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Abstract
Background and Objectives Tumor necrosis factor-alpha (TNF-α) inhibitors are efficacious and considered generally safe 
in adults. However, pediatric-specific safety evidence is scarce. The aim of this study was to screen for signals of previously 
unknown adverse events of TNF-α inhibitors in pediatric patients.
Methods We conducted a data-mining study based on routinely collected, nationwide Danish healthcare data for 2004–2016. 
Using tree-based scan statistics to identify events with unexpectedly high incidence during TNF-α inhibitor use among patients 
with inflammatory bowel disease or juvenile idiopathic arthritis, two analyses were performed: comparison with episodes of no 
use and with other time periods from the same patient. Based on incident physician-assigned diagnosis codes from outpatient 
and inpatient visits in specialist care, we screened thousands of potential adverse events while adjusting for multiple testing.
Results We identified 1310 episodes of new TNF-α inhibitor use that met the eligibility criteria. Two signals of adverse 
events of TNF-α inhibitors, as compared with no use, were detected. First, there were excess events of dermatologic com-
plications (ICD-10: L00-L99, 87 vs. 44 events, risk difference [RD] 3.3%), which have been described previously in adults 
and children. Second, there were excess events of psychiatric diagnosis adjustment disorders (ICD-10: F432, 33 vs. 7 events, 
RD 2.0%), which was likely associated with the underlying disease and its severity, rather than with the treatment. The self-
controlled analysis generated no signal.
Conclusions No signals of previously unknown adverse events of TNF-α inhibitors in pediatric patients were detected. 
The study showed that real-world data and newly developed methods for adverse events data mining can play a particularly 
important role in pediatrics where pre-approval drug safety data are scarce.
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Key Points 

Based on screening of thousands of diagnoses from 
nationwide Danish health registers, we identified no 
signals of previously unknown adverse events of TNF-α 
inhibitors in pediatric patients.

Surveillance of adverse events from routinely collected 
real-world data can complement other analyses in gener-
ating pediatric-specific drug-safety evidence.

1 Introduction

Tumor necrosis factor-alpha (TNF-α) inhibitors have revolu-
tionized the treatment of chronic inflammatory diseases and 
become increasingly common in children [1–3]. Previous 
studies in adults have found associations between TNF-α 
inhibitors and increased risk of adverse events, including 
serious infections and malignancies [4, 5]. However, extrap-
olation of adult data to children is not necessarily relevant, 
as has been shown regarding infections [6]. The pediatric-
specific safety evidence for TNF-α inhibitors is generally 
scarce.

Detection of potential adverse events post-market 
approval is key to ensure safe use of drugs. Signals of previ-
ously unknown adverse events can be detected when new 
drugs are used at a larger scale and by a wider range of 
patients in clinical practice. Adverse event screening can 
play a particularly important role in pediatrics, where output 
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of both clinical and observational studies is low [7, 8]. To 
support optimal prescribing in children there is a need for 
pediatric-specific safety data [9, 10].

Spontaneous reporting systems have traditionally been 
the leading source of timely safety data [11]. However, due 
to increasing availability of large amounts of secondary data, 
including healthcare registers, new opportunities for signal 
generation have emerged [12]. The use of detailed patient 
data that are routinely collected over time enables detection 
of rare adverse events and decreases the risk of reporting 
bias and confounding.

The aim of this data-mining study was to screen for new 
signals of adverse events of TNF-α inhibitors in pediatric 
patients with inflammatory bowel disease (IBD) or juvenile 
idiopathic arthritis (JIA), applying newly developed methods 
for adverse events data mining on nationwide Danish health 
registers.

2  Method

2.1  Study Population

The study was performed based on Danish population-
based registers, linked via unique personal identity num-
bers. The source population was defined as all individuals 
living in Denmark aged < 18 years at some time during the 
study period, 2004–2016. From the source population, we 
identified individuals with confirmed pediatric IBD or JIA, 
which was defined as at least two contacts with specialist 
care (inpatient or outpatient) with a physician-assigned 
IBD or JIA diagnosis during the study period or previously 
(1986–2016). These made up the study cohort of eligible 
individuals. See details in Supplementary Table 1 (Online 
Supplementary Material, OSM).

