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Asthma is characterized by reversible airway narrowing, shortness of breath, wheezing, coughing, and other symptoms driven
by chronic inflammatory processes, commonly triggered by allergens. In 90% of asthmatics, most of these symptoms can also be
triggered by intense physical activities and severely exacerbated by environmental factors. This condition is known as exercise-
induced asthma (EIA). Current theories explaining EIA pathogenesis involve osmotic and/or thermal alterations in the airways
caused by changes in respiratory airflow during exercise. These changes, along with existing airway inflammatory conditions,
are associated with increased cellular levels of reactive oxygen species (ROS) affecting important biomolecules including DNA,
although the underlying molecular mechanisms have not been completely elucidated. One of the most abundant oxidative DNA
lesions is 8-oxoguanine (8-oxoG), which is repaired by 8-oxoguanine DNA glycosylase 1 (OGG1) during the base excision repair
(BER) pathway. Whole-genome expression analyses suggest a cellular response to OGG1-BER, involving genes that may have
a role in the pathophysiology of EIA leading to mast cell degranulation, airway hyperresponsiveness, and bronchoconstriction.
Accordingly, this review discusses a potential new hypothesis in which OGG1-BER-induced gene expression is associated with EIA
symptoms.

1. Introduction

Globally, more than 300 million people suffer from vary-
ing severity of asthma and the annual global death rate
associated with it exceeds 250,000 [1]. In the United States,
the chronic lower respiratory diseases are the third leading
cause of death and more than 30 million people including
children and adults have been diagnosed with asthma [2].
Exercise-induced asthma (EIA) is a condition involving
acute bronchial narrowing (bronchoconstriction) and other
asthma-related symptoms triggered by strenuous physical
activity [3]. In persons with EIA, bronchial narrowing typ-
ically occurs within 5 to 10 minutes after exercise and

normally ceases within 30 and 60 minutes and thereafter
[3]. The direct impact of bronchoconstriction in pulmonary
function is reflected by a decrease (≥10%) in the forced
expiratory volume in 1 second (FEV1) [4]. Although the
precise prevalence of EIA is not known, some studies suggest
that more than 10% of the general population is affected and
90% of asthmatics also show EIA symptoms [3, 5]. This is
an important fact to be considered for asthmatics when they
engage in sports and conditioning activities.

The etiology of EIA is not yet fully known, but the major
theories explaining the characteristic bronchoconstriction
after exercise are the osmotic theory and the thermal theory.
The first theory proposes that increased ventilation during
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exercise results in loss of water from the airway cells causing
an osmotic imbalance and ultimately stimulating the release
of proinflammatory mediators [6–8]. The second theory
proposes that a decrease in airway temperature produced by
changes in the respiratory air flow during physical activities
results in reduction in airway vascular tone and the conse-
quent rebound vasodilation, leading to hyperemia, edema,
and airway obstruction [8]. Both mechanisms (osmotic and
thermal) are considered stressors that can potentially increase
cellular reactive oxygen species (ROS) [9, 10] and trigger
various inflammatory responses including mast cell degran-
ulation, release of histamine, and generation of lipoperox-
idation products such as leukotriene D4 (LTD4), leading
to contractions in airway smooth muscles and ultimately
bronchoconstriction [11, 12].

The susceptibility of individuals for EIA depends on
their genetic background and the environment-modulated
epigenetic changes [13, 14]. Initiation, immunopathogenesis,
and pathophysiology of EIA result from a highly complex
interplay among dysregulated airway epithelial, smoothmus-
cle, and mast cells, and are manifested via a multitude of
mediators leading to airway narrowing [15]. These events
have also been linked to increased levels of ROS and the use
of antioxidants has been shown to reduce exercise-induced
bronchoconstriction [16, 17]. In addition, system biology
approaches suggested that the repair product of oxidatively
damaged DNA by OGG1 induces gene expression associated
with airway inflammation, asthma, and EIA related symp-
toms [18–21]. Thus, this review proposes and discusses a
potential role of OGG1-BER induced gene expression in the
pathophysiology of EIA.

2. Oxidative Stress and EIA

Oxidative stress is characterized by an imbalance between the
production of ROS and the antioxidant defenses, in which
the ability of the antioxidant defense to neutralize ROS is
overwhelmed. Importantly, ROS are also signaling species
that promote airway inflammation and are etiologically
linked to exacerbation of asthma by stimulating bronchial
hyperreactivity, mast cell degranulation (e.g., release of his-
tamine), generation of mucus, and induction of proinflam-
matory gene expression [23–25]. As a part of the ROS-driven
stress responses and processes within the airway, two of the
important redox reactions that can occur and may play a role
in EIA are lipid peroxidation and DNA oxidation.

