However,
experience has shown that the impact of the choice of the
kernel on the quality of the estimation is lower than the choice of
the bandwidth.200

The bandwidth hyperparameter h plays a role similar to the
bin width parameter Δ in the histogram method. h is also
referred to as the “smoothing” parameter; since the larger it is,
the smoother the resulting PDF estimate is. However,
smoothing too much can lead to artificially delete important
features on the PDF. The dependence of the MISE on h can be
decomposed into two terms, namely, the bias, which scales as h2,
and the variance, which corresponds to the error induced by the
statistical fluctuations in the sampling and scales as

h
1

d .
201

As in the case of the histogram, the optimal value of h should
be chosen as a trade-off between the bias and the variance terms.
Much research has been focused on the optimal choice of h in eq
30.202−204

Alternatively, the bandwidth selection problem can be
addressed by introducing an adaptive kernel with a smoothing
parameter that varies for different data points.205,206 A position-
dependent bandwidth can be obtained by optimizing a global
measure of discrepancy of the density estimation from the true
density.181,207 However, this global measure is typically a
complex nonlinear function,208 and its optimization can be
prohibitive for large data sets. A more feasible approach, first
proposed by Lepskii,209 is to adapt the bandwidth to the data
locally. This approach has been further developed by Spokoiny,
Polzehl, and others.210−215

Kernel density estimation can also be used in more than one
dimension by employing multivariate kernels. However, the
number of hyperparameters increases with the number of
dimensions. In the case of the multivariate Gaussian kernel, the
parameters can be summarized in a d×d symmetric matrix H,

which plays a role analogous to h in the one-dimensional case.
The corresponding estimator is
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In comparison with histograms, kernel density estimation has
the advantage that it is differentiable. KDE is gaining increasing
popularity in the analysis of molecular dynamics simulations,
leading even to the development of specific parameters tailored
for MD.216 In addition to their use in visualization of free energy
surfaces217 and the construction of kinetic models,177 KDEs
have been applied in the study of nonexponential and
multidimensional kinetics218 and the computation of entropy
differences.219

4.2.3. k-Nearest Neighbor Estimator. Another route for
estimating the density of a data set is the k-nearest neighbor (k-
NN) estimator.220 In this method, the probability density ρi =
ρ(yi) is estimated as

ρ ∼
·

k
N V r y

1
( )i

d k
d

i (33)

where Vd is the volume of the unitary sphere in dimension d and
rk(yi) is the distance between yi and its k-th nearest neighbor
point.
The k-NN method can be thought of as a special kernel

density estimation with local bandwidth selection, where the
role played by k is similar to that of h in the KDE. The statistical
error induced of this estimator is given by13

ε ρ
ρ

=
k

( )i
i

(34)

The higher the value of k, the smaller the variance of the
estimator, but the larger the bias, since this error estimate is valid
only if the probability density is constant in the hypersphere of
radius rk(yi) centered on yi. The k-NN method can in principle
be used for estimating the PDF in any dimension d. However, if
d = 1, the PDF estimated in this manner cannot be normalized
since the integral for the whole space of 1/r does not
converge.221

The k-NN method is also affected by the curse of
dimensionality. Indeed, it can be shown that for any fixed
number of data points, the difference between the distance from
the k nearest neighbor (rk) and the distance from the next
nearest neighbor (rk+1) trends to 0 when d → ∞,222 leading to
problems in the definition of the density. Much effort has been
put into bypassing this limitation.223 One approach involves
avoiding estimating the density in the full feature space and
instead estimating it in the manifold that contains the data
(which usually has a much lower dimensionality). This
approach, first suggested in ref 224, was further developed in
ref 13 with a specific focus on the analysis of MD trajectories.
While inmolecular systems the configurations are defined by a

high-dimensional feature space, restraints induced by the
chemical and physical nature of the atoms prevent the system
from moving in many directions (for example, in the direction
which significantly shortens a covalent bond). In practice, these
restrains reduce the dimension of the space to a value which is
referred to as an intrinsic dimension. The intrinsic dimension can
be estimated, for example, using the approaches in refs 225−228.
The probability density can then be estimated using eq 33,
where the dimension of the feature space d is replaced with the

Table 1. Some Widely Used Kernels for Density Estimation
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intrinsic dimension, which can be orders of magnitude smaller,
making the estimate better behaved. This framework also
addresses the problem of finding a k that yields sufficiently small
variance and bias. Ref 13 proposes that the largest possible k for
which the probability density can be considered constant
(within a given level of confidence) for each data point
separately. This optimal k, which is point-dependent and
denoted by ki, is then used to estimate the probability density by
a likelihood optimization procedure allowing for density
variation up to a first-order correction. The estimator of the
density then becomes

∑ρ = − − ̂ +
̂ ̂ +

+
=

̂
− +

i
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jjjjjjj
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where vi,l = VID (rl
ID(yi) − rl−1

ID (yi)) is the volume of the
hyperspherical shell enclosed between the lth and the (l − 1)th
neighbor of the configuration yi. This approach enables the
estimation of the probability density directly in the space of the
coordinates introduced in section 2 (for example, the dihedral
angles) rather than performing a dimensionality reduction with
one of the methods described in section 3 in advance or by
explicitly defining a collective variable for describing the system.
In the field of MD simulations, k-NN has been used as part of

the pipeline for more complex analyses229,230 and for computing
both entropies231,232 and free energies.233,234

5. CLUSTERING
Clustering is a general-purpose data analysis technique in which
data points are grouped together based on their similarity
according to a suitable measure (for example, a metric). In
molecular simulations, the use of clustering is very common,
since clusters can be seen as a way of compactly representing a
complex multidimensional probability distribution. Clustering,
thus, performs an effective dimensionality reduction in a manner
which can be seen as complementary to the approaches
described in section 3. It is well-known that there is no

problem-agnostic measure of the success or appropriateness of a
given clustering algorithm or its results.235 Thus, it is crucial to
choose a clustering algorithm based on what is known about the
data set and what is expected about the result. In particular, in
the field of molecular simulations, we can conveniently
differentiate the following two classes of techniques.

• Partitioning schemes: In these approaches, the clusters
are groups of configurations which are similar to each
other and different from configurations belonging to other
clusters. These clusters define a partition (or tessellation)
of the space in which the configurations are defined.

• Density-based schemes: In these approaches, the clusters
correspond to the peaks of the probability distribution
from which the data are harvested (or, equivalently, to the
free energy minima). Data points belonging to different
clusters are not necessarily far apart if they are separated
by a region where the probability density is low (see
Figure 6).

The most striking difference between these two distinct
approaches emerges if one attempts to cluster a set of data
harvested from a uniform probability distribution. Using a
partitioning scheme, one can find any number of clusters
depending on the chosen level of resolution. On the other hand,
using a density based scheme, one will obtain a single cluster.
Clearly, which approach one should employ strongly depends
upon the purpose of the analysis. For instance, if one wants to
find directly the metastable states from a cluster analysis of the
system, one should use a density-based clustering approach. If,
instead, one wants to find an appropriate basis to represent the
dynamics, as in kinetic modeling methods (see section 6), a
partitioning scheme may be more appropriate, since these
schemes allow one to control how similar the configuration
assigned to the same cluster are.

5.1. Partitioning Schemes

Partition-based algorithms aim to classify the configurations in
sets (i.e., clusters) that include only similar configurations.
These algorithm can be further divided into two classes.

Figure 6. Cartoon illustration of the different clustering schemes.
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• Centroid-based/Voronoi tesselation algorithms: In
these methods, the number of clusters is determined by
a specific parameter, which can be a cutoff specifying the
maximum allowed distance between two configurations
assigned to the same cluster or, alternatively, the number
of clusters. The well-known k-means and k-medoids
algorithms belong to this class, as well as the faster but less
optimal leader algorithms k-centers and regular-space
clustering. In all of these methods, each cluster is
associated with a so-called centroid, which is a
configuration representing the content of the cluster.
This centroid induces a so-called Voronoi-tesselation,
which divides space such that each point is associated with
the nearest centroid, in the chosen distance metric.

• Hierarchical/agglomerative and divisive clustering:
Here, the choice of the number of clusters is deferred,
being possible to run the algorithm without setting it in
advance. A (usually binary) tree is constructed according
to a linkage criterion, and the number of clusters can be
selected by appropriately “cutting” the tree, usually by
visual inspection and taking into account the scope of the
analysis. These approaches are commonly referred to as
hierarchical clustering, which can be “agglomerative” or
“divisive” depending on whether the data points are first
considered to be individual clusters ormembers of a single
cluster, respectively.

5.1.1. k-Means and k-Medoids. Arguably, the most
popular clustering schemes inmolecular simulations and beyond
are the centroid-based methods k-means236 and k-medoids.237

In both cases, the number of clusters k is chosen before
performing the algorithm.
In k-means, also known as Lloyd’s algorithm,236 the cluster

centers are k configurations whose position xc,i, i = 1, ..., k
correspond to themean of the coordinates (or the features) of all
the cluster members. For a given choice of k cluster centers, the
quality of the clustering is defined by a loss L(xc). This loss is
defined as the sum of the square of the distances from each
configuration in the data set to the cluster center to which the
configuration is assigned. Therefore, the k-means clustering
problem is formulated as an optimization problem in which the
best solution (i.e., set of cluster centers) is the minimum of L(xc)
with respect to xc. This optimization is known to be NP-hard.238

To find an approximate solution, ref.236 proposes the following
iterative procedure:

1. kmembers of the data set are randomly chosen as centers.