2.2  Exposure Episodes

From the study cohort, we identified episodes of follow-
up of new TNF-α inhibitor use and episodes of no use of 
TNF-α inhibitors. New use of TNF-α inhibitors was defined 
as initiation of these biologics with no use within 2 years 
before. The TNF-α inhibitor episodes continued as long as 
the patient was on treatment. Treatment discontinuation was 
identified based on assumed duration of each drug adminis-
tration (Supplementary Table 1, OSM) and an allowed gap 
in coverage (grace period) of a maximum of 90 days. Maxi-
mum length of follow-up was 3 years (see examples of the 
identification of episodes in Supplementary Fig. 1, OSM). 
Use of TNF-α inhibitors was defined based on procedure 
codes from the Danish National Patient Register (anatomi-
cal therapeutic chemical classification system [ATC] code 
L04AB). Biologic therapy is only administered in specialist 

care in Denmark and without incurring any cost for the 
patient [13].

Follow-up time with no exposure to TNF-α inhibitors in 
the last 2 years was considered no-use time. The no-use time 
was divided into episodes of a maximum of 3 years, which 
served as comparator episodes. No-use episodes were cen-
sored at initiation of TNF-α inhibitors. The episode design 
allowed individuals to be included in the study multiple 
times, as both TNF-α inhibitor and no-use episodes. All epi-
sodes were mutually exclusive; no time nor outcome event 
was counted more than once.

We performed two analyses: first, a propensity score-
matched analysis where TNF-α inhibitor episodes were 
compared with no-use episodes; second, a self-controlled 
analysis where temporal risk windows during follow-up 
were compared within TNF-α inhibitor initiators.

2.3  Propensity‑Score Matching

In the propensity score-matched analysis, TNF-α inhibi-
tor and no-use episodes were matched on underlying dis-
ease (JIA, Crohn’s disease [CD], or ulcerative colitis [UC; 
including unclassified IBD]) and on propensity scores. One 
patient could contribute multiple episodes to the analysis, 
but episodes in each matched pair had to come from different 
individuals. General potential confounders were included in 
the propensity-score model: demographics (age, sex), soci-
oeconomic factors (family income and education level of 
parents), disease duration, drug use in the last year (oral cor-
ticosteroids and immunomodulators [thiopurines or metho-
trexate]), and general healthcare and drug use (number of 
prescription drugs, outpatient contacts, and inpatient admis-
sions). We used a nearest-neighbor greedy matching algo-
rithm (1:1 matching) with a caliper corresponding to two 
standard deviations of the log-odds of the propensity score 
[14]. The caliper was chosen to ensure that all TNF-α inhibi-
tor episodes were matched and included in the analysis.

2.4  Eligibility and Censoring

Episodes were excluded if any of the following criteria were 
met at index: age ≥ 18 years, patient lived outside of Den-
mark in the last 5 years, no specialist-care contact with IBD 
or JIA diagnosis in last 3 years, and use of any biologic in 
the last year (see Supplementary Table 1, OSM). All patients 
were censored at maximum follow-up (3 years), end of study 
period (31 December 2016), emigration, or death. TNF-α 
inhibitor users were also censored at treatment discontinu-
ation and no-use episodes were censored at initiation of 
TNF-α inhibitors, if any. Additionally, within the matched 
pairs of the propensity score-matched analysis the episode 
with longer follow-up was censored at the end of follow-up 
for its match to make follow-up equal within matched pairs.
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2.5  Adverse Events Data Mining

We screened for adverse events based on physician-assigned 
diagnosis codes (10th revision of the International Statisti-
cal Classification of Diseases and Related Health Problems 
[ICD-10]) from outpatient and inpatient visits in specialist 
care. All ICD-10 codes as well as groups of related codes 
at three higher levels were evaluated as potential adverse 
events: disease chapters (e.g., I00-99 Diseases of the cir-
culatory system), disease blocks (e.g., I10-15 Hypertensive 
diseases), and three- to four-position codes. As such, the 
ICD-10 codes define a structured tree of diagnoses and 
each grouping is defined by a cut on that tree. Diagnoses 
obtained from the register were recorded at the three- and 
four-position levels, which also represented individual cuts 
(see a detailed example in Supplementary Fig. 2, OSM). 
Codes that were not considered relevant as potential adverse 
events were excluded from the analysis, for example, con-
genital conditions, pregnancies and other codings unlikely 
to be caused by drugs (see Supplementary Table 2, OSM).

In the propensity score-matched analysis, we screened the 
data for cuts with a higher incidence in the TNF-α inhibi-
tor episodes in comparison with the no-use episodes. In the 
self-controlled analysis, we screened for temporal clustering 
of potential adverse events following initiation of TNF-α 
inhibitors, that is, events with higher risk during certain time 
windows. Hence only the TNF-α inhibitor episodes were 
included in the self-controlled analysis.