2.1. Lipid Peroxidation. The products of the isoprostane
pathway are considered excellent biomarkers of oxidative
stress in the airways [26]. A good example of these is 8-
epi-prostaglandin F2 alpha (8-epi-PGF2 alpha), which has
also been shown to cause contraction of smooth muscle by
triggering the thromboxane A2 receptor (TBXA2R) [25, 27],
and has been shown to have a role in asthma and EIA [28, 29].
Another important lipid peroxidation pathway associated
with EIA is the 5-lipoxygenase (5-LO), which transforms
essential fatty acids into leukotrienes. This pathway is the
major source of potent proinflammatory leukotrienes (LT),

such as LTB4, which is an activator and chemoattractant
for leukocytes, and is implicated in several inflammatory
diseases [30]. Other leukotrienes, such as LTC4 and LTD4,
are potent contracting agents of smooth muscle in airways
and can induce epithelial mucus secretion [31]. It has been
shown that, in EIA, the ratio between prostaglandin E2
(PGE2) and cysteinyl leukotrienes (CysLTs) becomes imbal-
anced, favoring the latter. This may be important in EIA
because PGE2 normally inhibits mast cell degranulation and
promotes relaxation of the airway [32]. In support of this
concept, it has been shown that elevated CysLTs contribute
to exercise-induced bronchoconstriction (EIB), a hallmark
of EIA [33, 34]. Leukotriene receptor antagonists such as
montelukast have been successfully used to decrease airway
responsiveness to various stimuli [35], supporting that lipid
peroxidation is an important factor in asthma, and could be
potentially important in EIA, as well.

2.2. DNA Oxidation. ROS induce oxidative modifications
to DNA, including single and double strand breaks, prefer-
entially affecting guanine due to its lowest redox potential
among other DNA bases [36–38]. Mechanistic studies show
that when ∙OH interacts with guanine, it results in a reducing
neutral radical that reacts with molecular oxygen (O

2

) and,
via electron transfer, forms 7,8-dihydro-8-oxoguanine (8-
oxoG) [39–41]. To prevent accumulation of oxidized DNA
base lesions and their mutagenic effects, eukaryotic cells
express DNA repair proteins that are analogous to those
from E. coli (e.g., formamidopyrimidine DNA glycosylase:
MutM; endonuclease VIII-like DNA glycosylase: Nei; 8-
oxo-7,8-dihydrodeoxyguanosine triphosphate GTPase) [42].
OGG1 is an eukaryotic MutM homolog that excises 8-oxoG
and its open-ring form FapyG from the 8-oxoG/FapyG:C
mispairing [43]. Among oxidized DNA base lesions, 8-oxoG
is a biomarker of oxidative damage to DNA [44]. The level
of genomic 8-oxoG correlates well with the dose and length
of exposure, chemical composition, and physical nature of
the inhaled agents/oxidants [45–47]. Furthermore, under
chronic inflammatory conditions 8-oxoG is one of the most
frequent forms of DNA base damage in the genome [48–
53]. Recently, it has been proposed that OGG1-driven DNA
base excision repair has a role in asthma pathogenesis [21].
In addition, studies using lungs exposed to the BER product
of OGG1 (8-oxoG) revealed a role in various biological pro-
cesses including innate immune responses and inflammation
[18].Thus, it seems plausible that cellular 8-oxoG levels could
be associated with EIA.

3. OGG1-Driven Proinflammatory Signaling
through Small GTPases

Unexpectedly, Ogg1−/− null mice did not show a marked
phenotype despite the increased levels of the mutagenic 8-
oxoG in their genomicDNA.More strikingly,Ogg1 deficiency
in mice resulted in decreased inflammatory responses as
shownby decreased accumulation of neutrophils, eosinophils
and levels of Th1/Th2 cytokines [54–56]. These findings
suggested that the absence of 8-oxoG and/or OGG1 is
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a missing component of proinflammatory signaling in the
Ogg1−/− null mice, implicating the importance of OGG1-BER
in the inflammatory process.

