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ABSTRACT

Protein–Protein Interactions (PPI) is not only the critical component of various 
biological processes in cells, but also the key to understand the mechanisms leading 
to healthy and diseased states in organisms. However, it is time-consuming and cost-
intensive to identify the interactions among proteins using biological experiments. 
Hence, how to develop a more efficient computational method rapidly became an 
attractive topic in the post-genomic era. In this paper, we propose a novel method 
for inference of protein-protein interactions from protein amino acids sequences 
only. Specifically, protein amino acids sequence is firstly transformed into Position-
Specific Scoring Matrix (PSSM) generated by multiple sequences alignments; then the 
Pseudo PSSM is used to extract feature descriptors. Finally, ensemble Rotation Forest 
(RF) learning system is trained to predict and recognize PPIs based solely on protein 
sequence feature. When performed the proposed method on the three benchmark data 
sets (Yeast, H. pylori, and independent dataset) for predicting PPIs, our method can 
achieve good average accuracies of 98.38%, 89.75%, and 96.25%, respectively. In 
order to further evaluate the prediction performance, we also compare the proposed 
method with other methods using same benchmark data sets. The experiment results 
demonstrate that the proposed method consistently outperforms other state-of-the-art 
method. Therefore, our method is effective and robust and can be taken as a useful tool 
in exploring and discovering new relationships between proteins. A web server is made 
publicly available at the URL http://202.119.201.126:8888/PsePSSM/ for academic use.

INTRODUCTION

Protein–Protein Interactions (PPIs) play an important 
role in almost every cellular process [1, 2]. A variety 
of biochemical activities performed by PPIs are the 
foundation of life, such as immune response, regulation 
of transcription and translation, DNA replication, and 
endocrine function [3]. In recent decades, in order to 
understand the mechanisms of all kinds of biochemical 
activities, a variety of biological experimental methods have 

been designed to detect the interactions between proteins, 
for example, two-hybrid systems [4, 5], mass spectrometry 
[6, 7], immunoprecipitation [8], protein chip technology 
[9], etc. However, it is time-consuming, cost-intensive and 
small-scale to identify the interactions among proteins using 
biological experiments only. Therefore, there is an urgent 
need to use computational methods to predict protein-protein 
interactions efficiently and massively.

So far, a number of computational methods have 
been proposed to predict protein-protein interactions. These 
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methods can be roughly divided into three types: structure-
based methods [10–13], sequence-based methods [14–25] 
and function-annotation-based methods [26–29]. Among 
them, there is no need to know protein structure information 
and a pre-knowledge using the sequence-based approaches, 
which has aroused more and more interests in researchers. 
For example, Martin et al. developed a computational model 
to identify the interactions among proteins by using the 
signature descriptor [30]. This model achieved an accuracy 
of 70% and 80% when testing on the H. pylori and Yeast data 
sets by 10-fold cross-validation. Shen et al. proposed the 
conjoint triad approach to predict human PPIs considering 
the local environments of residues [16]. In the experiment, 
the accuracy of this model reached 83.9%. Ahmad et al. 
proposed an algorithm to predict the DNA-binding sites 
based on the neural network, which adopted amino acid 
sequences evolutionary information in terms of their position 
specific-scoring matrices [31].

In this paper, we propose a novel sequence-based 
computational method for predicting potential protein-
protein interactions. Specifically, we first convert the 
protein amino acids sequence into the Position Specific 
Scoring Matrix (PSSM) [32] that contains the information 
of evolution; Then use the Pseudo Position-Specific Score 
Matrix (PsePSSM) [33–35] algorithm to extract features 
expecting more information. Finally, the Rotation Forest 
(RF) [36, 37] classifier is applied to determine whether 
the proteins are related or not. In the experiment, the 
proposed method is implemented on the Yeast data set, 
and the accuracy of five-fold cross-validation is 98%. At 
the same time, we also verified on the Helicobacter. pylori, 
C.elegans, E.coli, H.sapiens and M.musculus data sets, and 
yielded the accuracy of 89.75%, 98.50%, 91.00%, 97.45% 
and 98.08%, respectively. In order to further evaluate the 
prediction performance, we also compare the proposed 
method with other excellent methods. Comparison results 

show that the proposed method consistently outperforms 
other state-of-the-art methods.

