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    A three-dimensional view 

of gene regulation 

 At the microscopic level, the nucleus is 
grossly partitioned into regions of het-
erochromatin and euchromatin, corre-
sponding to inactive and active portions 
of the genome, respectively ( 1 ). In ad-
dition, each chromosome appears to 
be positioned nonrandomly, adopting 
preferred nuclear positions relative to 
each other in certain cell types ( 2 ). Inter -
estingly, gene activation or silencing 
is frequently accompanied by locus 
relocalization within the nucleus ( 3 – 5 ), 
suggesting that the spatial organization 
of chromatin may be important for the 
regulation of gene expression. 

 Recently developed techniques, 
such as 3C (chromosome  conformation 
capture) and RNA-TRAP (tagging and 
recovery of associated proteins) identify 
interacting regions of chromatin and 
reveal its overall three-dimensional or-
ganization within the nucleus ( 6, 7 ). 
In 3C, formaldehyde – cross-linked chro-
matin is digested with restriction enzymes 
and then ligated under conditions that 
favor the ligation of cross-linked frag-
ments, which can then be detected by 
polymerase chain reaction (PCR) and 
sequenced. In RNA-TRAP, in situ 

hybridization is used to target horse-
radish peroxidase activity to primary 
transcripts associated with a transcribed 
gene. Localized peroxidase activity 
catalyses the covalent attachment of 
a biotin tag to nearby chromatin, 
which after purifi cation on streptavi-
din agarose beads can be analyzed 
by PCR to determine the presence of 
specifi c interactions. 

 The use of these techniques has 
identifi ed specifi c interactions between 
distal genomic sequences, revealing an-
other level of nuclear organization ( 6 – 12 ). 
Although many of these interactions 
are likely to be coincidental and are 
driven by the need to share common 
resources, as with the colocalization 
of genes within transcription factories 
( 13 ), several of these long-range inter-
actions have been shown to possess im-
portant biological functions ( 8, 11, 12 ). 
These new fi ndings have expanded our 
understanding of the mechanisms regu-
lating gene expression, and have led to 
the replacement of the traditional linear 
model of gene regulation with a three-
dimensional model in which long-range 
intrachromosomal and interchromo-
somal associations orchestrate and co-
ordinate gene expression. In this model, 
distal regulatory elements physically 
interact both in cis and in trans with 
the genes that they control. Perhaps 
most surprisingly, regulatory elements on 
one chromosome can also directly regu-
late the expression of genes on other 
chromosomes ( 8, 11, 12 ). These new 

concepts might have potential clinical 
importance, as they provide an expla-
nation for the preferential chromosomal 
translocation partners observed in cer-
tain cancers ( 14 ). On page  785  in this 
issue, Majumder et al. ( 15 ) help explain 
how CTCF might orchestrate these 
long-range interactions. 

 CTCF as a mediator of long-range 

interactions 

 A three-dimensional model of gene 
regulation raises the question of which 
factors control nuclear organization and 
long-range interactions. One potential 
candidate is CTCF, a ubiquitously ex-
pressed transcription factor that has 
multiple context-dependent functions. 
CTCF can act as an enhancer-blocking 
protein, can bind to boundary elements 
to prevent spreading of heterochroma-
tin, and can function as both a tran-
scriptional activator and a transcriptional 
silencer. How CTCF carries out these 
diverse functions is not completely clear, 
but recent work from several groups 
has revealed that CTCF may function 
through topological organization of 
the genome ( Fig. 1 ).  One study, for 
example, suggested that CTCF regu-
lates gene expression by inducing the 
formation of long-range chromatin loops 
( 16 ). Two years later, the fi rst direct 
evidence for CTCF-mediated chroma-
tin looping was revealed from analysis 
of the  � -globin locus ( 17 ). 

 CTCF was later found to mediate 
interchromosomal interactions be-
tween the  Igf2/H19  imprinting control 
region (ICR) on chromosome 7 and 
the  Wsb1/Nf1  gene complex on chro-
mosome 11 ( 12 ). Deletion of the  Igf2/
H19  ICR or abrogation of CTCF ex-
pression disrupted this interchromo-
somal association and altered  Wsb1/Nf1  
gene expression ( 12 ). More recently, 
CTCF has been implicated in driving 
X chromosome homologous pairing 
during the process of X chromosome 
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recruits additional factors that then 
drive long-range interactions. Indeed, 
Majumder et al. ( 15 ) showed that CTCF 
requires at least two additional factors to 
function, at least in the control of the 
 HLA-DRB1  and  HLA – DQA1  genes. 
CTCF, RFX, and CIITA formed a com-
plex even in the absence of DNA, and the 
loss of any one of these factors abolished 
long-range interactions with the inter-
genic enhancer element, precluding MHC 
class II expression. 

 Whether RFX and CIITA form a 
structural part of a bridging complex 
or whether they simply recruit CTCF 
and/or additional factors to the  XL9  
enhancer remains to be resolved. It will 
be interesting to purify these and other 
bridging complexes and characterize 
their protein composition. Interestingly, 
recent data show that CTCF is able 
to recruit cohesins to specifi c genomic 
locations ( 20 – 22 ). Cohesins, better known 
for their role in mediating sister chro-
matid cohesion during mitosis, have 
proven chromatin bridging potential and 
are thus an obvious candidate for spatial 
organization of the genome. 

 How are these interactions controlled? 

