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N6-methyladenosine (m6A) is an abundant modification onmRNA that plays an important

role in regulating essential RNA activities. Several wet lab studies have identified some

RNA binding proteins (RBPs) that are related to m6A’s regulation. The objective of this

study was to identify potential m6A-associated RBPs using an integrative computational

framework. The framework was composed of an enrichment analysis and a classification

model. Utilizing RBPs’ binding data, we analyzed reproducible m6A regions from

independent studies using this framework. The enrichment analysis identified known

m6A-associated RBPs including YTH domain-containing proteins; it also identified RBM3

as a potential m6A-associated RBP for mouse. Furthermore, a significant correlation for

the identified m6A-associated RBPs is observed at the protein expression level rather

than the gene expression level. On the other hand, a Random Forest classification

model was built for the reproducible m6A regions using RBPs’ binding data. The

RBP-based predictor demonstrated not only competitive performance when compared

with sequence-based predictions but also reflected m6A’s action of repelling against

RBPs, which suggested that our framework can infer interaction between m6A and

m6A-associated RBPs beyond sequence level when utilizing RBPs’ binding data. In

conclusion, we designed an integrative computational framework for the identification

of known and potential m6A-associated RBPs. We hope the analysis will provide more

insights on the studies of m6A and RNA modifications.

Keywords: N6-methyladenosine, RNA binding proteins, RNA modification, enrichment analysis, random forest

1. INTRODUCTION

In recent years, RNA modification has emerged as a mode of post-transcriptional gene regulation
and has been gaining increasing attention from researchers around the globe. More than 150 types
of post-transcriptional modification have been discovered, with N6-methyladenosine (m6A) as
being one of the most abundant mRNA modification (Roundtree et al., 2017). m6A is featured
with the DRACH motif(where D = A,G or U;R = A or G;H = A,C or U) and is preferentially
located near 3′ untranslated regions (3′ UTR) (Linder et al., 2015). It has been reported that m6A
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participates in essential RNA activities including alternative
splicing, export, translation, and decay in the nucleus and
cytoplasm (Lee et al., 2020).

M6A exerts its function through interaction with several RNA
binding proteins that can be considered as m6A-associated RBPs.
There are three main kinds of known m6A-associated RBPs that
are also known as m6A effectors (Shi et al., 2019), they are
writer, eraser, and reader. m6A writers are methyltransferases
like METTL3, METTL14, WTAP, RBM15/15B, while m6 erasers
are demethylases like FTO, ALKBH5, and m6A readers are
the proteins that can recognize m6A like the YTH domain-
containing proteins (YTHDF1/2/3), EIF3 (Lee et al., 2020), FMR1
(Edupuganti et al., 2017). These m6A effectors cooperate with
each other to facilitate both temporal and spatial regulation
where writers work in the nucleus to introduce the m6A
modification which is then recognized by various readers in the
nucleus and cytoplasm, which can influence activities of their
target RNAs.

Furthermore, the roles of m6A and m6A-associated RBPs in
cancer are being a general interest to researchers. The writer
METTL3 was early noticed because of its overexpression in
acute myeloid leukemia (AML). It was found that m6A promotes
the translation of oncogenes like c-MYC, BCL2, and PTEN in
the human acute myeloid leukemia MOLM-13 cell line (Vu
et al., 2017). Because of necessity of METTL3 in the maintain
the leukaemic state, it is identified as a potential therapeutic
target for AML (Barbieri et al., 2017). Apart from METTL3, a
study found that the reader YTHDF2 silenced in HCC cells can
provoke inflammation, vascular reconstruction, and metastatic
progression (Hou et al., 2019). Besides, m6A and m6A reader
YTHDF1 have been reported to control anti-tumor immunity.
YTHDF1 deficientmice had enhanced therapeutic efficacy of PD-
1 checkpoint blockade which suggested YTHDF1’s potential in
anti-cancer immunotherapy (Han et al., 2019). Therefore, the
study of m6A and m6A-associated RBPs enables us to develop a
better understanding of gene regulation mechanism and leads to
potential therapeutic opportunities.