RESULTS AND DISCUSSIONS

Evaluation measures

Four standard criteria are used to evaluate the 
performance of our approach, including accuracy (Accu.), 
sensitivity (Sen.), precision (Prec.) and Matthews 
correlation coefficient (MCC). MCC represents the 
correlation coefficient between the observed and the 
predicted class. It ranges from -1 (the best predictive 
model) to 1 (the worst predictive model). These measures 
are defined as follows:

= +
+ + +

Accu TP TN
TP TN FP FN

.  (1)

=
+

Sen TP
TP FN

.  (2)

=
+

Prec TP
TP FP

.  (3)

( )( )( )
= × − ×

+ + + +
MCC TP TN FP FN

TP FP TP FN TN FP TN FN( )
 (4)

where TP denotes the number of positive samples to be 
correctly predicted; FP denotes the number of negative 
samples to be incorrectly predicted; TN denotes the 
number of negative samples to be correctly predicted; FN 
denotes the number of positive samples to be incorrectly 
predicted, respectively. In addition, the receiver operating 
characteristic (ROC) [38] curve is used to access the 
performance of classifier. In the ROC curve, the default 

Figure 1: Accuracy surface obtained of rotation forest for optimizing regularization parameters K and L.
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threshold for the classifier is 0.5. The threshold will be 
changed with the true positive rate versus the false positive 
rate when a new set of prediction result is accepted; this 
change will be expressed through graphics.

Assessment of prediction ability

In order to achieve the best performance of the 
rotation forest, we use the grid search method to adjust 
the corresponding parameters. In this study, PCA [36] 
was chosen as rotation forest transformation method 
and the J48 decision tree [39] derived from the WEKA 
machine learning workbench was selected as the base 
classifier. Figure 1 shows the accuracy of the classifier 
under different parameter values. From the Figure 1 
we can see that our method performs well, the average 
prediction accuracy is rapidly increasing with the 
increase of the value of L at the beginning and increase 
rate becomes slow when the value of L is greater than 

5. However, the accuracy always presents a fluctuation 
state with the increase of the value of the parameter K. 
After a comprehensive assessment, we choose the optimal 
parameters of K=8 and L=5 ultimately.

In this paper, 5-fold cross-validation technique is 
used as a means to evaluate our model. More specifically, 
the entire feature data set is randomly divided into five 
approximately equal subsets. Four of these subsets are 
used for training and the rest of the subset for testing. 
The cross-validation process is repeated 5 times so that 
each data set can be used for testing once. Table 1 lists 
the results of our predictions on Yeast data set, the value 
of average accuracy, precision, sensitivity, and MCC are 
98.38%, 99.92%, 96.84%, and 96.82%, respectively. The 
prediction accuracy of the five models are all greater 
than 98.17%, the precisions are greater than 99.62%, the 
sensitivities are greater than 96.32%, and the MCC are 
greater than 96.40%. The ROC curves performed on Yeast 
data set is shown in Figure 2. In this figure, X-ray depicts 

Table 1: 5-fold cross-validation results obtained by using proposed method on Yeast data set

Testing set Accu.(%) Prec.(%) Sen.(%) MCC(%)

1 98.17 100.00 96.32 96.40

2 98.30 100.00 96.69 96.66

3 98.17 100.00 96.37 96.40

4 98.30 99.62 96.88 96.65

5 98.97 100.00 97.93 97.97

Average 98.38±0.34 99.92±0.17 96.84±0.65 96.82±0.66

Figure 2: ROC curves performed by proposed method on Yeast data set.
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false positive rate (FPR) while y-ray depicts true positive 
rate (TPR).