2. Each configuration in the data set is assigned to its closest
center.

3. The centers are recomputed according to the new
assignments.

4. Points 2 and 3 are repeated until the cluster membership
does not change.

Because of the glassy nature of L(xc), the outcome of the
algorithm is heavily dependent on the initialization step. Thus, it
is often necessary to repeat the procedure above with different
initial centers to obtain reasonable results. In light of this
drawback, initialization schemes have been proposed that
improve the tractability of the problem by speeding up
convergence.239 A “minibatch” k-means version has also been
proposed, which alleviates the problem of trapping in local
minima and it is faster than the original method (in which all the
configurations are simultaneously used in the optimization).240

In a closely related approach, called fuzzy c-means,241,242 each

point does not belong to a single cluster, but rather its degree of
membership to all possible clusters is represented by a vector u
with k components such that Σi=1

k ui = 1. k-means scales as
Nki( ) in the number of configurations N and the number of

iterations i. The number of iterations i needed to achieve
convergence depends on how the data is distributed and will
often depend on N, but in practice, k-means is often terminated
when a fixed number of iterations has been reached.
In k-means, the cluster centers in the first step are

configurations in the data set, but in the following steps their
positions are adjusted, and (thus), they will no longer
correspond to configurations in the original data set. This
means that k-means is applicable if an explicit feature
representation is given, but not if only a distance metric is
defined (e.g., when a pairwise RMSD minimal distance is used).
The k-medoids algorithm237 ensures that each cluster centroid
always corresponds to a configuration in the data set, offering an
alternative. In this approach, each cluster center in a given
iteration is chosen as the configuration in the original data set
which minimizes the sum of the distances from the cluster
members. A minibatch strategy can also be employed in k-
medoids. With sufficient data, k-means and k-medoids are
expected to give qualitatively similar results. The key advantage
of the latter is interpretability; for example, in a molecular
simulation application each k-medoids cluster center can be
easily visualized as a configuration present in the raw data set.
Additional advantages of k-medoids are that it is less sensitive to
the presence of outliers and that it can be used with a distance
measure between pairs of coordinates other than Euclidean
distance. The k-medoids algorithms scales as N( )2 , and it is
hence difficult to use for large data sets.243 In both k-means and
k-medoids, the choice of k is an open problem. A common
practice consists in running the algorithm with increasing k
values, and then plot the loss as a function of k (the so-called
scree plot244) looking for an elbow. Other validation indexes,
like the Silhouette245 can be also employed to this end.

5.1.2. Leader Algorithms: k-Centers and Regular-
Space Clustering. As k-means and k-medoids may require
many passes through the data set, they can become extremely
expensive for large data sets. In his book,246 John Hartigan
proposed a leader algorithm in which it is necessary to iterate
over the data only twice: the first time to assign k centroids and
the second time to assign all data points to centroids. This results
in a fast runtime of Nk( ) for N configurations. The most
popular algorithm based on this idea is k-centers.247 The
objective of k-centers is to maximize the distance between
cluster centers. To employ the algorithm, the first cluster center
is chosen randomly from the data set. Then, the next cluster
center is chosen as the configuration in the data set that is
farthest from the previously chosen configuration according to a
distance measure. This procedure is iterated until the desired
number of centers have been obtained. In the second pass, each
configuration in the data set is assigned to the cluster defined by
the closest centroid. k-centers scales as Nk( ) for N
configurations.247 In the absence of “ties”, k-centers is
deterministic after the selection of the initial cluster center,
but it depends on the order in which the data points are
traversed, which may be arbitrary in many applications. For large
data sets, the results are approximately independent of these
choices. It is important to consider whether the k-centers
objective is appropriate for the application at hand, since by
definition it will choose outlying configurations as cluster
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centers,38 and this may not be desired. Subsampling the data20

or using a hybrid clustering scheme248 may mitigate this effect.
Another variant of the leader algorithm, which is equally fast

but less sensitive to outliers is regular space clustering.21 Here,
instead of fixing the number of clusters, one fixes a minimal
distance cutoff dc. The first cluster center is chosen at random.
Then one cycles through the data set, accepting a new data point
as a cluster center when its distance to all existing cluster centers
is greater than dc.
Another similar partitioning procedure was introduced by

Daura et al.249 In this approach, one also chooses a cutoff
distance dc, under the assumption that configurations which are
closer than dc are similar enough to be assigned to the same
cluster. For each configuration i, one then estimates the number
ni of other configurations within dc. The first cluster center is the
configuration with the highest ni; namely, with more neighbors
within a distance dc. All the configurations within dc from the first
center form the first cluster. The second cluster center is then the
configuration with the highest ni after excluding the config-
urations are already assigned to the first cluster. The second
cluster is formed by all the configurations within dc from the
second center that do not belong to the first cluster. This
procedure is iterated until all the configurations are assigned to a
cluster. Its computational cost scales as N( )2 for N
configurations, which can be reduced to N N( log( )) by
using a smart neighbor search algorithm. This procedure is
deterministic: given a set of configurations and a cutoff distance
dc it produces a unique clustering partition, except if for two data
points the number of neighbors ni is equal.
Since (like k-medoids) leader algorithms use available data

points as centroids, they are compatible with clustering
scenarios, where only a pairwise distance metric is given but
no explicit feature representation. In early developments of
kinetic models for molecular simulation data (see section 6);
when pairwise RMSD was used, k-centers and regular space
clustering were frequently employed for clustering steps of
kinetic modeling algorithms.20,21,250−253 Otherand especially
more recentapplications are mostly based on k-means or its
minibatch variant29,40,254−258 and, less frequently, k-me-
doids259).
5.1.3. Spectral clustering. One of the drawbacks of the

approaches described in the previous sections is that they all rely
on the analysis of the distances between pairs of configurations.
Such distances, if computed using all the coordinates, can be
affected by the noise induced by the high dimensionality.
Moreover, the need to deal with distances does not allow the use
of other similarity measures that, for instance, do not respect the
triangular inequality.
Spectral clustering addresses the problem of clustering by an

approach that does not require computing distances. It uses a set
of pairwise similarities to define a weighted undirected graph, in
which each data point corresponds to a vertex and the edges
connecting two vertices i and j are associated with a weightWij.
For convenience, one can organize these weights in a matrix W
and define the diagonal degree matrix D as Dii =∑jWij, and the
graph Laplacian matrix as L = D − W.
The transformation of the pairwise similarities into a graph

can be done in three ways: (1) by connecting all points whose
similarities are equal or greater than a given threshold, (2) by
connecting each point to the k points which are most similar to
it, and (3) by treating the similarities directly as weighted edges
of a fully connected graphs.

Once the graph is built, the method attempts to divide it into
clusters in such a way that the edges of the graphs associated with
data points belonging to different clusters have small weights,
and the edges within a cluster have large weights. One then
defines the cost associated with a given partition into k clusters
as

∑

∑ ∑
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where Cut(Al, A̅l) defines the cost associated with dividing the
graph into a set Al and its complement A̅l (the elements not
belonging to Al). The direct application of this principle is
referred to as the “min-cut” approach,260 which is found
empirically to produce imbalanced partitions261 since in many
cases generates clusters with a single element. This problem can
be addressed by redefining the cost function taking into account
the size of the clusters. This gives rise to a BalancedCut cost
function
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Two successful ways exist to define the size of the clusters within
the BalancedCut objective function. In the RatioCut ap-
proach,262 the size of a cluster size(Al) is simply measured by
the number of vertices in the cluster, while in the normalized cut
(Ncut) approach263 the size of the cluster is measured by the
cumulative connectivity of all data points belonging to the
cluster size(Al) = ∑∀i∈AlDii.
To find the cluster partition that minimizes this quantity one

defines H as a N × K indicator matrix, where Hil has a discrete
positive value if the element i belongs to the clusters l and zero
otherwise. It can be shown that minimizing the balanced cut can
be reformulated as a minimization the trace of the matrixHTHL
with the constraintHTH = I (in the RatioCut case) orHTDH = I
(in the Ncut case). The latter case can be rewritten as the
minimization of the trace of H̃TL̃H̃with the constraining H̃TH̃ =
I, by defining a normalized indicator function as ̃ = −H D H1/2

and a normalized Laplacian as ̃ = − −L D LD1/2 1/2. Unfortu-
nately, both problems areNP-hard because of the discreteness of
the values of H. In spectral clustering, this condition is relaxed,
allowing H to take arbitrary real values. In this manner the
minimization of the trace can be handled as an eigenproblem,
and the trace is minimized by a matrixH composed of the first k
eigenvectors of L. However, the relaxation of the discreteness
condition implies that the columns ofH do not provide indicator
functions but a continuous vector space. Therefore, the final step
of a spectral clustering algorithm involves clustering the
configurations within the H space using a k-means algorithm
(see section 5.1.1).
To summarize, the spectral clustering algorithm consists of