During OGG1-BER, the 8-oxoG base is excised from
DNAand released to the cytoplasmwhere it complexes with a
cytoplasmicOGG1.The conformational changes in theOGG1
molecule allow it to interact with, and activate, RAS family
small GTPases, including Kirsten (K)-RAS, neuroblastoma
RAS viral oncogene homolog (N)-RAS, and Harvey (H)-
RAS [57, 58]. In addition, the RAS homology GTPases RHO
and RHO family of GTPases (RAC1, RAC2, and RAC3) can
be activated by 8-oxoG-bound OGG1 [59–62]. Thus, the
complex functions as a guanine nucleotide exchange factor
(GEF) in a manner similar to that of other RAS and RAS
homology protein-activating factors [57, 58]. The biological
significance of small GTPase activations by OGG1-BER is not
fully understood at this time. However, those observations
also suggested that increased 8-oxoG levels in DNA or in
body fluids observed in asthmatics are not only biomarkers
of environmental exposures or inflammatory processes, but
they may also serve as a second messenger [63]. In fact,
it has been shown that OGG1-BER–mediated activation of
GTPases (K-RAS, RHOA, and RAC1) plays a role in the
innate allergic inflammatory response [18, 64], maintenance
of chronic inflammation [21, 64], and airway remodeling
[20, 62]. Therefore, we postulated that OGG1-BER-induced
cell signaling is also likely to play important roles in the
pathogenesis and progression of EIA.

4. Gene Expression Associated with Exercise-
Induced Bronchoconstriction

In general, asthma is a multifactorial disease that involves
complex cell signaling cascades leading to activation and
release of multiple proinflammatory mediators, including
cytokines/chemokines, histamine, proteases, and heparin.
Despite decades of asthma research, our knowledge about
the intricate signaling networks and the fine regulation of
gene expression associated with this airway disease remains
limited. In the particular case of EIA, there is also limited
information on the regulation of global gene expression
involved in its pathogenesis. Thus, to gain insight into the
gene expression underpinning EIA, it is necessary to compare
and integrate available gene expression data with the current
next-generation whole-genome RNA-Seq data.

We have recently shown that OGG1-BER signaling
induces gene expression associated with typical asthma
symptoms [19, 20]. Thus, to elucidate the possible role of
OGG1-BER signaling in EIA, we compared our RNA-Seq
whole-genome gene expression datasets from mouse lungs
exposed to 8-oxoG after single challenge (SC, GEO accession
number: GSE61095) or multiple challenges (MC, GEO acces-
sion number: GSE65031), to the 48 top-ranked upregulated
(≥1.5-fold) genes from individuals with exercise-induced
bronchoconstriction characteristics (EIB+) and thosewithout
it (EIB−), as a control, after intensive exercise (Table 1)
published by Hallstrand et al. (GEO accession number:
GSE13785) [22]. Interestingly, most of the top 48 upregulated

genes in the EIB+ group were also upregulated in the SC
group of 8-oxoG challenged lungs (Figure 1, upper cluster).
On the other hand, fewer genes were upregulated in the MC
group (Figure 1, lower cluster). These observations suggest a
link between early gene expression induced in SC group by
OGG1-BER cell signaling and the gene expression observed
after strenuous exercise in the EIB+ group. Interestingly, the
few genes induced by repeated stimulation (MC) of OGG1-
BER signaling showed association with genes upregulated
after exercise in EIB+ subjects. Taken together, gene expres-
sion profiles induced by both SC and MC might have a role
at different stages in the pathogenesis of EIA.

5. Mast Cell Degranulation

Mast cells are one of the most important effector cells
involved in elicitation of allergic responses [65]. Antigenic
activation of mast cells via the high-affinity receptor for
IgE (Fc𝜀RI) mediates exocytosis of cytoplasmic granules
containing preformed mediators, secretion of lipid-derived
factors, and de novo synthesis of cytokines, chemokines,
and growth factors [65–68]. In addition to Fc𝜀RI-mediated
signals, exposure to a variety of stimuli including pathogen-
associated molecules can lead to the release of mast cell
mediators [69].

During allergic and other inflammatory reactions, mast
cells are exposed to an oxidative microenvironment milieu
made up of ROS produced by various cell types in the
surrounding peripheral tissues, as a consequence of their
effector function [70]. Accordingly, various studies have
shown the relevance of ROS/oxidative stress in mast cell
activation [71–73]. For example, we have previously reported
that it is not the allergenic proteins in pollen grains, subpollen
particles, but ROS (superoxide anion, O

2

−) generated by their
intrinsic NAD(P)H oxidases that are the primary cause of
mast cell degranulation in airways and conjunctiva, during
allergen/antigen-induced allergic responses [74–76].