The performance of the proposed method on the 
H. pylori data set

To better evaluate the performance of the proposed 
model in PPIs prediction, we focused on the testing of H. 
pylori data set. We use the same feature extraction method 
and the same RF parameters to verify its effect, the results 
achieved as shown in Table 2. On the H. pylori data set we 
obtain the accuracy of the 5 models are 92.45%, 88.16%, 
90.05%, 89.37%, and 88.70%, respectively. We can see 
from Table 2 that the excellent prediction performance 
of our model with an average precision value of 89.75%, 
precision value of 90.18%, sensitivity value of 89.12%, 
and MCC value of 81.62%. Additionally, it can also be 

seen from Table 2 that the standard deviation of accuracy, 
precision, sensitivity and MCC is as low as 0.0167, 
0.0274, 0.0183 and 0.0269. The ROC curves are shown 
in Figure 3.

Comparison with previous method

In recent years, many researchers have proposed 
various models to predict the PPIs and achieved good 
results. In order to further evaluate the prediction 
performance, we compare the proposed method with 
these excellent methods in the same benchmark data sets. 
In addition, as the state-of-the-art classification algorithm, 
SVM has been successfully used to predict PPIs. In 
this experiment, we also compare the classification 
performance between Rotation Forest classifier and 
SVM classifier on the Yeast data set. The corresponding 

Table 2: 5-fold cross-validation results obtained by using proposed method on H. pylori data set

Testing set Accu.(%) Prec.(%) Sen.(%) MCC(%)

1 92.45 93.44 92.23 86.00

2 88.16 86.93 88.49 79.10

3 90.05 92.06 87.63 82.06

4 89.37 90.56 88.10 80.99

5 88.70 87.93 89.16 79.95

Average 89.75±1.67 90.18±2.74 89.12±1.83 81.62±2.69

Figure 3: ROC curves performed by the proposed method on H. pylori data set.
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parameters of the SVM were selected by the grid search 
method, and finally we set c=0.1 and g=0.2, respectively. 
The LIBSVM tools we adopted are downloaded at 
www.csie.ntu.edu.tw/~cjlin/libsvm. Table 3 and Table 4 
summarize the results of these comparisons.

Table 3 shows the average prediction results of the 
different models on the Yeast data set, we can see that the 
accuracy obtained by other methods are between 75.08% 
and 89.33%, the average accuracy obtained by our method 
is 98.38%. In the comparison of classifiers, the accuracy 

obtained on the rotation forest classifier is higher than 
those obtained on the support vector machine classifier. 
Table 4 shows the performance of different methods on the 
H. pylori data sets. We can see from the Table 4 that the 
accuracies of the other six methods are 75.80%, 84.00%, 
83.40%, 86.60%, 79.52% and 87.50%, while our method 
is 89.75%; the precisions of the other six methods are 
80.20%, 84.00%, 85.70%, 85.00%, 81.69% and 86.15%, 
while our method is 90.18%; the sensitivity of the other 
six methods are 69.80%, 86.00%, 79.90%, 86.70%, 

Table 3: Performance comparison of different models on Yeast data set

Model Test set Accu.(%) Prec.(%) Sen.(%) MCC(%)

Guos’ work [17] ACC 89.33±2.67 88.87±6.16 89.93±3.68 N/A

AC 87.36±1.38 87.82±4.33 87.30±4.68 N/A

Zhous’ work [40] SVM + LD 88.56±0.33 89.50±0.60 87.37±0.22 77.15±0.68

Yangs’ work [41] Cod1 75.08±1.13 74.75±1.23 75.81±1.20 N/A

Cod2 80.04±1.06 82.17±1.35 76.77±0.69 N/A

Cod3 80.41±0.47 81.86±0.99 78.14±0.90 N/A

Cod4 86.15±1.17 90.24±0.45 81.03±1.74 N/A

Yous’ work [42] PCA-EELM 87.00±0.29 87.59±0.32 86.15±0.43 77.36±0.44

Our method SVM+PSSM 95.19±0.42 94.72±0.68 95.72±0.53 90.84±0.75

RF + PSSM 98.38±0.34 99.92±0.17 96.84±0.65 96.82±0.66

Table 4: Performance comparison of different models on H. pylori data set

Model Accu.(%) Prec.(%) Sen.(%) MCC(%)

Phylogentic bootstrap [43] 75.80 80.20 69.80 N/A

HKNN [44] 84.00 84.00 86.00 N/A

Signature products [30] 83.40 85.70 79.90 N/A

Ensemble of HKNN [45] 86.60 85.00 86.70 N/A

Boosting [46] 79.52 81.69 80.37 70.64

Ensemble ELM [42] 87.50 86.15 88.95 78.13

Our method 89.75 90.18 89.12 81.62

Table 5: Prediction results on four species based on our model

Species Test pairs Accu.(%)

C.elegans 4013 98.50

E.coli 6954 91.00

H.sapiens 1412 97.45

M.musculus 313 98.08
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80.37% and 88.95%, while our method is 89.12%. The 
results obtained by these methods are significantly lower 
than ours.