(1) building the weighted graph from the similarities/distance
matrix, (2) computing the (normalized) graph Laplacian and
obtain its first k eigenvectors, and (3) using these eigenvectors as
input for a k-means clustering step. The value of k can be chosen
with the same criteria described in section 3.1.1; namely, if a gap
in the eigenvalue spectrum is present, one should choose the
value of k that preserves eigenvectors corresponding to
eigenvalues above this gap.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c01195
Chem. Rev. 2021, 121, 9722−9758

9737

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c01195?rel=cite-as&ref=PDF&jav=VoR


Apart from the graph-based interpretation illustrated in this
section, the algorithm has been derived in other frameworks and
has many variants, mostly differing in the way in which the graph
is generated or the way in which the Laplacian is normalized. In a
specific formulation,264 spectral clustering can be seen as a
Kernel PCA (described in section 3.2.2), followed by a k-means
clustering step; under certain conditions, it has been shown to be
equivalent to kernel k-means265 The interested reader is
encouraged to check specific reviews on spectral clustering261,266

for more details on the various existing approaches.
This clustering procedure is powerful and robust, and it has

been widely applied for analyzing molecular dynamics
trajectories.267−269 The graph can be generated, for example,
using the RMSD between structures as a similarity measure
combined with a squared exponential kernel.267 However,
spectral clustering techniques differ in many details: the way of
generating the graph, the ways of normalizing the Laplacian, the
way of choosing k in the absence of a clear gap. Some
recommendations and rules-of-thumb can be found in ref 266,
but a careful system-dependent evaluation is typically necessary.
5.1.4. Hierarchical Clustering. A significant drawback of k-

means and related algorithms is the necessity of choosing k a
priori. In hierarchical clustering, this problem is circumvented by
building a tree structure, called a dendrogram, which represents
an ensemble of clustering models with every possible k. One can
then choose the most appropriate partition a posteriori from the
dendrogram. Hierarchical clustering approaches require defin-
ing a dissimilarity function and a linkage criterion (the latter is
sometimes referred to as an objective function). The
dissimilarity function does not need to be a metric. In particular,
it does not need to satisfy the triangular inequality, which yields
great flexibility.
Hierarchical clustering algorithms can be classified into two

categories; namely, agglomerative and divisive algorithms. In
agglomerative clustering, each configuration is initially assigned
to a different cluster. At every iteration two existing clusters are
combined, so the next level of the dendrogram has one fewer
cluster. In divisive clustering, the data set starts as a single cluster
of allN configurations, and at each iteration an existing cluster is
split into two. Divisive clustering can be computationally
intractable because the number of possible divisions scales
unfavorably as clustering proceeds; therefore, we restrict the
remainder of this overview to agglomerative clustering only (the
reader is referred to ref 237 for a detailed discussion of this
topic).
Agglomerative clustering is initialized by considering every

configuration as a different cluster to createN singleton clusters.
Then, the closest two configurations are combined, leaving N −
1 clusters. Which pair of clusters is linked in each step of the
algorithm is decided by a linkage criterion, which is different in
different algorithms. In single linkage270 at a given step of the
algorithm one links together the two clusters A and B, which are
closer according to the dissimilarity measure min(d(a, b)) for a
∈ A, b ∈ B. In complete linkage,271 the dissimilarity measure
used to decide which clusters are linked is max(d(a, b)) for a ∈
A, b ∈ B, and in average linkage272 is the average value of the
distance between the elements of the two clusters. Finally, in
Ward linkage,273 one agglomerates the pair of clusters that leads
to minimum increase of the variance of d(a, b) estimated for the
data belonging to the cluster created upon agglomeration.
Agglomeration continues until only a single cluster remains.
The dendrogram comprising the clustering model can then be

“cut” for any number of clusters 2 ≤ k ≤ n. The change in the

value of the linkage criterion between levels of the dendrogram
can be used to inform where it should be cut274 (cutting the
dendrogram before the sharpest increase is called the “elbow
method”). It is clear that the choice of linkage criterion will
significantly impact the result; for example, for randomly
distributed data in two dimensions, single linkage will create
snake-like clusters and complete linkage will create circle-like
clusters.275

In molecular kinetics (see section 6), agglomerative clustering
is less frequently employed than partitioning schemes, such as k-
means, since the computation of every pairwise dissimilarity
scales as n.2 When agglomerative clustering has been used to
build kinetic models, for example, the simulation data to be
clustered was first significantly subsampled to accommodate this
scaling.252,276 It was shown in ref 277 in the context of kinetic
modeling of molecular simulations (see section 6.3) that
agglomerative clustering with Ward’s linkage produces similarly
accurate results to clustering with k-means; indeed, the Ward
objective function can be linked to that of k-means.278

5.2. Density-Based Clustering

In molecular dynamics simulations, the configurations are
harvested from a probability distribution. This distribution is
often characterized by the presence of relatively isolated
probability peaks that typically correspond to metastable states
of the system. Density-based clustering algorithms can be used
to find these peaks directly. In these approaches, one first
estimates the density of each configuration using one of the
approaches described in section 4. Then, one looks for the peaks
in this densitythese peaks define the clusters. Since a
probability peak can in principle have any shape (for example,
it can be strongly elongated in one direction), the configurations
assigned to a cluster are not necessarily similar. Different
density-based clustering algorithms differ in their strategies for
finding the density peaks.
Possibly the oldest and most famous algorithm for finding the

peaks of a density in feature space is the mean-shift approach.279

The idea at the basis of this algorithm is simple: For each data
point, follow the gradient of the density in ascending direction
until you arrive at a local maximum. All the points arriving at the
same maximum define then a cluster. Thus, starting from a
feature vector y, one first estimates the direction of the gradient
of the density as

κ
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where κ
−( )y y

h
i is a kernel function, satisfying the conditions in

eq 31. If the kernel bandwidth h is small and the data points are
many, m points in the direction of increasing ρ. Therefore, one
can update the feature vector y to y + m(y), and iterate the
procedure until y does non change significantly anymore. This
approach, very popular in image analysis, has been also applied
to the analysis of molecular dynamics trajectories,280,281 but it is
rather computationally expensive since one is forced to run the
iterative procedure described above for each point in the data
set. Moreover, the approach inherits the problems of kernel
density estimation. If the bandwidth h is too small, the algorithm
tends to converge to spurious maxima, whose existence is only
due to undersampling. If, instead, h is too large, some relevant
maxima can be missed due to excessive smoothing. The
approaches described in the following sections partially
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overcome these problems and are, in particular, less sensitive to
noise and more computationally efficient.
5.2.1. DBSCAN. Density-based spatial clustering of

applications with noise (DBSCAN)282 defines clusters as
connected regions with density above a threshold surrounded
by regions with a density below this threshold. In the original
formulation, the density threshold is defined by two parameters:
a neighborhood distance (h) and the minimum number of
configurations within this distance needed for considering a
given configuration above the density threshold (MinPts).
In practice, one first estimates the density by counting how

many configurations are within the neighborhood defined by h
for each configuration i. Note that in this method the densities
estimated at a given configuration are proportional to those
estimated using a uniform kernel with h = ϵ (see eq 30). Then,
the configurations whose number of neighbors within ϵ is
greater than or equal to MinPts are considered above the
threshold and called core points. A configuration j is said to be
“directly reachable” from the configuration i if i is a core point
and j is within ϵ of i. A point j is “reachable” from i if there is a
sequence of points i1, ..., inwith i = i1 and j = in in which each il+1 is
directly reachable from il for all l. Two configurations i and j are
called “density-connected” if there is a configuration k such that
both i and j are reachable from k. It is important to note that
while the reachability property is not symmetric (e.g.,
configuration j can be reachable from configuration i without i
being reachable from j), the density connection is a symmetric
property. Using these definitions, a cluster is defined as a set of
configurations that are all density-connected. Configurations
that are not core points nor density connected are classified as
noise points.
Since it is a density based method, DBSCAN does not require

one to specify the number of clusters in the data a priori, in
contrast to most of the partitioning schemes. Moreover,
DBSCAN can find arbitrarily shaped clusters. However, the
choice of the proper combination of parameters MinPts and ϵ
can be difficult when the densities across configurations are not
uniform or when hierarchical structures are present.283 To solve
these issues, several variants have been proposed (see ref.284 for
a recent survey). Of particular relevance are OPTICS285 and
HDBSCAN,286,287 both of which provide a hierarchical view of
the cluster structure.
DBSCAN had been employed to find representative

structures from MD simulations,288,289 as well as to find regions
characterized by different molecular densities,290,291 in this case
using molecules as data points. HDBSCAN has recently gained
attention also in the analysis of MD trajectories,292−295 mostly
due to its capability to reveal hierarchical structures.
5.2.2. Density Peak Clustering.Density peak clustering296

finds the density peaks according to a different procedure than
DBSCAN. Density peak clustering is based on the idea that if a
configuration is close to a local maximum of the probability
density, then it is surrounded by neighbors with lower density
or, equivalently, it is likely to be at a relatively large distance from
any configurations with a higher density.
These simple qualitative criteria are implemented as follows.