Our studies also showed ROS-enhanced secretion of
histamine and serotonin frommast cells, independently from
Fc𝜀RI-generated stimuli [77]. The release of biogenic amines
in those cells was associated with inhibition of H+-ATPase
activity within secretory granules, activation of PKC-𝛿, and
microtubule-dependent motility and was independent from
intracellular free Ca2+ levels. We also observed that IgE-
mediated mast cell degranulation and antigen-triggered 𝛽-
hexosaminidase release was decreased by ROS, while ROS
were synergistic with antigen-induced IL-4 production in
sensitized cells. Taken together, these data suggest that ROS
and probably its downstream effect of cell signaling through
OGG1-BER can act independently from antigen, augmenting
the release of biogenic amines [77], and the initiation of
antigen-independent effects.

Accordingly, gene expression induced by the most
abundant product of DNA oxidative damage/repair (8-
oxoG) was associated with mast cell degranulation [77].
To determine the validity of this association, we refer-
enced the human genes database GeneCards� online v 4.0
(http://www.genecards.org/) for a list of 80 genes associated
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Table 1: OGG1-BER induced expression of genes involved in mast cell degranulation.

Symbol Name GenBank/RefSeq ID SC (fold) MC (fold)
Itga6 Integrin alpha 6 NM 008397 −1.28 29.12
Foxf1 Forkhead box F1 NM 010426 1.63 18.98
Plcg1 Phospholipase C, gamma 1 NM 021280 1.15 17.11
Alb Albumin NM 009654 −1.74 15.28
Pla2g3 Phospholipase A2, group III NM 172791 −7.06 9.71
Ar Androgen receptor NM 013476 −2.16 9.58
Cxcl9 Chemokine (C-X-C motif) ligand 9 NM 008599 −1.51 9.09
Ms4a2 Membrane-spanning 4-domains, subfamily A, member 2 NM 013516 1.33 8.38
Tnf Tumor necrosis factor NM 013693 16.65 7.13
Nfkbia NFKLPa gene enhancer in B cells inhibitor, alpha NM 010907 4.73 4.41
Grap2 GRB2b-related adaptor protein 2 NM 010815 1.18 3.53
Itk Interleukin 2 inducible T cell kinase NM 010583 1.38 3.34
Traf6 Tumor necrosis factor receptor-associated factor 6 NM 009424 1.09 2.94
Ccl11 Chemokine (C-C motif) ligand 11 NM 011330 −1.71 2.93
Pdpk1 3-phosphoinositide dependent protein kinase 1 NM 011062 −1.22 2.73
Pik3cg Phosphoinositide-3-kinase, catalytic, gamma polypeptide NM 020272 1.02 2.67
Rasgrp1 RASc guanyl releasing protein 1 NM 011246 1.21 2.62
Il1r1 Interleukin 1 receptor, type I NM 008362 1.24 2.55
Pld1 Phospholipase D1 NM 008875 1.02 2.49
Hmox1 Heme oxygenase 1 NM 010442 −1.43 2.46
Pik3cb Phosphatidylinositol 3-kinase, catalytic, beta polypeptide NM 029094 −1.02 2.34
Fer Fer (fms/fps related) protein kinase NM 008000 −1.60 2.33
Ubash3b Ubiquitin associated and SH3 domain containing, B NM 176860 1.12 2.25
Kit Kit oncogene NM 021099 1.39 2.20
Gp1ba Glycoprotein 1b, alpha polypeptide NM 010326 1.28 2.16
Hrh1 Histamine receptor H1 NM 008285 −2.85 2.15
Fyn Fyn proto-oncogene NM 008054 1.21 2.14
Plcg2 Phospholipase C, gamma 2 NM 172285 1.08 2.12
Elane Elastase, neutrophil expressed NM 015779 −1.43 2.09
Gab2 Growth factor receptor bound protein 2-associated protein 2 NM 010248 1.15 2.09
SC, single 8-oxoG challenge;MC,multiple 8-oxoG challenge; NFKLPa, nuclear factor of kappa light polypeptide; GRB2b, growth factor receptor-bound protein
2. RASc, rat sarcoma. The table shows the top ranked genes (MC, 60min) by expression level (≥2-fold).