To unveil m6A’s regulation mechanism, it is very necessary
to study m6A-associated RBPs and their target RNAs. High-
throughput sequencing technologies like CLIP-seq (Ule et al.,
2005) and RIP-Seq (Zhao et al., 2010) make it feasible to study
target RNAs ofm6A effectors at a transcriptome-wide level. Based
on the high-throughput sequencing data, a team developed a
database for the collection of these target RNAs (Deng et al.,
2020), and another team developed a prediction model focused
on the targets of m6A readers (Zhen et al., 2020). However,
computational resources for identification of m6A-associated
RBPs are still limited. Though there has been a manually-curated
database built for the collection of known m6A effectors across
species (Nie et al., 2020), to identify potential m6A-associated
RBPs, it needs to develop efficient computational methods. There
are some computational methods that have been used to identify
m6A-associated RBPs. One such method is to build a prediction
model based on deep learning and then extract the sequence
features (Zhang and Hamada, 2018; Wang and Wang, 2020).
However, not all the RBP motifs are available and sequences can
not reflect actual binding status, thus limiting their utility in the

identification of m6A-associated RBPs. Another group developed
an analysis framework to identify cell-specific trans-regulators of
m6A (An et al., 2020). They identified the association between
m6A and RBPs but did not take into consideration the interaction
such as reading and repelling between them.

In our study we decided to focus on the use of reproducible
m6A regions for identification of m6A-associated RBPs, with
consideration of variation among MeRIP-Seq datasets (about
30–60% between studies, even in the same cell type; McIntyre
et al., 2020). We aimed to identify m6A-associated RBPs from
reproducible m6A regions using an integrative computational
framework. This framework is composed of an enrichment
analysis and a classification model. The enrichment analysis
allows us to identify RBPs enriched in the m6A regions. We
were able to identify not only the known m6A-associated RBPs
like YTH domain-containing proteins, but also a potential m6A-
associated RBP, RBM3, for mouse. We went on to evaluate the
correlation of these m6A-associated RBPs with some known
m6A effectors and compared these to other RBPs. We observed
a significant correlation in the protein expression level rather
than the gene expression level, which suggested that the m6A-
associated RBPs participate in potential pathways at the protein-
level in gene regulation. On the other hand, we built a
Random Forest classification model for the reproducible m6A
regions using RBPs’ binding data in an effort to understand
how RBPs contribute to the profiling of m6A regions. This
RBP-based predictor demonstrated competitive performance
when compared with sequence-based methods. Furthermore, the
feature importance inferred from thismodel can be used to reflect
m6A’s action of repelling against RBPs. These results suggested
that this framework could enable researchers to infer interaction
between m6A and m6A-associated RBPs beyond sequence level
when utilizing RBPs’ binding data.

2. MATERIALS AND METHODS

2.1. MeRIP-Seq Data Collection and
Processing
To obtainMeRIP-Seq data of which cell lines are also available for
RPBs’ binding data, we manually searched GEO database (Barrett
et al., 2013) and finally collected raw MeRIP-Seq FASTA files
from four independent studies using human HEK293T cell line
(human embryonic kidney 293 cells) from European Nucleotide
Archive with accession numbers SRP090687 (Lichinchi et al.,
2016), SRP039397 (Schwartz et al., 2014), SRP007335 (Meyer
et al., 2012), and SRP162223. We also collected MeRIP-Seq
data from four independent studies using mouse embryonic
fibroblasts(MEF) with accession numbers SRP039402 (Schwartz
et al., 2014), SRP048596 (Geula et al., 2015), SRP115436 (Zhou
et al., 2018), and SRP061617 (Zhou et al., 2015).

We pre-processedMeRIP-Seq data by using FastQC (Andrews
et al., 2012) for quality control and Cutadapt (Martin, 2011) for
adapter-trimming. Then, we used MoAIMS, a transcriptome-
based peak-calling tool, to detect m6A regions with steps
including mapping, keeping uniquely mapped reads, sorting, and
marking duplicates (Zhang and Hamada, 2020). MoAIMS is an
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efficient software we developed based on a statistical framework
of a mixture negative-binomial distribution. We run MoAIMS
with default parameters except that we set sep_bin_info=F
when analyzing studies with replicates. MoAIMS called enriched
regions at 200-bp resolution as default, therefore we obtained

FIGURE 1 | Illustration of the integrative computational framework.

m6A-enriched regions with a size of 200 bp for each MeRIP-
Seq sample, and then we identified reproducible m6A regions
using the criteria that regions are called in at least 60%
of the replicates in any one study and further in at least
three studies.

2.2. The Enrichment Analysis
We retrieved binding site data of RBPs from the POSTAR2
database (Zhu et al., 2019) and identified RBPs enriched in the
reproducible m6A regions. A permutation test was adopted to
assess the significance of RBP’s binding in the m6A regions. The
rest of regions in genes with m6A was used as control and then
sampled 1,000 times. We kept the ratio of the number of bins in
exons to the number of bins spanning exons the same for both
m6A and control regions to avoid the regions’ position being a
confounding factor. For each RBP, we calculated the enrichment
ratio using the Equation (1) where Nt is the number of m6A
regions with the RBP and E(Nc) is the average number of control
regions with the RBP from 1,000 times of sampling. Then, a p-
value was calculated as the proportion of Nc which were equal
to or greater than Nt . After that, multiple testing was performed
using Benjamini and Hochberg (1995).