For each configuration, one first estimates the density ρi of
configuration i (using any of the approaches described in section
4). Then, one computes the minimum distance between the
configuration i and any other configuration with higher density

δ =
ρ ρ>

Rmini
j

ij
: j i (39)

where Rij is the distance between configurations i and j.
According to eq 39, the value of δi of the point with highest
density remains undefined, so it is assigned to a value higher than
the rest by convention. Cluster centers are identified as
configurations for which the value of δi and ρi are both
anomalously large. This is because a center is expected to have
both a high density and a large distance from configurations with
higher density.
To select the centers in practice, it is proposed to plot the

value of δi as a function of ρi for each configuration. In this
visualization, the configurations corresponding to density peaks
emerge as outliers and can be recognized by the user in an
interactive way.
Depending on the application, this interactive step may not be

feasible; in this case, an automatic criterion is needed. However,
defining a quantitative criterion for automatically choosing the
centers according to this qualitative definition is nontrivial. In
the original implementation296 it is proposed to find the number
of clusters by a criterion similar to that used in spectral clustering
and PCA; namely, one considers the values of γi = δiρi sorted in
descending order. If a gap is present (say, before γk), set the
cluster centers to be all configurations with γi > γk.
Once the cluster centers are determined, the rest of

configurations are assigned to the same cluster as their nearest
neighbor with higher density.
The original procedure296 has been successively improved

and modified in order to address some of its pitfalls. Faster
versions have been generated, both improving the quality of the
implementation297 and making use of a preliminary k-means
clustering step.298 In ref 299, a “divide-and-conquer” strategy
has been proposed to automatically detect the cluster centers.
Improvements on the estimation of the density have been
addressed with kernel-like300 and k-NN-like approaches301−303

(see section 4).
In ref 304, the authors of the original method adopt a different

approach to address many of its drawbacks. In short, the idea is
to use the adaptive k-nearest neighbor estimator introduced in
ref 13 for computing the density at each configuration. Then, a
configuration is considered a possible density peak if its
computed density is the highest within its neighborhood (the
neighborhood is automatically defined by the algorithm as k̂i; see
section 4.2.3). However, these density peaks may be a result of
statistical fluctuation. This is addressed by using the error
associated with the density estimation as follows: a density peak
is considered “genuine” if the difference between the density at
the maximum and the density at the saddle point is greater than
Z times the sum of the errors of both estimations. Z is the only
parameter of the method and is a measure of the statistic
significance of the peaks. In this approach, all the possible
saddles are first located as density maxima at the borders among
peaks. Then, those peaks that do not pass the test of statistic
significance are lumped together. This saddle analysis provides
as additional feature a topography of the data set; namely, a tool
that permits the hierarchical relationships between clusters to be
considered.
The density peaks method has been optimized for the analysis

of MD simulations,305 and with some modifications, the analysis
of enhanced sampling MD simulations.306 Density peaks has
been successfully employed for extracting binding poses from
protein simulations307 and analyzing the type of sites involved in
the jump of diffusing mobile ions in solid state simulations.308

It has been recently shown179,296,304,309 that if one uses a
density-based clustering approach to find the peaks of a
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probability density estimated in a high-dimensional feature
space, these peaks correspond very closely to the so-called
“Markov states” of a molecular system, which will be introduced
and discussed in section 6. The procedure described in these
references effectively bypasses two of the steps, which are
normally followed in the derivation of a Markovian model,
which will be discussed in the next section: the dimensionality
reduction from a large feature space x to a more compact
representation y, and the clustering performed using one of the
approaches described in sections 5.1.2 and 5.1.1. The drawback
of the density-clustering based procedure is that the Markov
states are an output of the clustering, and one can not attempt
improving them, following the protocol described below in
Section 6. One can only verify a posteriori if the states define a
Markov model by estimating a transition probability restricted
to these states, and verifying if the implied time scales are
independent of the time lag. Exploiting these techniques
together with density-clustering is a possibly interesting research
line.

6. KINETIC MODELS

When running MD simulations, one does not generate
statistically independent data points from the equilibrium
distribution but rather trajectories in which the configurations
are time ordered and in general correlated with each other. The
information embedded in the time ordering can be exploited to
perform an effective and grounded dimensionality reduction,
and the resulting model can be used to extract kinetic
information, such as transition rates, pathways, and time-
correlation functions.
The inclusion of time correlations in the dimensionality

reduction techniques described in section 3, leads to time-lagged
independent component analysis and related linear methods
(section 6.1), whereas the clustering framework described in
section 5 leads to Markov state modeling (MSM) (section 6.3).
Both methods can be unified under a “variational approach”
(section 6.2), a framework, which can also be extended to
nonequilibrium simulations (section 6.4) and can be used to
obtain neural network representations (section 6.5).
An MD simulation can be formally described by the

dynamical operator τ( ) that propagates the probability density
of the system at state t, ρ(xr,t), to that of the system at time t + τ
One can write

∫
ρ τ ρ

ρ
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= |
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x x

x x x x
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where p(xr,t+τ|xr,t) is the conditional probability density of
finding the system at state xr,t+τ given that it was at state xt a
number of time steps τ before. Note that eq 40 is a purely formal
definition as the transition density p(xr,t+τ|xr,t) which usually
cannot be explicitly computed. This propagator view is still
extremely useful, however, as it is the basis for the development
of the kinetic models and algorithms that we will describe here.
One can also define the matrix P(τ) as the discretized version

of the propagator in eq 40. In the context of MSMs, for example,
P(τ) contains the conditional transition probabilities between
disjoint sets, or clusters, of state space. Whenmodeling using the
view of the propagator and its discretized erpart, the unknown
quantities relating to the true physical system are approximated
by known quantities obtained from the data. Throughout this

section, we will use a “hat” to indicate the estimated or
approximate quantity when the distinction is important.
6.1. Time-Lagged Independent Component Analysis

Time-lagged independent component analysis (TICA) was
originally developed in the field of signal processing.310 For a
time series of T ordered configurations {xt}, we can define the
covariance matrix (C00), as well as the time-covariance matrix at
“lag time” τ (C0τ) as
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where τ should be sufficiently small to resolve the dynamics of
interest. The generalized eigenvalue problem that characterizes
TICA is then given by,

̂ = ̂ Λ̂τC V C V0 00 (44)

where the eigenvalues λ̂α are contained in the diagonal of Λ̂.
Each eigenvector v̂α is a column of V̂ and characterizes a latent
coordinate with maximal autocorrelation, which is defined as,



 δ

̂ = [ ̂ ̂ ]
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α α α τ
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As will be shown in section 6.2, TICA can be seen as a special
case of the variational approach of conformation dynamics for
time-reversible dynamics in equilibrium and for linear bases.
Under these conditions, the time-covariance matrix C0τ is
symmetric (for T → ∞),311 and as a consequence, the
eigenvalues in eq 44 are real valued.
To guarantee that also at finite time T, λ̂1 = 1 and λ̂2 < 1 are

achieved, one can use a symmetrized estimator for matrices, C00
and C0τ, as described in ref.312

The latent coordinates {v̂α} are the (orthogonal) slow
processes within the dynamical system obtained from linear
combinations of the degrees of freedom in {xt}. An estimate of
the relaxation time scales of these processes can be obtained
from their corresponding eigenvalues and the lag time according
to

τ
λ

̂ = −
| ̂ |α

α
t

ln (46)

TICA can be used for dimensionality reduction by analyzing the
eigenvalue spectrum and truncating the basis {v̂i} at an observed
spectral gap. Alternatively, one can employ kinetic mapping131

or commute mapping,132 which involve weighting the TICA
components by their eigenvalues or time scales, respectively.
These approaches are similar to the definition of diffusion
distance (recall eq 14) in the context of diffusion map (see
section 3.2.3), but in this case the low-dimensional manifold is
embedded into a space in which geometric distances correspond
to times required to transition between pairs of points.131,132 A
reweighting procedure has also been recently developed to
remove the bias of TICA estimates that arise from non-
equilibrium sampling. While TICA is a linear method, it can be
kernelized to accommodate nonlinear coordinates313,314 (see
the treatment of Kernel PCA in section 3.2.2).
TICA was first used for molecular data to identify slow modes

in MD simulations of proteins.315 Shortly after, it was employed
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as a preprocessing step in the construction ofMSMs (see section
6.3).251,316 TICA has been leveraged to analyze a variety of
biomolecular systems from both simulation and experimental
data including the dynamics of protein folding,252 disordered
proteins,317 protein−peptide, and protein−protein associa-
tion,29,255 protein conformational change and ligand binding,318

binding-induced folding,256 and kinase functional dynamics257

TICA has also been integrated into enhanced sampling
algorithms.319,320

6.2. Variational Approach to Conformational Dynamics

The Variational Approach to Conformation dynamics
(VAC)321 is a principled approach to estimate the eigenvalues
and eigenvectors of the dynamical propagator τ( ).14 Using
VAC theory, it was shown that for a given feature representation
xt = χ (xr,t), the TICA algorithm produces the variationally
optimal approximation to the long-time scale dynamics of τ( )
.316