to mast cell degranulation and compared it to our RNA-Seq
datasets. A hierarchically clustered heat map (Figure 2(a))
depicts the expression profile of those genes across the
datasets from mouse lungs after a SC or a MC with 8-oxoG.
This heat map shows an important number of upregulated
genes associated with mast cell degranulation in the MC
group. The expression at mRNA levels (fold-change) of top
upregulated genes is shown in Table 1. Among the highest
expressed genes in this group, integrin alpha 6 (Itga6) was
increased by nearly 30-fold. Interestingly, studies showed
increased expression levels of this gene in airway smooth
muscle cells derived from individuals with fatal asthma [78].
In other studies, forkhead box F1 (Foxf1), a transcriptional
factor expressed in endothelial and smoothmuscle cells in the
lungs, was associated with interstitial pneumonia [79]. This
gene showed a nearly 20-fold increase. The product of Foxf1
also negatively regulates the expression of mast cell tryptase
and the expression of chemoattractants such as CXCL12
which is necessary formast cellmigration [80].These features

make Foxf1 an important factor in the pathogenesis of lung
inflammatory responses, and a potentially important factor
in EIA. Furthermore, phospholipase C, Gamma 1 (Plcg1)
transcript level was increased by over 15-fold; its protein
product PLCG1 promotes mast cell activation [81]. The
interaction network (Figure 2(b)) depicts the direct and
indirect interactions between OGG1 and other differentially
expressed genes, with a focus on mast cell modulation.
These observations and their further investigation might
provide insight on potential targets for development of novel
compounds to prevent mast cell degranulation in asthmatics,
before performing exercise.

6. Airway Hyperresponsiveness

One of the most common features of asthma is airway
hyperresponsiveness (AHR) which is defined as an increased
sensitivity of the airways to constrictor agonists. According
to the World Allergy Organization (WAO), EIA represents
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Figure 1: Comparative gene expression between 8-oxoG challenged- and intensive exercise-exposed airways. The clustered heat map was
constructed using the list of the most upregulated genes in airway epithelial cells from EIB positive (EIB+) individuals after 30 minutes of
intensive exercise, as described in Hallstrand et al. [22]. This list of genes was compared to a list of the same genes from lungs challenged
once (SC) or multiple times (MC). Top ranked gene list was obtained using Gene Expression Omnibus (GEO)’s built-in application GEO2R
(http://www.ncbi.nlm.nih.gov/geo/geo2r/) and Hallstrand et al. GEO deposited dataset (GSE13785). Hierarchically clustered heat map was
generated using GENE-E (Broad Institute, http://www.broadinstitute.org/).

a major problem among elite athletes, not just through
interfering with their performance, but also through rep-
resenting a potentially significant health risk, as well as a
psychological barrier or disincentive toward pushing the
limits of performance.

AHR involves various cytokines/chemokines as well as
many other mediators, which are under genetic control, and
may have an association with the OGG1-BER pathway. To
determine the association of OGG1-BER signaling in AHR
and the potential link to EIA, we searched in GeneCards

database for a list of genes associated with AHR. GeneCards
generated a list of 165 genes which was compared to our
RNA-Seq datasets from 8-oxoG challenged lungs. A heat
map (Figure 3(a)) shows an increased number of upregulated
genes in the MC compared to the SC group. This suggested
that upregulation of AHR-associated genes might be due
to continuous or repeated oxidative damage to the airways,
rather than a single insult. The interaction network depicts
themultiple interactions betweenOGG1 andAHR-associated
genes (Figure 3(b)). Among the genes with the highest
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Figure 2: Continued.
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Figure 2: OGG1-BER induced gene expression associated to airway mast cell degranulation. Mouse lungs received a single challenge
(SC) or multiple challenges (MC) with 8-oxoG. Lungs were collected at 30 and 60min after challenge and analyzed at whole-
transcriptome level by RNA-Seq. (a) Hierarchically clustered heat map was generated using GENE-E online software (Broad Institute,
http://www.broadinstitute.org/) considering transcript levels (fold-change). Red represents upregulation and blue represents downregulation.
(b) Enrichment interactionnetwork of the known andpredicted interactions among the set associatedwithmast cell degranulation andOGG1.
Peripheral nodes represent genes with a direct interaction with OGG1.Themodified network was generated with GeneMania online database
(http://www.genemania.org/).

expression levels, interleukin 10 (Il10) showed over 30-fold
increase at 60min in theMCgroup andover 6-fold increase at
60min in the SC group.This cytokine has anti-inflammatory
properties and its upregulation is commonly observed after
or during inflammation, as a counter-regulatory off-switch
that promotes the normal resolution of inflammation [82].
However, asthmatics have been shown to be deficient in
airway IL-10 expression [83], for reasons that continue to be
unexplained, but this deficiency may be important for the
postulate thatOGG1-BER is a critical factor in EIA. In support
of this idea, protein levels of IL-10 have been observed to be
increased in an exercise animal model in which LPS-induced
lung neutrophilia was decreased after exercise only in Il10+/+

but not in Il10−/− mice [84]. Thus, it can be theorized that
exercise may be beneficial in promoting the IL-10 response in
normal individuals. However, in asthmatics and specifically
in the case of EIA, exercise may induce an inflammatory
oxidative stress that cannot be countered by IL-10, due to
deficiency in its production. In the case of the postulated
OGG1-BER pathway in EIA, this would create a scenario in
which the effects ofmast cell and/or neutrophil degranulation
would be unchecked by the anti-inflammatory effects of
IL-10 [82], resulting in the enhancement of AHR and the
diminution of exercise performance.