Only incident events were considered for the analysis. In 
the propensity score-matched analysis, a code was incident 
if it was not preceded by the same code at the three-position 
level (e.g., I11.0 not preceded by any code starting with I11) 
at any time point before index to avoid inclusion of repeated 
events within individuals. In the self-controlled analysis, a 
look-back of 3 years in relation to the date of each event was 
used to determine if it was incident. Hence, the look-back 
was constant over follow-up. All events were analyzed but 
signals based on fewer than three exposed events could not 
be presented due to Danish data protection legislation.

2.6  Tree‑Based Scan Statistics

To identify cuts with a higher incidence we used tree-based 
scan statistics, which are disproportionality statistics that 
adjust for multiple testing and that allow for simultaneous 
testing of diagnosis codes at all levels of granularity, that 
is, all cuts on the ICD-10 tree [15]. We screened for poten-
tial adverse events in the propensity score-matched analysis 
using the unconditional Bernoulli model [16, 17]. Exposure 
was assumed to follow a Bernoulli probability distribution. 
Under the null hypothesis and given the 1:1 matching ratio, 
events in all cuts were equally probable (probability = 0.5) 

to occur during TNF-α inhibitor episodes as during no-use 
episodes. The alternative hypothesis was that events in at 
least one cut had a higher risk (probability > 0.5) of occur-
ring during TNF-α inhibitor episodes.

In the self-controlled analysis, we used the conditional 
tree-temporal scan statistic [18, 19]. The analysis was con-
ditioned on the total number of events over follow-up in 
each cut. Under the null hypothesis, events were uniformly 
distributed over follow-up. The alternative hypothesis was 
that there was at least one cut where the risk was higher in 
at least one of the analyzed risk windows. An advantage of 
this method is that no predefined risk windows are needed; 
temporal screening is performed over the entire follow-up 
period. We analyzed all unique, temporal risk windows of 
2 days–1.5 years that fit during the maximum follow-up of 
3 years (maximum window length was half of maximum 
follow-up). No window was shorter than 20% of the follow-
up day it ended (e.g., a window that ended on day 100 was 
20 days or longer) to avoid analyzing short-risk windows a 
long time after drug initiation.

Log likelihood ratios (LLRs) were calculated for each 
cut in the propensity score-matched analysis and for each 
cut-risk window in the self-controlled analysis. Inference 
was based on Monte Carlo simulation because there is no 
simple expression for the sample distribution of the LLRs 
[20]. p values were obtained for each analysis by ranking 
the LLRs of the most likely cuts in relation to maximum 
LLRs simulated under the null hypotheses. Cuts with a p 
value below 0.05 were considered significant. The analysis 
was performed with the free TreeScan v1.4 software (https ://
www.trees can.org) and SAS v9.4 (SAS Institute Inc.).

3  Results

3.1  Episode Characteristics

During the study period, 1310 new users of TNF-α inhibi-
tors were identified. Following 1:1 propensity-score match-
ing, a cohort of 1310 pairs of TNF-α inhibitor episodes 
and no-use episodes was included. Episodes were well bal-
anced on all variables, despite the large caliper used in the 
matching algorithm (Table 1). Of the TNF-α inhibitor epi-
sodes, 59% were female and mean (SD) age was 13.4 (4.0) 
years. The indication for TNF-α inhibitor use was JIA in 
51% of the episodes, CD in 35%, and UC in 14%. Episodes 
were censored at the shortest length of follow-up within 
the matched pairs. Mean (SD) length of follow-up was 1.0 
(0.9) years. For the self-controlled tree-temporal analysis, 
1310 episodes of new TNF-α inhibitor use were included. 
The mean (SD) length of follow-up for these episodes was 
1.2 (0.9) years.

https://www.treescan.org
https://www.treescan.org
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3.2  Propensity Score‑Matched Analysis

In the propensity score-matched cohort, 1284 incident, 
unique cuts of the ICD-10 tree were recorded during fol-
low-up among all episodes. There were five cuts with a 

significantly high number of events in the TNF-α inhibitor 
episodes in comparison with the no-use episodes (Table 2). 
Two of the cuts were dermatologic: ICD-10 chapter Dis-
eases of the skin and subcutaneous tissue (L00-99; 87 vs. 
44 events; risk difference [RD] 3.3%; p value 0.017) and the 