Specifically, the long-time dynamics is governed by the largest
eigenvalues λα and eigenfunctions ψα of the dynamical
propagator, for which corresponding relaxation time scales are
given by eq 46.14,19,21,322 At this point it is convenient to
consider not directly the propagator τ( ), but the so-called
transfer operator τμ( ),

τ ψ ψ λ=μ α α α( ) (47)

which propagates probability densities that are normalized by
the equilibrium density.14 This technical point goes beyond the
scope of the current review; for now, it is sufficient to say that

τμ( ) and τ( ) both encode the system dynamics, and that for
time-reversible dynamics we can easily switch between the two
operators and their respective eigenfunctions (the interested
reader may refer to ref 21 for details).
The aim of the VAC framework is to approximate the leading

eigenvalue λα and eigenfunction ψα, and in this sense it has a
similar aim as the variational approach in quantum mechan-
ics.323 Suppose we want to do that by a linear superposition of
feature functions:

χψ ̂ = ̂
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α α
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Given the covariance matrices defined in eqs 42 and 43), we
define the discrete propagator:

τ = τ
−P C C( ) 00

1
0

If one chooses indicator functions as features (i.e., xi is 1 when xr
lies in the ith cluster and 0 otherwise), the matrix C00 simply
contains the counts of the number of data points in each state,
thematrixC0τ is a transition count matrix andP(τ) is a transition
probability matrix. For other types of features, P(τ) is a so-called
Koopman matrix.312,324 One then performs an eigenvalue
decomposition of P(τ):

τ λ̂ = ̂ ̂
α α αP v v( ) (50)

According to VAC, the eigenvalues λ̂α are best approximations
to the true eigenvalues λα and ψ̂α are best approximations to the
true eigenfunctions ψα within what the linear superposition of
feature functions (eq 48) allows. Note that this statement is true
in the absence of statistical errors, namely, in the limit T→∞ in
eq 43.

Specifically, this solution maximizes the VAC-r variational
score for the first d eigenvalue-eigenvector pairs, which is
bounded from above by the VAC-r score of the highest d
eigenvalues of the operator τ( ):325
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where the equality only holds when the approximation is exact.
VAC also implies that the approximated eigenvalues under-
estimate the true eigenvalues. By virtue of eq 46, this means that,
in the limit of infinite data, a data-driven approximation to the
true systemmay predict dynamics that are too fast, but never too
slow.326 However, the approximation can be excellent for
practical purposes when a sufficiently long lag time τ can be
chosen.327

Because the VAC defines a scoring function, it enables us to
optimize the model’s description of the true system’s global
kinetics by variationally maximizing eq 51. For a given basis set
used to represent {xt}, the procedure above is equivalent to
TICA, and the TICA eigenvalue problem (44) yields the
optimal linear approximation to {vα}.

316 However, the existence
of a variational score allows us to go beyond linear models and
instead parametrize e.g., kernel or deep neural network models
by interpreting eq 51 as a loss function.
If, instead, one needs to compare different basis sets for the

same τ and d, the variational score (eq 51) can be used to choose
the best basis set.38,40 Since the data available will always be
finite, cross-validation should always be used when performing
such comparisons,38,40,328,329 which is possible by exploiting the
scalar score in eq 51. The choice of τ defines the particular
propagator and its matrix approximation. To this point, we have
only indicated that τ must be sufficiently small to resolve the
dynamics of interest. When TICA or the VAC approach are
employed in the context of Markovian dynamics (see section 6.3
below), τ should also be chosen to be sufficiently large so that the
dynamics are indeed Markovian, or “memoryless”. This is
discussed further in section 6.3.
The variational approach has been expanded to interpreta-

tions involving kinetic variance,131 commute distances,132 and
diffusion mapping.142 Basis sets designed to be variationally
optimized have also been developed,330,331 and a deep learning
approach to optimize this loss function was reported in ref 332.
This method of variationally optimizing a basis is crucial to
modern MSM construction, which is discussed in the following
section.

6.3. Markov State Modeling

In section 6.1, we discussed a strategy for reducing the
dimensionality of a molecular trajectory data set {xt} to a set
of coordinates that optimally describe the relaxation process of
the system In practice, this may involve reducing hundreds or
thousands of spatial degrees of freedom to only a few
coordinates.
A different and more drastic way of compressing the

information on a trajectory is to assign each configuration to a
finite number of groups, as seen in section 5). If the groups
represent “states” of the system, then this kind of clustering is
called a Markov state model (MSM).22 A state is defined by an
indicator basis functions that return 1 if and only if the system is
in the corresponding state. With this choice, the covariance
matrices C00 and C0τ become matrices and the propagator P(τ)
becomes a transition probability matrix (section 6.2). It was
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already understood by Zwanzig that a transition matrix P(τ)
between metastable sets serves as an accurate approximation of
the kinetics between these sets when the chosen lag time τ is
longer than the time required to relax within the states.333

More recently, it has been proven that in a meaningful MSM
P(τ) must approximate the leading eigenvalues and eigenfunc-
tions of τ( ).327 This was an important step forward, as it
confirmed that MSM state definitions do not need to be
metastable: TheMSM approximation error of a metastable state
decomposition can be reduced by using a finer state
discretization whose individual states are not metastable but
give rise to a better approximation of the eigenfunction. It is
especially important to have a finer discretization in the
transition regions between two metastable states, where the
slow-process eigenfunctions change a lot. This led to a tendency
of constructing MSMs with many states. With the introduction
of the VAC and TICA into MSM theory (see section 6.2), a
more systematic approach was available to approximate the
leading eigenfunctions of τ( ) using less states, and the MSM
quality significantly improved.
From a set of state assignments, an MSM is constructed by

counting the pairwise transitions at a lag time τ and storing those
counts in amatrix. Using eq 40, this observedmatrix is converted
into a transition probability matrix, where each row sums to 1
and represents the discrete probability distribution of
transitioning from the state at the row index to any other state
including itself. An alternative approach to using a transition
probability matrix is estimating a transition rate matrix,19,334

whose appeal is that it can propagate the modeled dynamics in
continuous time instead of discrete time steps τ. Note, however,
that neither strategy can resolve the fast part of the true
dynamics (typically faster than τ), as MSMs and other master
equation models coarse-grain the dynamics in space and time.
One typically wants the transition probability matrix to be not

only row-stochastic but also to model a system that is ergodic
and at thermodynamic equilibrium. To ensure ergodicity, every
state must be accessible from every other state given a long
enough simulation time. The system is not ergodic if different
regions of its representation space are not kinetically connected.
In that case, a subset of the system must be used which is locally
ergodic. In practice, this is selected by identifying the largest
connected subgraph of the graph implied by the transition count
matrix C0τ.
Time-reversibility can be imposed on a reversibly connected

transition matrix P(τ) via the detailed balance condition,

π τ π τ= ∀P P i j( ) ( ) ,i ij j ji (52)

Here, π is the vector of equilibrium probabilities, that is, πTP (τ)
= πT. In other words, the equilibrium flux from any state i to j
must be equal to the equilibrium flux from state j to i for all
states. This also implies that there are no cycles in the flux. A
great deal of research has gone into enforcing this constraint,
which is not automatically satisfied when applying direct
transition estimation to a finite simulation trajectory. Several
studies have derived unbiased estimators for reversible MSMs
(i.e., ones that obey detailed balance).19−21,335,336 An unbiased
estimator for a reversible TICA model has also been recently
introduced.312

The resulting transition matrix is a special case of the Pmatrix
discussed in section 6.2, and the VAC can be applied to its
eigendecomposition when detailed balance is obeyed. Although
the approximated eigenfunctions {v̂i} are step functions in

feature space, MSMs can have great expressive power because
the feature transformations from xr to x, where MSM states are
defined, can be nonlinear.
As noted above, the lag time τ must be sufficiently large to

have a good MSM approximation, while being small enough to
resolve states of interest−see ref 337 for a mathematical analysis
of this trade-off and ref 326 for a qualitative discussion. To check
whether the MSM with lag time τ is indeed a good
approximation of the long-time dynamics, we can assess its
adherence to the Chapman−Kolmogorov property16

τ τ= [ ]nP P( ) ( ) n (53)

In practice, to determine a suitable lag time τ one often first
conducts a so-called “implied time scales” test by observing if the
time scales in eq 46 converge to a constant as a function of the
lag time.16 One can easily prove that if the time scales in eq 46 do
not depend on τ, then the Chapman−Kolmogorov property
holds.16

Practically, a straightforward MSM construction protocol
proceeds roughly as follows:

1. Transform the spatial coordinates obtained from a
simulation data set into a set of features, such as contact
distances or dihedral angles (see section 2).

Ideally, these features capture symmetries in the system
(e.g., roto-translational invariance).