Furthermore, the expression levels of other genes like
Cxcl1, Cxcl2, and Tnf were notably increased. This may be

important, because the chemokines CXCL1 and CXCL2 are
potent neutrophil chemoattractants which play a role in
the pathogenesis and progression of asthma that could be
associated to EIA. Moreover, the upregulation of Tnf gene
expression is again consistent with the upregulation of the il10
gene, as its protein product TNF-𝛼 is a major driver of IL-
10 release from leukocytes [82] that are either drawn in with
inflammation, or perpetually resident, within the airway. In
this case, it may be important to consider that IL-10 is self-
regulating, in that it normally feeds back to shut down both
its own release and that of TNF-𝛼 [82]; but, with the IL-10
deficiency of asthma, there would be no brake on TNF-𝛼,
which has its own important proinflammatory and pro-AHR
effects [85], which could drive EIA. Table 2 shows a complete
list of the AHR-associated genes and their expression values.

7. The Potential Role of OGG1-BER
Signaling in EIA

Physical exercise renders physiological stress to the body
including oxidative stress [86, 87] and potentially affects
the activation of transcription factors such as NF-𝜅B and
activator protein-1 (AP1) which stimulates the expression
of cytokines and chemokines, to promote physiological
responses that may be linked to EIA [88]. Physical factors,
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Figure 3: OGG1-BER induced gene expression associated with AHR. Mouse lungs received a single challenge (SC) or multiple challenges
(MC) of 8-oxoG andwere processed as previously described above. (a) Hierarchically clustered heat mapwas generated using GENE-E online
software (Broad Institute, http://www.broadinstitute.org/) considering transcript levels (fold-change). Red represents upregulation and blue
represents downregulation. (b) Enrichment network of the known and predicted interactions among the set of genes associated to airway
hyperresponsiveness and OGG1. Peripheral nodes represent genes with a direct interaction with OGG1.Themodified network was generated
with GeneMania online database (http://www.genemania.org/).

such as temperature, can also exacerbate the outcomes in
EIA, through altering the redox state of the airways. For
example, it has been documented that exposure to cold
temperatures during exercise increases oxidative stress levels,
as determined by increased plasma ROS metabolites and
lower levels of antioxidants [89]. At the cellular level, it has
been observed that the increased levels of ROS in the airway
epithelium can stimulate the production of leukotrienes and
other inflammatory mediators, playing a pivotal role in lung
inflammation [90]. Although it has long been known that
ROS are linked to proinflammatory gene expression, the
precise mechanisms are still not completely understood. As
outlined above, recent studies suggest that oxidative stress can
play an important role in cell signaling through a DNA-BER
initiated signaling pathway. Of note, these studies showed
that the repair product of oxidatively damaged DNA by
OGG1 forms a complex with OGG1 in the cytosol and acti-
vates small GTPases [59, 61, 62] and downstream signaling
molecules involved in both the NF-𝜅B signaling pathway and
the expression of innate immune response genes [18].

Based on the data and previous findings outlined above,
we propose a model (Figure 4) that represents the potential
role of OGG1-BER signaling in EIA. Within this schema,
vigorous exercise results in osmotic and thermal changes in

the airways leading to oxidative stress. This condition can
be exacerbated by the presence of environmental toxicants
that can act as prooxidants, such as ozone and sulfur dioxide
[91]. Consequently, DNA in the airway cells is oxidized
by ROS and the subsequent 8-oxoG lesions are repaired
by OGG1-BER, increasing the levels of cytoplasmic free 8-
oxoG leading to the formation of OGG1⋅8-oxoG complexes.
These complexes activate small GTPases such as RAS, RHO,
and RAC, inducing downstream signaling which activates
transcription factors leading to EIA-related gene expression.
The proinflammatory mediators released by airway epithelial
and resident cells, such as dendritic cells and macrophages,
can result in the typical EIA symptoms including bron-
choconstriction, airway hyperresponsiveness, shortness of
breath, wheezing, and coughing. It is important to note that
IL-10 is conspicuous by its absence in this scheme of OGG1-
BER-associated effects on EIA, because of its deficiency in
asthmatics [82, 83]. It is likely to be present in nonasthmatics,
in amounts necessary to counter the release and effects of
proinflammatorymediators.Thismay also bewhy some relief
from EIA may be obtained with asthma controller treatment
therapies such as inhaled corticosteroids [92, 93], which are
known to upregulate IL-10 production, in addition to other
important anti-inflammatory effects [94].
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Table 2: OGG1-BER induced expression of genes associated to AHR.