 As CTCF is a ubiquitous factor, its func-
tion cannot be regulated by diff erential 
expression. Thus, long-range intra- and 
interchromosomal interactions must be 
regulated on other levels. This control 
might involve direct blocking of CTCF 
binding by developmentally regulated 
or allele-specifi c DNA methylation. The 
mono-allelic nature of the interaction 
between the  Igf2/H19  ICR and the 
 Wsb1/Nf1  locus, for example, appears to 
be conferred by imprinted DNA methyl-
ation of the noninteracting loci ( 12 ). 

 As CTCF may require the presence 
of other protein factors in some con-
texts, another level of control might in-
volve regulation of the expression of 
these factors or their ability to interact 
with CTCF. Indeed, Majumder et al. 
( 15 ) found that interactions between 
XL9 and the  HLA-DRB1  and  HLA-
DQA1  genes could be induced in A431 
epithelial cells by interferon  �  treat-
ment, which is essential for CIITA ex-
pression in these cells. In untreated A431 
cells, CIITA is not expressed, precluding 

CIITA. Knocking down CTCF using 
RNAi reduced the long-range inter-
actions between the  XL9  enhancer ele-
ment and the MHC class II genes and 
decreased expression of  HLA-DRB1  
and  HLA-DQA1 . These fi ndings pro-
vide a novel model for MHC class II 
expression, and also provide insight into 
several unanswered questions about the 
biology of CTCF, such as how these 
long-range interactions are mediated and 
how the tissue-specifi c functions of 
CTCF are regulated. 

 How does CTCF mediate long-range 

interactions? 

 Because CTCF can form dimers and 
maybe even oligomers, it is possible that 
CTCF molecules bound to distal ele-
ments could interact with each other, 
thereby driving loop formation or inter-
chromosomal interactions ( 16 ). How-
ever, in a study by Ling et al. ( 12 ), the 
presence of CTCF on both interacting 
loci was not an absolute requirement for 
interchromosomal interaction, suggest-
ing either that CTCF is part of a multi-
protein bridging complex or that CTCF 

inactivation ( 18 ). Collectively, these re-
sults suggest that CTCF mediates at least 
some of its gene regulatory functions 
through the three-dimensional organi-
zation of the genome. 

 The growing interest in CTCF is 
highlighted in the study by Majumder 
et al. ( 15 ), which describes a new model 
of major histocompatibility complex 
(MHC) class II gene regulation that is 
mediated by CTCF-dependent, long-
range intrachromosomal interactions. 
Expression of two divergently tran-
scribed MHC class II genes,  HLA-DRB1  
and  HLA-DQA1 , is driven by an inter-
vening nuclear matrix – bound enhancer 
element called  XL9  ( 19 ). CTCF had 
been shown to bind to this enhancer el-
ement, but its eff ect on the expression 
of the two class II genes had not been 
investigated ( 19 ). In the new study, the 
authors fi nd evidence for long-range 
chromatin loops between the promoters 
of the  HLA-DRB1  and  HLA-DQA1  
genes and the intergenic  XL9  enhancer. 
These interactions depended on a com-
plex consisting of CTCF, the transcrip-
tion factor RFX, and the transactivator 

  Figure 1.     Potential mechanisms of CTCF-mediated genome organization.  (A) CTCF (repre-

sented as a single ellipsoid for simplicity) could fold the genome into loop domains, thereby isolating 

genes from the infl uence of their neighbors. (B) Alternatively, CTCF could fold chromatin to bring 

distal regulatory elements or coregulated genes closer together to form a chromatin hub or holo-

complex. (C) Similarly, CTCF could link genes or regulatory elements on different chromosomes to 

mediate interchromosomal regulation.   
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to Majumder et al. ( 15 ), as knocking 
down CTCF did not result in global 
changes in gene expression. Thus, it is 
highly likely that other factors also serve 
to regulate long-range interactions and 
nuclear structure. The protein SATB1, 
for example, has been implicated in the 
regulation of thymocyte nuclear archi-
tecture and the initiation of cytokine 
expression by directing long-range 
interactions within the T helper 2 cyto-
kine locus on mouse chromosome 11 
( 28, 29 ). Other factors, such as cohesins, 
MeCP2, and MENT, which have been 
shown to have chromatin bridging po-
tential, may also help organize the three-
dimensional structure of the nucleus 
( 20 – 22, 30, 31 ). 

 Future perspectives 

 Further characterization of MHC class 
II gene expression may reveal additional 
CTCF-mediated long-range interactions 
within the MHC class II gene complex. 
Indeed, the MHC class II gene  HLA-
DRA  has previously been shown to 
form DNA loops that bring other regu-
latory elements into close proximity with 
its promoter sequences ( 25 ). Additional 
CTCF binding sites have also been iden-
tifi ed within the MHC class II locus, 
highlighting the potential for a general 
role for CTCF in regulating MHC class II 
expression ( 27, 32 ). 

 From a more global perspective, 
long-range interactions and interchro-
mosomal associations are likely to be 
widespread within the nucleus, meriting 
genome-wide analyses to defi ne the nu-
clear  “ interactome ”  ( 11, 33 – 35 ). The 
task will then be to sort through these 
data to identify which interactions are 
functional and which are coincidental. 
In addition, isolation and characterization 
of chromatin bridging complexes, such as 
those containing CTCF, may reveal ad-
ditional players in long-range regulation. 
One of the most interesting questions 
that needs to be addressed is whether 
these long-range interactions are stable, 
static structures or ephemeral complexes 
that form from transient interactions. 
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