R =
Nt

E(Nc)
(1)

TABLE 1 | RNA binding proteins (RBPs) enriched in reproducible m6A regions.

HEK293T Enrichment ratios∗ # m6A regions with RBPs p-value∗∗ FDR adjusted p-value

YTHDF2 3.90 6,964 <0.001 <0.003

RBM15 2.73 3,534 <0.001 <0.003

YTHDF3 2.70 52 <0.001 <0.003

YTHDF1 2.49 9,196 <0.001 <0.003

RBM15B 2.32 6,375 <0.001 <0.003

YTHDC1 2.15 7,224 <0.001 <0.003

EIF3D 1.88 593 <0.001 <0.003

NOP58 1.74 159 <0.001 <0.003

HNRNPH1 1.57 47 0.002 0.006

NUDT21 1.48 5,201 <0.001 <0.003

FMR1 1.46 4,443 <0.001 <0.003

DDX3X 1.44 9,470 <0.001 <0.003

EIF3A 1.39 293 <0.001 <0.003

CPSF6 1.34 3,593 <0.001 <0.003

CPSF7 1.31 4,413 <0.001 <0.003

MEF Enrichment ratio∗ # m6A regions with RBPs p-value∗∗ FDR adjusted p-value

RBM3 5.81 485 <0.001 <0.001

CREBBP 2.47 24 <0.001 <0.001

SRSF2 2.24 793 <0.001 <0.001

SRSF1 2.13 467 <0.001 <0.001

CPSF6 2.07 94 <0.001 <0.001

CIRBP 1.76 401 <0.001 <0.001

∗RBPs are ranked by their enrichment ratios. ∗∗P-values were calculated from 1,000 times of permutation. When p-value is zero, it is shown in the table as < 0.001 because it is possible

that the p-value is actually <0.001 if times of permutation were increased.
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2.3. The Classification Model
We built a Random Forest (RF) classifier to evaluate how much

RBPs contribute in discriminating reproducible m6A regions.

We used the human m6A regions with RBPs’ binding as the

positive data (13,978 in total) and generated 10 sets of control

data from the control regions which were set to be an equal

data size. We kept the ratio of the number of bins in exons to

the number of bins spanning exons the same in both m6A and
control regions. The binding information (1 for binding, 0 for

non-binding) of RBPs was used as the input features. The data
was divided into training and test groups at a ratio of 80:20.
We implemented the RF classifier using the R package caret

(Kuhn, 2008) and randomForest (Liaw and Wiener, 2002) with

5-fold cross validations and “mtry” (the tuning parameters) as 8
(nearly the square root of the number of features). We used the
accuracy to measure the performance of the models as shown in
the Equation (2) where TP is true positive, TN is true negative,
FP is false positive and FN is false negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

A analysis framework including the procedures above was
summarized in Figure 1.

3. RESULTS

3.1. Identification of m6A-Associated RBPs
Enriched in Reproducible m6A Regions
Because of the considerable variation in the m6A datasets
(McIntyre et al., 2020), we generated reproducible m6A regions
by collecting MeRIP-Seq data from nine samples of human
HEK293T cell line of four independent studies and six samples
of mouse MEF cell line of four independent studies. The details
of detection of these m6A regions are provided in section 2. With
a relatively strict criteria, we finally obtained 14,803 reproducible
m6A regions for HEK293T cell line and 5,576 reproducible m6A
regions for MEF cell line.

FIGURE 2 | Comparison of the correlation values for known m6A effectors (YTHDF2, RBM15, EIF3D, and METTL3) with identified m6A-associated RBPs (15 in total)

or other RBPs. The boxplot shows the distribution of the Spearman’s correlation coefficient between known m6A effectors and identified m6A-associated RBPs/other