Symbol Name GenBank/RefSeq ID SC (fold) MC (fold)
Cxcl2 Chemokine (C-X-C motif) ligand 2 NM 009140 192.95 48.55
Bdkrb2 Bradykinin receptor, beta 2 NM 009747 −1.35 45.16
Il10 Interleukin 10 NM 010548 5.84 33.51
Tlr9 Toll-like receptor 9 NM 031178 −1.54 25.97
Arg1 Arginase, liver NM 007482 −5.00 17.71
Cxcl1 Chemokine (C-X-C motif) ligand 1 NM 008176 54.45 15.94
Esr1 Estrogen receptor 1 (alpha) NM 007956 −5.19 15.56
Alb Albumin NM 009654 −1.74 15.28
Chrm3 Cholinergic receptor, muscarinic 3, cardiac NM 033269 1.66 9.99
Flt1 Fms-like tyrosine kinase 1 NM 010228 −1.13 9.06
Chrm2 Cholinergic receptor, muscarinic 2, cardiac NM 203491 −1.79 8.73
Vip Vasoactive intestinal polypeptide NM 011702 −2.10 7.26
Tnf Tumor necrosis factor NM 013693 16.65 7.13
Col4a3 Collagen, type IV, alpha 3 NM 007734 1.15 6.74
Tac1 Tachykinin 1 NM 009311 −4.28 6.70
Mylk3 Myosin light chain kinase 3 NM 175441 −4.08 6.35
Ppp1r12a Protein phosphatase 1, regulatory (inhib) subunit 12A NM 027892 −1.08 6.06
Ctla4 Cytotoxic T-lymphocyte-associated protein 4 NM 009843 7.08 5.82
Madcam1 Mucosal vascular addressin cell adhesion molecule 1 NM 013591 −1.63 5.66
Il1a Interleukin 1 alpha NM 010554 4.17 5.55
Agmat Agmatine ureohydrolase (agmatinase) NM 001081408 −4.28 5.03
Il1Rn Interleukin 1 receptor antagonist NM 031167 1.92 4.10
Il2Rb Interleukin 2 receptor, beta chain NM 008368 1.31 4.04
Il9R Interleukin 9 receptor NM 008374 1.08 3.96
Edn1 Endothelin 1 NM 010104 3.10 3.81
Prg2 Proteoglycan 2, bone marrow NM 008920 2.21 3.72
Mme Membrane metallo-endopeptidase NM 008604 −1.07 3.66
Ctsg Cathepsin G NM 007800 −1.14 3.35
Itk IL2 inducible T cell kinase NM 010583 1.38 3.34
Pik3r1 PI3Ka, regulatory subunit, polypeptide 1 (p85 alpha) NM 001024955 −1.18 3.24
Mpo Myeloperoxidase NM 010824 1.36 3.24
Ngfr Nerve growth factor receptor NM 033217 −1.88 3.20
Slc7a1 Solute carrier family 7, member 1 NM 007513 −1.28 3.19
Pde4d Phosphodiesterase 4D, cAMP specific NM 011056 1.08 3.18
Pde4b Phosphodiesterase 4B, cAMP specific NM 019840 1.39 3.17
Egfr Epidermal growth factor receptor NM 007912 −1.16 3.05
Abl1 C-abl oncogene 1, non-receptor tyrosine kinase NM 001112703 1.11 3.01
Etv6 Ets variant 6 NM 007961 −1.05 2.98
Tacr2 Tachykinin receptor 2 NM 009314 −1.07 2.93
Ccl11 Chemokine (C-C motif) ligand 11 NM 011330 −1.71 2.93
Ttf2 Transcription termination factor, RNA polymerase II NM 001013026 1.06 2.92
Il6 Interleukin 6 NM 031168 10.44 2.75
Pde3b Phosphodiesterase 3B, cGMP-inhibited NM 011055 −1.79 2.68
Pcdh1 Protocadherin 1 NM 029357 −1.12 2.66
Jun Jun proto-oncogene NM 010591 1.38 2.55
Nqo1 NAD(P)Hb dehydrogenase, quinone 1 NM 008706 −2.58 2.54
Il1b Interleukin 1 beta NM 008361 4.15 2.52
Cck Cholecystokinin NM 031161 −1.43 2.51
F2rl1 Coagulation factor II (thrombin) receptor-like 1 NM 007974 1.09 2.51
Mbp Myelin basic protein NM 010777 −1.40 2.48
Itga4 Integrin alpha 4 NM 010576 1.26 2.46
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Table 2: Continued.