Table 1  Characteristics of episodes of tumor necrosis factor alpha (TNF-α) inhibitor use and no use included in unmatched and propensity 
score-matched cohorts

JIA juvenile idiopathic arthritis

Characteristic Unmatched cohort Propensity score-matched cohort

TNF-α inhibitors No use Standardized 
difference, %

TNF-α inhibitors No use Standardized 
difference, %

(n = 1310) (n = 12,307) (n = 1310) (n = 1310)

Male, no. (%) 532 (40.6) 5218 (42.4) 3.6 532 (40.6) 515 (39.3) 2.6
Age, no. (%)
 0–12 years 480 (36.6) 5743 (46.7) 20.4 480 (36.6) 476 (36.3) 0.6
 13–15 years 381 (29.1) 3567 (29.0) 0.2 381 (29.1) 403 (30.8) 3.7
 16–17 years 449 (34.3) 2997 (24.4) 21.9 449 (34.3) 431 (32.9) 2.9

Disposable family income, no. (%)
 1st quartile 288 (22.0) 3116 (25.3) 7.9 288 (22.0) 302 (23.1) 2.6
 2nd quartile 324 (24.7) 3066 (24.9) 0.4 324 (24.7) 320 (24.4) 0.7
 3rd quartile 348 (26.6) 3071 (25.0) 3.7 348 (26.6) 353 (26.9) 0.9
 4th quartile 350 (26.7) 3054 (24.8) 4.4 350 (26.7) 335 (25.6) 2.6

Parental education, no. (%)
 ≤ 9 years 91 (6.9) 1010 (8.2) 4.8 91 (6.9) 85 (6.5) 1.8
 10–12 years 619 (47.3) 5568 (45.2) 4 619 (47.3) 634 (48.4) 2.3
 ≥ 13 years 600 (45.8) 5729 (46.6) 1.5 600 (45.8) 591 (45.1) 1.4

Calendar year, no. (%)
 2004–2008 279 (21.3) 4727 (38.4) 38.1 279 (21.3) 544 (41.5)
 2009–2013 572 (43.7) 4713 (38.3) 10.9 572 (43.7) 469 (35.8)
 2014–2016 459 (35.0) 2867 (23.3) 26.1 459 (35.0) 297 (22.7)

JIA, no. (%) 673 (51.4) 8203 (66.7) 31.4 673 (51.4) 673 (51.4)
Crohn’s disease, no. (%) 457 (34.9) 1888 (15.3) 46.3 457 (34.9) 457 (34.9)
Ulcerative colitis, no. (%) 180 (13.7) 2216 (18.0) 11.7 180 (13.7) 180 (13.7)
Disease duration, no. (%)
 < 0.5 years 430 (32.8) 5315 (43.2) 21.5 430 (32.8) 446 (34.0) 2.6
 ≥ 0.5 years 880 (67.2) 6992 (56.8) 21.5 880 (67.2) 864 (66.0) 2.6

Oral corticosteroids, no. (%) 594 (45.3) 1459 (11.9) 79.8 594 (45.3) 543 (41.5) 7.9
Immunomodulators (thiopu-

rines or methotrexate), no.
720 (55.0) 1597 (13.0) 98.9 720 (55.0) 668 (51.0) 8

No. of prescription drugs in last year, no. (%)
 0–1 127 (9.7) 4747 (38.6) 71.7 127 (9.7) 128 (9.8) 0.3
 2–5 751 (57.3) 6037 (49.1) 16.6 751 (57.3) 765 (58.4) 2.2
 6 + 432 (33.0) 1523 (12.4) 50.8 432 (33.0) 417 (31.8) 2.4

No. of outpatient hospital contacts in last year, no.
 0–1 43 (3.3) 3491 (28.4) 73.2 43 (3.3) 34 (2.6) 4.1
 2–4 218 (16.6) 4738 (38.5) 50.4 218 (16.6) 234 (17.9) 3.2
 5 + 1049 (80.1) 4078 (33.1) 107.5 1049 (80.1) 1042 (79.5) 1.3