2. Optionally perform a basis set transformation of the
features, for example as by applying TICA (section 6.1).
The use of TICA as a preprocessing step for MSMs
facilitates kinetic proximity within the states.251,316

3. Perform clustering (see section 5) on the data set to
obtain discrete, disjoint states.

4. Construct the observed counts matrix and estimate a
transition probability matrix for a chosen lag time, often
using detailed balance constraints. The transition
probability matrix and the state space decomposition
define the MSM.

5. Assess the validity of the Markov assumption at that lag
time using implied time scales or the Chapman−
Kolmogorov test.

Applying the VAC (section 6.2) to MSM construction entails
performing the steps above for the same lag time and assessing
its variational score (as defined in eq 51) for the same number of
eigenvalues. This must be done under cross-validation, that is, by
performing multiple instances of fitting the MSM to a training
set and evaluating it on a held out test set.328 This procedure is
discussed in detail in ref 38. For more detailed reviews of the
theory underlying MSMs, we refer the reader to refs 21, 22, and
338.
The number of microstates (clusters) in an MSM, following

the variational optimization of its parameters is often to large to
lead to a readily interpretable model. For MSMs constructed
from data sets with millions of points in time, hundreds of
microstates are often found to be appropriate.38,277 The further
coarse-graining of MSM state space into so-called “macrostates”
has been part of the MSM construction pipeline since the first
analyses of small peptide and protein folding sys-
tems.17−19,339,340 Indeed, algorithms to find macrostates have
been developed alongside MSM methods since the first
formalizations of the latter.14,341 A summary of these methods
and pertinent references are in ref 22.
Given a valid MSM, the eigenvalues and eigenvectors of P(τ)

can be analyzed and interpreted. According to the Perron−
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Frobenius theorem, the dominant eigenvalue is 1 and its
corresponding eigenvector contains the equilibrium populations
of the states. Every subsequent eigenvalue is smaller than 1 and
its corresponding eigenvector represents a dynamical process
characterizing flux among the MSM states. The time scales of
these processes can be determined from their eigenvalues
according to eq 46. A schematic illustrating of the MSM
construction for a one-dimensional potential21 is provided in
Figure 7. As MSMs reveal the long-time relaxations, they are
naturally well-suited to compute observables of kinetic experi-
ments, such as time-correlation spectroscopy.19,322,342

MSMs have proven to be of great use to various applications
in studies of molecularparticularly biomolecularkinetics.
These includes the analysis of biophysical processes, such as
peptide dynamics17−19,335,343−355 and their oligomerization,356

protein folding,276,339,340,357−365 or a simplified model there-
of ,366 l igand binding,367−373 and conformational
change.257,374−376 Dynamics of other processes, such as carbon
nanotubes377 and solid state atomic systems,378 were also
described using MSMs.
Importantly, MSMs can also reveal the mechanisms of

transitions between long-lived states. Transition state theory,
originally developed in ref 379, was formulated for MSMs and
master equation models in refs 254 and 350 and first applied in
ref 254 to compute the full ensemble of protein folding paths of a
miniprotein. Similar analyses were conducted for ligand
binding,380,381 kinase activation,382 and protein−protein asso-
ciation.29

Whereas the methods described to this point rely on the time-
ordering of the data set, some of the density peaks clustering
methods described in section 5.2.2 can produce MSMs without
requiring time information nor explicit dimensionality reduction
or clustering steps.179,296,304,309 While this approach is powerful
for the above reasons, one drawback of the density peaks

approach to MSM construction is that the Markov states are an
output of the clustering; thus, one can not attempt to improve
them variationally as can be done with the standard protocol
described above. Instead, one can only verify a posteriori if the
states define an adequate MSM by estimating a transition
probability matrix restricted to these states and, subsequently,
examining the implied time scales.

6.4. Koopman Models and VAMP

The algorithms described in sections 6.1, 6.2, and 6.3 require the
use of reversible data that obeys the detailed balance condition
(eq 52). However, this assumption of microscopic reversibility is
not appropriate in all cases. For example, some simulations are
deliberately performed out of equilibrium, such as studies of
membrane channel conductivity in an external electrostatic
potential, or when simulating a force-probe experiment.
To deal with both equilibrium and nonequilibrium data, one

can use Koopman models312,324 and the variational approach to
Markov processes (VAMP), which is a generalization of the
VAC.329,383 In the nonequilibrium analogue of TICA one
estimates the same covariance matrices as in TICA, and
additionally

∑≡ττ

τ

τ τ
=

−

+ +T
C x x

1

t

T

t t
1

T

(54)

which is an instantaneous covariance matrix as C00 but at the
time-point t + τ. If dynamics are stationary, that is, the dynamical
propagator does not depend on the absolute value of the time,
we expect C00 = Cττ in the statistical limit, but if the molecular
system is driven by an external force, that is, as in force-induced
protein unfolding, or if the simulation trajectories are simply too
short to have equilibrated, we will have C00 ≠ Cττ even in the
limit of infinitely many simulation trajectories. Then, the

Figure 7. Schematic illustration describing the MSM construction. First, the data X is reduced to a sequence of integer states c. Then, transitions
among those states after a duration of a lag time τ are counted and stored in a count matrix. Next, the MSM itself is estimated from the count matrix to
create a transition matrix P(τ). The eigenvalues of P(τ) correspond to the time scales of the process according to tα≡−τ/log|λ̂α|. The sizes of circles in
the bottom left plot correspond to time scale magnitudes; it can be observed that small changes in eigenvalues result in large changes in time scales due
to the logarithmic transformation. On the right, the state populations are shown for the first four dynamical eigenvectors (corresponding to eigenvalue
indexes 2−5), along with the underlying potential. The heights of the bars indicate state populations, and the colors indicate flux into (blue) and out of
(red) various states.
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variationally optimal latent coordinates are obtained by a
singular value decomposition of a modified propagation matrix

τ Σ̅ ≡ = ̅ ̂ ̅τ ττ
− −P C C C U V( ) 00

1/2
0

1/2 T
(55)

where the latent coordinates {uα} for the data are stored in the
columns of ≡ ̅−U C U00

1/2 , the latent coordinates {vα} for the

time-lagged data are the columns of ≡ ̅ττ
−V C V1/2 , and the

singular values σ̂α comprise the diagonal of Σ̂.258,329 Note that
the singular value decomposition in eq 55 reduces to a standard
eigendecomposition when C0τ is symmetric.
The linear VAMP described abovethat is, the nonreversible

analogue of TICAis also called time-lagged canonical
correlation analysis, or TCCA.4,329 For reversible data, eq 55
is equivalent to eq 44.258 Furthermore, MSMs are a special case
of Koopman models when the data is both reversible and
represented by a basis of indicator functions.329 The interested
reader is further referred to ref 258, which demonstrates the
equivalence of TICA and TCCA under reversible conditions, as
well as the relationship of both algorithms to CCA in general.
Importantly, like the VAC, VAMP defines a variational score

that can be used to optimize arbitrary shallow or deep machine
learning architectures to obtain MSMs or Koopman models for
equilibrium or nonequilibrium data:329

∑ ∑σ σ≡ ̂ ≤
α

α
α

α
= =

VAMPr

d
r

d
r

1 1 (56)

where σ̂α are the data-driven estimates of the singular values σα
of the true dynamical operator τ( ).329

Such a procedure is described in ref 40 and is used to perform
feature selection in protein folding. The application of Koopman
models to the dynamics of an ion channel in the presence of an
electrical gradient is demonstrated in ref 35. The optimization of
the VAMP score (eq 56) with neural networks has been
presented in ref 157 and is briefly discussed in the following
section. Figure 8 depicts the relationships among the variational
algorithms discussed in Sections 6.1−6.4.
6.5. VAMPnets

In section 6.1, we began with TICA, a dimensionality reduction
method that incorporates the temporal ordering of a data set to
obtain a low dimensional embedding that best preserves the
slowest dynamical processes in the data. Then, in section 6.2, we
described the VAC, a framework for variationally approximating
the slow dynamical modes of the system. The VAC framework
has two key implications. First, it allows us to interpret the TICA
embedding as the best variational approximation of the system’s
slow mode for a linear basis. Second, it allows us to compare
different bases, as the VAC score can be used to assess the
quality of the resulting model.
In section 6.3, we discussed Markov state modeling, a VAC-

compatible method that employs an indicator function basis to
partition a data set into discrete, disjoint states. The VAC
enables various parameters involved in Markov state modeling
(e.g., feature choices, clustering method, and number of
clusters) to be compared to determine the parameter set that
best approximates the dynamics in the true data.
Sections 6.1−6.3 are designed for reversible data; that is,

assumed to be sampled from an equilibrium ensemble. Section
6.4, then, demonstrates that TICA and the VAC can both be
generalized to accommodate nonreversible dynamics through
TCCA and VAMP, respectively (note that TCCA is equivalent
to the linear VAMP). Together, these advances led to the

development of VAMPnets:157 a machine learning framework
that leverages the variational approach to learn a kinetic model
of the data by optimizing a loss function.
It was first proposed by McGibbon and Pande328 that the

variational score introduced in eq 51 can be interpreted as a loss
function and, therefore, can be used to optimize, for example, the
parameters of a MSM. Particularly, McGibbon and Pande
advocated for the use of cross-validation when determining
hyperparameters to accommodate for the necessarily finite
sample size as the variational principle is only exact for infinite
data.328 In the generalization of the reversible VAC (eq 51) to
the nonreversible VAMP (eq 56), Wu and Noe ́ also focused on
the need for cross-validation under variational optimization of
hyperparameters.329