Symbol Name GenBank/RefSeq ID SC (fold) MC (fold)
F2r Coagulation factor II (thrombin) receptor NM 010169 1.46 2.39
Selp Selectin, platelet NM 011347 −1.31 2.39
Il2ra Interleukin 2 receptor, alpha chain NM 008367 1.06 2.34
Agtr1a Angiotensin II receptor, type 1a NM 177322 1.72 2.33
Fgfr1 Fibroblast growth factor receptor 1 NM 010206 1.02 2.32
Mylk Myosin, light polypeptide kinase NM 139300 1.24 2.30
Klf15 Kruppel-like factor 15 NM 023184 1.41 2.30
Ltb4r2 Leukotriene B4 receptor 2 NM 020490 −7.37 2.15
Hrh1 Histamine receptor H1 NM 008285 −2.85 2.15
Il5 Interleukin 5 NM 010558 −1.87 2.14
Icam1 Intercellular adhesion molecule 1 NM 010493 1.30 2.12
Irak3 Interleukin-1 receptor-associated kinase 3 NM 028679 −1.19 2.12
Cftr Cystic fibrosis transmembrane conductance regulator NM 021050 1.09 2.11
Elane Elastase, neutrophil expressed NM 015779 −1.43 2.09
Hspd1 Heat shock protein 1 (chaperonin) NM 010477 −2.07 2.06
SC, single 8-oxoG challenge; MC, multiple 8-oxoG challenge; PI3Ka, phosphatidylinositol 3-kinase; NAD(P)Hb, dihydronicotinamide-adenine dinucleotide
phosphate. The table shows the top ranked genes (MC, 60min) by expression level (≥2-fold).
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Figure 4: Proposed role for OGG1-BER in asthma and EIA-related gene expression. The large inhaled air volumes during physical activity
decrease the temperature and water content of the airway epithelium lining fluid, leading to supraphysiological ROS production by epithelial
cells, which can be exacerbated by exposures to environmental pollutants. ROS-induced 8-oxoG lesions in the DNA are repaired by OGG1-
BER. In the cytosol, 8-oxoG complexes with OGG1 and acts as a guanine nucleotide exchange factor (GEF), activating small GTPases and
initiating a signaling cascade that leads to the translocation of transcription factors (TFs) initiating the transcription of genes associated to
AHR, mast cell degranulation, and bronchoconstriction.

8. Conclusions

EIA is an acute condition characterized by reversible bron-
choconstriction, wheezing, chest tightening, and shortness of
breath, during or after exercise. Despite the high prevalence
of these potentially serious symptoms in EIA, there is limited

information on the molecular pathogenesis. It is mostly
agreed that osmotic/thermal changes and environmental
pollutants increase levels of oxidative stress; however, the
molecular mechanisms by which reactive species are impli-
cated in the pathogenesis of EIA are not fully known. Thus,
this review presents a general overview on the pathogenesis of
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EIA and discusses its potential link to the present knowledge
of cell signaling initiated by repair of oxidatively damaged
DNA.

However, the genetic basis of EIA has not been com-
pletely elucidated.Therefore, we proposed a novel hypothesis
(Figure 4), in which cell signaling induced by the repair
of oxidatively damaged DNA by OGG1 during the base
excision repair pathway plays a role in the regulation of
gene expression associated with common symptoms of EIA.
This hypothesis is supported by previous studies from other
research groups and from our own research group, showing
the involvement of OGG1-BER in gene expression related
to airway inflammation and other asthma features [18–20,
56, 95]. It is currently acknowledged that osmotic/thermal
changes and environmental pollutants increase levels of
oxidative stress; however, the understanding of themolecular
mechanisms by which reactive species are implicated in the
pathogenesis of EIA require further studies. It is evident
from the present analysis that DNA damage/repair could
be involved in EIA pathogenesis. Further investigation of
DNA damage/induced signaling pathway may result in novel
pharmacological targets to prevent or treat EIA.
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