No. of inpatient admissions in last year, no. (%)
 0 400 (30.5) 7482 (60.8) 63.8 400 (30.5) 424 (32.4) 3.9
 1–2 525 (40.1) 3529 (28.7) 24.2 525 (40.1) 516 (39.4) 1.4
 3 + 385 (29.4) 1296 (10.5) 48.6 385 (29.4) 370 (28.2) 2.5
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related sub-branch, Dermatitis and eczema (L20-30; 34 vs. 
8 events; RD 2.0%; p value 0.004). For context, the excess 
number of events in the chapter L00-99 were also driven by 
disorders of skin appendages (L60-75; 28 vs. 10 events; p 
value 0.39), papulosquamous disorders (L40-45; 10 vs. < 3 
events; p value 0.43), and other disorders of the skin and 
subcutaneous tissue (L80-99; 13 vs. 10 events; p value 1.00) 
(Supplementary Table 3, OSM). The other three significant 
cuts were ICD-10 block Anxiety, dissociative, stress-related, 
somatoform, and other nonpsychotic mental disorders (F40-
48; 39 vs. 11 events; RD 2.1%; p value 0.007), Reaction to 
severe stress and adjustment disorders (F43; 35 vs. 9 events; 
RD 2.0%; p value 0.008), and Adjustment disorders (F432; 
33 vs. 7 events; RD 2.0%; p value 0.002) (Table 2 and Sup-
plementary Table 3, OSM).

3.3  Self‑Controlled Analysis

The self-controlled analysis was performed on the TNF-α 
inhibitor episodes. In total, 1036 unique cuts with incident 
events during these episodes were identified. No combina-
tions of cuts and risk windows with significantly high inci-
dence were identified. Hence, there were no signals of events 
with temporal clustering during follow-up.

4  Discussion

In this data-mining study of adverse events of TNF-α inhibi-
tors in pediatric patients based on the nationwide Danish 
population, we found no signals of previously unknown 
adverse events. A signal of dermatologic complications 
that has been previously described in adults and children 
was detected, including excess cases of diseases of the 
skin and subcutaneous tissue, and dermatitis and eczema 
[21–26]. A detected signal of psychiatric diagnoses of 
anxiety, dissociative, stress-related, somatoform, and other 
nonpsychotic mental disorders, including reaction to severe 
stress and adjustment disorders, was likely associated with 

the underlying disease and its severity, rather than with the 
treatment. The study shows the utility and advantages of 
newly developed methods for adverse event data mining to 
generate safety information that is specific to children based 
on Scandinavian health registers.

Previous studies have described dermatologic adverse 
events of TNF-α inhibitor use. In particular, studies have 
described that new-onset psoriasis is a paradoxical adverse 
event of TNF-α inhibitors in patients with rheumatic dis-
ease and IBD. In adult IBD, dermatologic events have been 
recorded in 21–29% (sample size n = 583–732) of patients 
initiating TNF-α inhibitors, where median follow-up was 
3–4.4 years [21, 22]. Psoriasis and cutaneous infections 
were the most common manifestations. In pediatric patients, 
one study found the risk of dermatologic events to be 11% 
(n = 409), with psoriasis, infections, and eczema being the 
most common diagnoses [23]. A small pediatric case series 
estimated the risk at 48% (n = 84), where half of the patients 
with events had lesions that were considered severe [26]. 
The risk of new-onset psoriasis among pediatric TNF-α 
inhibitor users has been estimated at 8–14% (n = 73–409) 
[23–25]. In our analysis, 6.6% of TNF-α inhibitor episodes 
had at least one incident event in the chapter Diseases of the 
skin and subcutaneous tissue (L00-99) and the risk differ-
ence in comparison with no use was 3.3%.

The previous pediatric studies are one-arm case series or 
cohort studies that do not estimate the risk in relation to non-
treated patients, that is, the relative risk or risk difference. 
To inform clinical practice about the potential dermatologic 
risks in pediatric patients, pharmacoepidemiologic studies in 
large, unselected populations with suitable comparators are 
needed, since clinical trials of suitable power will unlikely 
be conducted.

Our analysis also generated a signal of adjustment dis-
orders (F432), which is part of reaction to severe stress and 
adjustment disorders (F43), and the ICD-10 block Anxiety, 
dissociative, stress-related, somatoform and other nonpsy-
chotic mental disorders (F40-48). A plausible interpretation 
is that the signal reflects an association with the burden of 

Table 2  Cuts on the ICD-10 tree with a significantly high risk in tumor necrosis factor-alpha (TNF-α)-inhibitor episodes as compared with no-
use episodes from the propensity score-matched analysis

ICD-10 10th revision of the International Statistical Classification of Diseases and Related Health Problems

Cut (ICD-10 code) Exposed events 
(TNF-α inhibitor)