RBPs at the protein- and transcript-level (the subset protein-level results describe the correlation coefficients calculated from a subset of the protein data which

included only 17 adult tissues). Significance was evaluated using a one-sided Wilcoxon test.
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To identify RBPs enriched in m6A regions, 71 RBPs for
HEK293T/HEK293 and nine RBPs for MEF were retrieved
from the POSTAR2 database. For each RBP, we calculated
an enrichment score and assessed its significance using a
permutation test as described in section 2. When setting the
threshold for the enrichment ratio to ≥1.3 and FDR (false
discovery rate) adjusted p-value to ≤0.05, we obtained enriched
RBPs listed in Table 1. For HEK293T, we identified several
known m6A readers including YTH family proteins, FMR1,
EIF3, and m6A writers RBM15/15B, a component of the WTAP-
METTL3 complex (Patil et al., 2016; Lee et al., 2020). For MEF,
we found a common RBP, CPSF6, which is enriched for both
human and mouse. CPSF6 is a polyadenylation cleavage factor
and has been reported to be associated with VIRMA, which
mediates preferential m6A methylation in the 3’ UTR and near
stop codon and participates alternative polyadenylation (APA)
in human (Yue et al., 2018). Another study found YTHDC1’s
association with CPSF6 during mouse oocyte development
(Kasowitz et al., 2018). In addition, we noticed that RBM3
was highly enriched in m6A regions of MEF. RBM3 is an
important regulator of circadian gene expression by controlling
APA (Liu et al., 2013), therefore we suggest that RBM3 could
be associated with m6A in the APA regulation process. The
full list of enrichment ratios for each of the RBPs is provided
in Supplementary Tables 1, 2. Besides, for each enriched RBP

(overlap with more than 100 m6A regions), we also listed the
RBPs that more than 60% of the enriched RPB is overlapped with
for HEK293T in Supplementary Table 3. As expected, YTHDF1
and DDX3X were shown to have the highest overlapping
percentage as they have a considerable overlap with m6A regions.

The RBPs in Table 1 are considered as m6A-associated RBPs,
therefore we wondered how they are correlated with known
m6A effectors when compared with other RPBs at both the
transcription and the protein expression level. We performed a
correlation analysis for all the human RBPs. To do the correlation
analysis at the transcription level, we downloaded Illumina Body
Map (HBM) (Asmann et al., 2012; Barbosa-Morais et al., 2012;
Derrien et al., 2012) from ArrayExpress (Athar et al., 2019)
with the accession number E-MTAB-513, which provides gene
expression data for 16 human tissues. For the correlation analysis
at the protein level, we downloaded mass spectrometry data
from Human Proteome Map (HPM) (Kim et al., 2014) for 30
human tissues/cell lines. We checked some known m6A effectors
including YTHDF2, RBM15, EIF3D which ranked at the top
of Table 1 and METTL3 of which binding data is not available
but is a well-known m6A writer, and compared their correlation
with the identified m6A-associated RBPs (15 in total) or with the
rest of RBPs (56 in total). Correlation was calculated using the
Spearman’s correlation coefficient. We observed a similar trend
in all the investigated known m6A effectors which showed that

FIGURE 3 | Comparison of protein-protein interactions between known m6A effectors (YTHDF2, RBM15, EIF3D, and METTL3) and identified m6A-associated RBPs

(15 in total)/other RBPs. The boxplot shows the distribution of the interaction scores between known m6A effectors and identified m6A-associated RBPs/other RBPs.

Significance was evaluated using a one-sided Wilcoxon test.
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the identified m6A- associated RBPs are more correlated with
them at the protein-level than the transcription level (Figure 2).
Because the protein data included more tissues/cell lines than
the transcription data, we chose to compare a subset of 17 adult
tissues to check the correlation values for avoiding any biased
introduced by different dataset sizes. The higher correlation at
the protein level was still observed in this subset evaluation
as shown in Figure 2. Some studies have reported cases of
gene regulation with dependency between m6A-associated RBPs
such as METTL3 and YTHDF2 (Chen et al., 2018; Kasowitz
et al., 2018). This observation supports the hypothesis that

m6A-associated RBPs are more likely to participate in potential
pathways at the protein level. Then, we went on to confirm
to if these higher correlation values are the result of protein-
protein interactions. To do this we retrieved the protein-
protein interaction data from STRING (von Mering et al.,
2005). The available interaction scores do not show significant
difference between m6A-associated RBPs and other RBPs except
for METTL3 (Figure 3). Because the protein-protein interaction
data is still limited, from the available data it is suggested that
the higher correlation at the protein-level is marginally related
to protein-protein interaction. m6A modification is a dynamic

FIGURE 4 | Clustering of RNA binding proteins (RBPs) in the m6A regions of HEK293T cell line. X-axis and Y-axis represent the names of the RBPs. The color scale

indicates the cosine similarity between the RBPs.
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process involving both temporal and spatial regulation between
m6A effectors, therefore it is expected to have further studies to
unveil the regulation mechanism of these proteins.