With VAMPnets,157 this insight enables the replacement of
the Koopman model construction pipeline with a neural
network architecture. It has been shown that constructing a
reasonable MSM, following the pipeline described in section 6.3
requires a great deal of trial-and-error.38−40,277,384 To avoid
extensive hyperparameter searching in such a sequence of steps,
VAMPnets purport to use a self-supervised neural network
architecture to collapse the construction procedure (steps 1−4
forMSMs as enumerated in section 6.3) to a single step, in which
the VAMP score (eq 56) is used to optimize the featurization
network and Markov or Koopman model in an end-to-end
fashion (Figure 9a). With VAMPnets, the user only needs to
provide the initial features and the neural network learns a deep
feature representation of a low-dimensional latent space that

Figure 8. From featurized data, an analysis of molecular kinetics can
proceed under the assumption of microscopic reversibility (i.e.,
equilibrium) or not. In the former case, TICA can be applied to reduce
dimensionality and may serve as a final or intermediate model. When
TICA serves as a step in the MSM construction pipeline, clustering is
performed in TICA space and the MSM is estimated from the cluster
assignments. Both TICA and MSMs adhere to the VAC, which acts on
the eigenvalues of the propagator approximation. A macrostate MSM
can be created if further interpretability is desired. In the latter case (no
reversibility assumption), TCCA is used instead of TICA to reduce the
dimensionality of the data set. From there, clustering can be performed
and a reversible MSM can be constructed, or the TCCA results can be
regarded as the final model. The relevant variational principle is VAMP,
which acts on the singular values of the propagator approximation. A
VAMPnet bypasses the majority of the construction pipeline by
creating an interpretable model directly from featurized data.
VAMPnets employ the VAMP criterion as a loss function in a neural
network scheme.
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approximates the eigenfunctions (or singular functions)
corresponding to the slow dynamical processes. In this space,
a Markov state model or Master equation model of the
molecular kinetics is readily obtained. The pipeline is fully
automated when the input features are the “raw” simulation data
(i.e., Cartesian coordinates); alternatively, features can be
determined in a preprocessing step. Several related architectures
have been developed which are schematically presented in
Figure 9.
VAMPnets have proven useful on protein folding data sets.157

Similar work on protein folding has followed that employs the
VAMP basis function in an autoencoder framework158,159,161

(Figure 9c and d).
The VAMPnet architecture has also been recently used to

analyze functional materials.385 Similar architectures have been
developed to learn deep dynamics models of fluid mechanical
systems in an end-to-end fashion386,387 (Figure 9b).

7. RELEVANT SOFTWARE

7.1. Feature Representations

Among many other tools, the PyEMMA384,388 Python library
contains the construction of standard geometric and knowledge-
based features for biomolecular systems, particularly protein
systems. The MDTraj Python library389 (which is internally
used by PyEMMA) is also a resource for creating feature
representations from MD simulation data. PLUMED25 allows
computing a very large number of collective variables, and even
defining ad hoc functions. The three packages DScribe,63

PANNA,390 and Librascal391 can be used to compute all the
most widely used numerical features for condensed matter
systems.
7.2. Dimensionality Reduction

Scikit-learn,392 which itself sources fromNumPy,393 SciPy,394 and
Matplotlib,395 is a widely used statistical learning package that
encompasses a large number of unsupervised learning methods
and tools for supervised learning. Linear dimensionality
reduction methods like PCA and MDS are included in the
package, along with more complex and nonlinear methods like
Isomap, Kernel PCA, and t-SNE. The Diffusion Maps method

can be found in the pyDif fMap package, available at ref 396. An
implementation of the original Sketch-map algorithm143 can be
downloaded from ref 397. Algorithms of deep manifold learning
(such as deep autoencoders) are not implemented in any
specific standard package, since there is no standard way of
constructing such architectures. Libraries, such as Pytorch,398

TensorFlow,399 and Keras,400 can be however used to quickly
implement such deep learning architectures. The models are
typically available as Supporting Information in the relevant
references. For example, the time lagged autoencoder from ref
159 is available at ref 401.

7.3. Density Estimation

The Scikit-learn library also contains a variety of algorithms for
density estimation. Parametric density estimators such as the
Gaussian mixture model can be found there, along with
nonparametric estimators, such as the histogram estimator and
the kernel density estimator. The Point Adaptive k-NN
estimator can be found at ref 402 or at ref 403.

7.4. Clustering

Scikit-learn also implements many clustering algorithms.
Algorithms like k-means and its extensions, as well as DBSCAN,
spectral clustering, and hierarchical clustering can all be found
there. The Deeptime python library, available at,404 includes k-
means clustering and some of its extensions. InMETAGUI3,306

several clustering algorithms like k-medoids or density peaks
clustering have been adapted to its use in the context of biased
simulations. An implementation of the Advanced density peaks
clustering can be found at ref 402 or at ref 403.
Various software packages have been developed that facilitate

the construction of the kinetic models discussed in section 6. As
mentioned above, PyEMMA contains tools for the featurization
of biomolecules. In fact, PyEMMA was designed to provide an
all-in-one tool to create a variety of kinetic models, including
MSMs, from unprocessed simulation data. A variety of tutorials
are available online and are described in detail in ref 388. The
more recent Deeptime software provides a generalization of
many of these methods beyond biomolecular systems, and
performance improvements. Both PyEMMA and Deeptime can
be used for full kinetic model creation, but both packages are

Figure 9.Overview of network structures for learning Markovian dynamical models: (a) VAMPnets,157 (b) time-autoencoder with propagator,386,387

(c) time-autoencoder,159 and (d) variational time-encoder.158
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written in a modular style that enables the use of a particular
algorithm for just one step in kinetic model building. Thus, both
packages can be used for dimensionality reduction, clustering,
and transition matrix estimation without going through the
entire construction pipeline. The Enspara library405 is an
alternative library for Markov state modeling that provides
specialized data structures to improve scalability to very large
data sets.

8. CONCLUSION AND DISCUSSION
Following the increase in processing power and data storage
capabilities of the last several decades, molecular simulations
have now arrived at an unprecedented level of complexity.
Millisecond long simulations of millions of particles are now
relatively common, and simulations of more than one billion
particles can be achieved on specialized computer architec-
ture.406,407 In this work, we have provided a comprehensive
overview of the unsupervised learning techniques that have
proven to be the most useful for the analysis of molecular
simulation data.
We started our overview in section 2 with a discussion on the

various ways in which a trajectory can be encoded into a
numerical representation. Here, the goal is to transform the
“raw” Cartesian coordinates of the constituent particles into a
more compact numerical representation that preserves all the
relevant information on the trajectory. This procedure is a
necessary prerequisite for performing any analysis on a trajectory
data set, and it is of fundamental importance since it will affect
any algorithm subsequently deployed on the chosen representa-
tion. For instance, an overly restrictive representationmight lead
to a systematic bias, while a representation that is too redundant
might lead to an increase in computational cost.
The automatic choice of an informative yet compact data

representation can be considered an open challenge. It is still
common practice to exploit expert knowledge of the system in
order to omit degrees of freedom that are deemed irrelevant for
the scope of the analysis. For instance, many protein folding
studies ignore solvent degrees of freedom since they are
considered unimportant for defining the protein states.
However, it is well-known that solvent does play a role,408,409

in simple chemical reactions as well as in complex biomolecular
transitions, and researchers have developed dedicated collective
variables capable of capturing these phenomena.410−412 In the
spirit of unsupervised learning, ideally one would like to treat the
“solvent” in an agnostic manner, at the same level of the “solute”,
and automatically learn the most relevant features from data. We
believe that substantial improvements are still possible in this
direction.
A similar challenge can be identified in the fields of material

science and solid state physics. Here, the guiding principle for
choosing a data representation is to exploit the knowledge of the
symmetries of the system, such as the invariance with respect to
exchanges of identical atoms or to rigid rotations. The SOAP
and ACSF features are built to automatically satisfy these
properties, and represent prominent examples of data
representation. However, this manner of representing the
configurations becomes memory-intensive when the number
of atomic species is more than 3 or 4. Moreover, the definition of
these features involves the choice of some important hyper-
parameters, such as the size of the neighborhood used to
compute the features: if this size is too small one risks to
overlook important details in the medium-range organization of
the system, while if the size is too large the number of features

increases rapidly. Making SOAP and ACSF features definition
more general and robust can hence be considered another
important open challenge.
As a general guiding principle for choosing a feature space,

unless very specific system knowledge is available, it is not
advisable to select by hand a very small set of coordinates to
describe the system, since any data representation can be made
more compact using specifically designed methods of
dimensionality reduction.
In section 3, we reviewed the algorithms which can be