Unexposed 
events (no use)

Relative risk Risk differ-
ence (%)

p value

F432 Adjustment disorders 33 7 4.71 2.0 0.002
L20-L30 Dermatitis and eczema 34 8 4.25 2.0 0.004
F40-F48 Anxiety, dissociative, stress-related, somatoform 

and other nonpsychotic mental disorders
39 11 3.55 2.1 0.007

F43 Reaction to severe stress, and adjustment disorders 35 9 3.89 2.0 0.008
L00-L99 Diseases of the skin and subcutaneous tissue 87 44 1.98 3.3 0.017
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underlying severe disease in general, rather than the pharma-
cologic effect of TNF-α inhibitors. A recent study showed 
that the risk of related conditions is higher in pediatric IBD 
patients in comparison with the general population: hazard 
ratios were 1.6 for mood disorders (427 events) and 1.5 for 
anxiety disorders (673 events), although the study did not 
investigate whether disease severity is a risk factor [27].

Key strengths of this study were the generalizability and 
large sample of pediatric patients analyzed through routinely 
collected healthcare data on non-selected TNF-α inhibitor 
initiators from the national Danish population. Patients were 
identified during a study period of 13 years and followed for 
1 year on average. The data sources were also granular and 
comprehensive enough to allow for robust confounding con-
trol and to identify a large range of potential adverse events. 
However, null findings in this type of hypothesis-generating 
study cannot be interpreted as an absence of adverse events. 
Insufficient power or too scattered recording of certain diag-
noses can lead to non-significant clusters.

Our use of the recently developed tree-based scan statis-
tics enabled scanning for clusters of events at multiple levels 
of diagnosis granularity, for temporal clustering in relation-
ship to drug initiation, and simultaneously adjust for mul-
tiple testing to generate valid p-values. The self-controlled 
and propensity score-matched analyses complemented each 
other. By performing both, we were able to capture signals of 
potential adverse events based on both temporally increased 
incidence and generally increased incidence in comparison 
with matched, no-use episodes. The lack of a priori defined 
potential adverse events and potential risk windows were 
strengths of the analysis.

A potential limitation was residual confounding. The 
propensity score-matched analysis was susceptible to con-
founding by indication and the self-controlled analysis to 
time-dependent confounding within TNF-α inhibitor users. 
In the propensity score-matched analysis, we adjusted for the 
general potential risk factors age, sex, underlying disease, 
disease duration, treatment history, and general healthcare 
and drug use. Given that disease severity, which is gener-
ally higher in TNF-α inhibitor users, is positively associ-
ated with the risk of many potential adverse events, it was 
unlikely that residual confounding by indication resulted in 
false negatives.

We chose not to use alternative study designs that might 
have decreased confounding additionally, including active 
comparator new user and prevalent new user designs [28, 
29], due to the large exclusion of TNF-α inhibitor users 
and reduced power that these designs would have required. 
Given the hypothesis-generating aim of the study, we pri-
oritized analyzing all TNF-α inhibitor initiators during the 
study period. As for all adverse event data-mining studies, 
we analyzed a large set of potential outcomes simultaneously 

and we did not adjust for specific risk factors in relation to 
each outcome. The included factors represent key confound-
ers in relation to most types of outcomes—as themselves 
or as proxies for other factors. The aim of the analysis was 
to detect signals of potential adverse events, rather than 
inferring causality between drug and outcomes. Nonethe-
less, robust confounding control increases the validity of 
the results.

Another potential limitation of the study was misclassi-
fication of exposure or outcomes, which can lead to biased 
results. All TNF-α inhibitor treatment is administered in spe-
cialist care in Denmark, and coverage in the national patient 
register is considered to be high [13, 30]. A previous study 
has validated the use of diagnosis codes from the Danish 
national patient register to detect outcomes [31]. We did not 
have access to general practice records, which meant that 
adverse events only diagnosed in the primary-care setting 
could not be detected in the analysis. However, children with 
serious and chronic disease, such as IBD and JIA, are cared 
for almost exclusively in specialist care.

5  Conclusions

This adverse event-screening study identified no previously 
unknown adverse events of TNF-α inhibitors in pediatric 
patients. The study also showed how newly developed meth-
ods for health-register screening can provide comprehen-
sive and relevant adverse event signal detection. In pediat-
ric patient groups where data are scarce, this approach can 
complement other types of studies in generating drug-safety 
evidence.
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