3.2. Identification of m6A-Associated RBPs
Contributing to the Classification of m6A
Regions
After we identified RBPs enriched in the reproducible
m6A regions, we wanted to develop a more comprehensive

FIGURE 5 | Comparison of AUROC between the RBPs (RNA binding

proteins)-based predictor, DeepM6ASeq, and SRAMP in mature mRNA mode

for the classification of HEK293T m6A regions. The plot represents average

ROC from ten times of sampling control regions for each predictor.

understanding of how RBPs’ binding contributes to the profile
of m6A regions. To do this, we performed a further analysis
on the human RBPs. First, we investigated the overall profile
of the binding information of RBPs (0 for non-binding and 1
for binding) in the reproducible m6A regions. We calculated
the pairwise distance between RBPs using cosine similarity and
performed clustering (Figure 4). The result of the clustering
analysis demonstrated the co-occurrence of YTH family proteins
and RBM15B which all ranked in the top of the enrichment
analysis. Then, we built a Random Forest classifier which
incorporated the binding information for each of the RBPs as
features. The details of models are described in section 2. The
classifier achieved an average accuracy of 0.736 and AUROC
(Area Under Receiver Operating Characteristic) of 0.788 as
shown in Figure 5. We also compared the RBP-based classifier
with two sequence-based predictors SRAMP (Zhou et al., 2016)
in mature mRNA mode and DeepM6ASeq which showed an
accuracy of 0.660 and 0.686, respectively and AUROC of 0.754
for both (Figure 5). We plotted top 10 most important features
as shown in Figure 6 and among them found the enriched m6A-
associated RPBs such as the readers YTHDF1/2, YTHDC1, the
writers RBM15/15B. Besides, it is noticed that ELAVL1 also has
contribution to the classification of m6A regions to some extent.
ELAVL1 is reported to have action of being repelled by m6A in
general that can lead to RNA decay (Wang et al., 2014; Lee et al.,
2020). The repelling action of m6A against ELAVL1 is consistent
with the enrichment results, which show that its enrichment
ratio is 0.816. In summary, the RBP-based classifier not only
demonstrated competitive performance in the prediction of
reproducible m6A regions but also helped to infer interaction
between m6A and m6A-associated RBPs beyond sequence level
when combined with the results of the enrichment analysis.

FIGURE 6 | Top 10 RNA binding proteins (RBPs) identified from the classification of the HEK293T reproducible m6A regions. The bar graph shows the top 10 RBPs

extracted from the classifier for the m6A regions. X-axis represents the name of RBPs and Y-axis represents the average importance score from ten times of sampling

control regions.
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4. DISCUSSION

Utilizing the binding information of RBPs, this computational
framework enabled us to identify potential m6A-associated RBPs
and infer their interaction with m6A. This analysis serves as a
first step, and future analyses may include some improvements
and expansions. First, this framework was designed and tested
on a limited number of cell types and organisms. With the
increasing amount of data available for m6A and RBPs in more
cell lines and tissues, this framework could be tested on much
larger datasets and may provide valuable insights into the m6A
regulatory network. Especially, this framework is promising in
the application of cancer research. Several studies have identified
function of m6A effectors like METTL3/14, YTHDF1/2, and
IGF2BP1 in multiple cancer types (Cui et al., 2017; Li et al.,
2018; Chen et al., 2019; Han et al., 2019; Müller et al., 2019).
This framework is expected to provide clues for potential m6A
effectors and the interaction among them in cancer research.
In addition, this framework could be applied to other RNA
modifications such as N1-methyladenosine (m1A) (Dominissini
et al., 2016), and 5-methylcytidine(m5C) (Amort et al., 2017),
which have also been identified as critical RNA modification.
Such analyses could help improve experimental design in wet lab
applications and help researchers narrow their focus. Third, apart
from RBPs, other genomic features like transcription factors
and histone modification are worth inspecting for studying the
m6A regulation networks at multiple layers. These applications
highlight the future utility of this framework and its value in the
current research climate.

5. CONCLUSION

We designed an integrative computational framework for
identification of m6A-associated RBPs in reproducible m6A
regions. This computational framework is composed of an
enrichment analysis and a classification model. Using the
enrichment analysis, we were able to identify known m6A-
associated RBPs and several potential ones including RBM3 from
mouse. These identified m6A-associated RBPs show a significant
degree of correlation at their protein level, although this is
not seen in their transcriptional profile, which suggests that
these m6A-associated RBPs participate in potential pathways at
the protein-level in gene regulation. On the other hand, we
built a classification model for m6A regions using a Random

Forest algorithm that uses RBPs’ binding information as its
input features. The RBP-based predictor not only demonstrated
comparable performance to sequence-based predictions but also
helped infer interaction between m6A and m6A-associated RBPs
like actions of reading and repelling beyond sequence level. We
hope that this analysis framework can assist biologists in their
study of RNA modifications.
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