exploited to capture the structure of the data manifold as it
appears in the original space using a lower-dimensional
representation. The most important and well-known approach
to perform this task is PCA, which has been extensively used to
analyze molecular simulations for many decades, well before any
other unsupervised learning method. This approach is computa-
tionally efficient, it is grounded on a robust and simple theory,
and it is exact if the data manifold coincides with or is contained
in a hyperplane. Several alternative methods have been
developed which generalize PCA to the case in which the data
manifold is curved and twisted. The most prominent examples
are Isomap and Kernel-PCA, which allow “ironing” a curved
manifold.
The topology of the embedding manifold poses a hard

constraint upon the maximum level of dimensionality reduction
which can be achieved with these methods. Consider, for
example, a case in which the data points lie on the surface of a
three-dimensional sphere. Even if the manifold is two-dimen-
sional, it is impossiblein theory and in practiceto find a two-
dimensional representation of the data that preserves the
neighborhood relationship of all the data points. In other words,
if the embedding manifold is not topologically equivalent to an
hyperplane, it is impossible to reduce the dimension of the
representation up to the “natural” threshold, which would be the
intrinsic dimension of the data.
The front end of research in this field is the development of

approaches capable of performing a dimensionality reduction in
highly nonlinear and topologically complex manifolds. A
remarkable attempt in this direction is the Sketch-map
approach, which was developed specifically for visualizing and
analyzing molecular simulations. This approach has in principle
the potential to go well beyond PCA and Kernel-PCA, but at the
price of abandoning the simplicity of linear algebra. Indeed, in
the Sketch-map approach the low-dimensional representation is
found by optimizing a highly nonlinear functional, which
moreover depends on several hyperparameters whose values are
system-dependent. Other recent approaches to perform non-
linear dimensionality reduction in molecular simulations are
based on neural networks. As discussed in section 3.2.6,
autoencoders are a natural choice to address this task. We
believe that these approaches can still be significantly improved,
for example by porting the impressive know-how that has been
developed in image recognition and language processing to the
molecular world. For instance, state-of-the-art networks for
image recognition are typically very deep and strongly
overparameterized, and it is now well understood that this
choice helps developing robust and transferable models. This
change of paradigm has been so far only partially digested by the
atomistic simulation community, where it is still common to
exploit architectures with very few hidden layers, and with
relatively few parameters.
Another key tool for recapitulating the results of a molecular

simulation is estimating the probability density or, equivalently,
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the free energy (section section 4). Density estimation is a topic
that has received much attention in data science.201 In molecular
simulations, choosing the best density estimation method is
highly nontrivial, especially if one aims to estimate the
probability density as a simultaneous function of many
coordinates. Moreover, the probability density in a system
characterized by the presence of metastable states varies by
several orders of magnitude by def inition. If information on a
plausible form of the density distribution is available, a viable
option is estimating the free energy by a parametric method
(e.g., mixture models). An alternative strategy, which we
described in detail in this review, is estimating the probability
density directly on the embedding manifold; that is, without
performing any explicit dimensionality reduction beyond the
choice of the features describing the system.13 An open
challenge in the field is the development of a free energy
estimator, which can be used in high-dimensional feature spaces
and, at the same time, can provide an explicit and differentiable
function of the coordinates. An important first step forward in
this direction has been made, once again using neural
networks,413 where the NN is optimized to return the value of
the free energy and its gradient as a function of many collective
variables.
In section 5, we review the clustering algorithms that are most

commonly used for analyzing molecular simulations. Clustering
can be seen an unsupervised dimensional reduction technique,
in which a multidimensional data landscape is mapped to a finite
set of states. The use of clustering in the analysis of molecular
simulations has been ubiquitous since the seminal work of
Brünger et al.,414 but as highlighted in this Review, the
interpretation of a set of clusters will be radically different for
different modeling approaches. In k-means and related methods,
the clusters correspond to a partition of the data landscape,
which in some approaches approximates a Voronoi tessellation.
This partition can be made as fine-grained as desired according
to a fixed parameter, which, in the simplest case, is simply the
number of clusters. In more advanced approaches, such as
hierarchical methods or spectral clustering, the optimal
clustering model can be inferred directly from the data, for
example, by analyzing the structure of a tree in dendrogram-
based approaches. Partitioning schemes are essential for
inferring a dynamic model from a simulation since, as discussed
in section 6, they provide an appropriate basis for estimating the
transition probabilities. In density-based clustering the clusters
have a one-to-one correspondence with probability maxima (or,
equivalently, to free energy minima).
In section 6, we present on overview of algorithms for

dimensionality reduction that explicitly exploit the time-
ordering of a molecular dynamics trajectory. The key idea at
the basis of many approaches is that the eigenvectors of the
matrix approximation of the dynamical propagator describe the
slow kinetic modes of a system, which are also assumed to be the
most relevant. A straightforward, linear way to estimate these
slow modes is through TICA, which has become a cornerstone
of many kinetic analyses. In 2013, it was shown that TICA
provides the optimal linear approximations to the leading
eigenfunctions of the true dynamical propagator. This is a special
case of the VAC, a variational framework that defines a scalar
score for assessing the fidelity of the dynamical modes of a
system.
The VAC is a powerful approach that enables the systematic

optimization of a kinetic model. One kinetic modeling paradigm
that greatly benefits from the development of the VAC is that of

Markov state modeling (see section 6.3). The standard protocol
for constructing a MSM leverages the featurization protocols
described in section 2, the dimensionality reduction techniques
discussed in section 3 and the clusteringmethods summarized in
section 5. Alternatively, these steps can be bypassed by
performing density-based clustering, which in principle directly
provides the Markov states (see section 4), but without the
benefits of the VAC. Although the construction of a MSM
requires many hyperparameters related to the choice of
featurization, dimensionality reduction, and clustering steps,
the VAC enables these hyperparameters to be optimized in an
objective fashion.
TICA, the VAC, and MSMs are designed for the dynamics of

systems at thermodynamic equilibrium; that is, those that
adhere to microscopic reversibility. Recently these approaches
were extended to their nonequilibrium analoguesTCCA,
VAMP, and Koopman models, respectively (see section 6.4).
This suite of methods yield analyses that are less physically
interpretable than their reversible counterparts, but can
accommodate a greater range of chemical and biophysical
systems. An important advance in this class of algorithms is their
recent combination with the modern deep learning approaches
briefly outlined in section 3.2.6. The key idea is that the VAC or
VAMP score is interpreted as a loss function, and a deep neural
network incorporating feature representation, dimensionality
reduction and clustering can be optimized end-to-end using
backpropagation. The combination of state-of-the-art kinetic
modeling tools with deep learning is an exciting area for future
methods development, and holds the promise of selecting model
hyperparameters in a rigorous, automatic, and possibly trans-
ferable way.
Altogether, we have given an overview of unsupervised

learning methods for data representation, dimensionality
reduction, clustering and kinetic modeling in molecular
simulation. We have primarily focused on the discussion of
classical, so-called “shallow”machine learning methods in which
the relevant statistics of the data are often collected in vectors or
matrices and then a linear algebra method is solved (e.g., PCA,
MSMs, diffusion map) or a simple algorithm is iterated (e.g., k-
means). The result of the calculation represents the dimension-
ality reduction, clustering, or kinetic model and often allows us
to conduct further analysis in a relatively straightforward way,
such as trying to understand which molecular features are most
relevant in a learned low-dimensional representation (e.g., PCA,
TICA), or compute a variety of kinetic properties (e.g., MSMs).
These shallow machine learning methods are robust, efficient,
easy to implement and have withstood the test of time.
On the other hand, an overwhelming amount of recent

research focuses on deep learning methods, triggered by the
renaissance of these methods since the AlexNet paper on image
recognition.415 Deep learning methods are notable in that they
can exploit (and require) large amounts of data, and they can
learn highly nonlinear transformations and hidden complex
patterns that a human designer might not be able to come up
with. Their downside is that they are very expensive to train,
have a high memory consumption to store their many
parameters and their predictions may be unstable and
susceptible to noise unless care is taken to prevent that.
Whereas in traditional machine learning applications, such as

image processing or game-playing, deep learning methods
clearly define the state of the art, this is not always clear in
scientific tasks such as the analysis of molecular simulations. As
deep learning methods becomemore andmore established in all
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areas of science, more emphasis should be placed on their
efficiency and reproducibility rather than simply the application
of a deep learning idea to a new problem setting. It is our opinion
that shallow and deep learning methods both have a role to play
in this consideration.
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of molecular reaction coordinates. J. Chem. Phys. 2018, 149, 154103.
(168) Brandt, S.; Sittel, F.; Ernst, M.; Stock, G. Machine learning of
biomolecular reaction coordinates. J. Phys. Chem. Lett. 2018, 9, 2144−
2150.
(169) Lemke, T.; Peter, C. Encodermap: Dimensionality reduction
and generation of molecule conformations. J. Chem. Theory Comput.
2019, 15, 1209−1215.
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