Performance on independent data sets

After completing the experiment on the Yeast and H. 
pylori data sets, we continue to test the performance of the 

proposed method on the independent data sets (C.elegans, 
E.coli, H. sapiens and M.musculus). In the experiment, we 
take all the Yeast data set as training set, independent data 
sets as the test set to predict protein-protein interactions. 
Table 5 lists the accuracy of our method on four data sets. 
It can be seen from the table that the highest accuracy of 
the proposed method is 98.50% on the C.elegans data set, 
and even the lowest accuracy achieved on the E.coli data 

Table 6: The newly confirmed PPIs with high possibility in the Yeast data set

Protein ID Protein ID The probability of protein-
protein interactions Evidence

DIP:1113N DIP:655N 0.9917 DIP

sw:P29295 sw:P20604 0.9912 MINT

sw:P47054 sw:P49687 0.9908 IntAct

DIP:1040N DIP:2463N 0.9891 DIP

sw:P04050 sw:P16370 0.9869 MINT

DIP:2808N DIP:6282N 0.9854 DIP

DIP:1408N DIP:6416N 0.9848 DIP

DIP:1558N DIP:2370N 0.9846 DIP

DIP:5037N DIP:799N 0.9840 DIP

sw:Q12176 sw:Q03532 0.9839 MINT, IntAct

DIP:1364N DIP:2483N 0.9836 DIP

DIP:1726N DIP:834N 0.9833 DIP

DIP:2417N DIP:5630N 0.9831 DIP

sw:P18888 sw:P32591 0.9826 MINT, IntAct

sw:Q04067 sw:P40217 0.9812 MINT, IntAct

Figure 4: The schematic diagram of the prediction model.
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set reached 91.00%. It is demonstrates that our method 
has good accuracy in predicting the interaction of other 
species.

Validate potential protein-protein interactions 
from the PPIs database

After evaluating the effectiveness of the proposed 
model by using the 5-fold cross validation method, 
we here calculate the interaction probability for all 
potential protein-protein pairs in the datasets of Yeast. 
Specifically, the whole negative and positive data 
explored in 5-fold cross validation experiments are used 
for training and all the unknown protein-protein pairs 
are used as testing set. The predicted protein pairs with 
top-100 ranks in the potential PPI lists are considered 
as highly potential protein-protein interactions and 
further verified by three public databases (i.e. DIP [47], 
MINT [48] and IntAct [49]). These databases have been 
supplemented by some newly detected protein-protein 
interactions since the gold standard data explored in 
this study were collected in 2007. All the predicted 
possibilities for top 100 potential PPIs in Yeast can 
be obtained in Supplementary Table S1. As shown in 
Table 6, 15 new protein-protein interactions are finally 
confirmed. Note that the high-ranked interactions that 
are not reported yet may also exist in reality. Based on 
these results, we anticipate that the proposed model is 
feasible to predict new protein-protein interactions.

MATERIALS AND METHODS

Data sources

We evaluate our model focus on publicly available 
Saccharomyces cerevisiae data set introduced by 
Guo et al. [17]. The PPIs data were extracted from 
Saccharomyces cerevisiae core subset of database of 
interacting proteins (DIP) [47], version DIP_20070219. 
Through the two algorithms, paralogous verification 
method (PVM) and expression profile reliability (EPR) 
[50], the core subset of reliability is tested. And less than 
50 residues of the protein of protein pairs are removed. In 
order to reduce pairwise sequence redundancy, multiple 
sequence alignment tool, CD-Hit [51, 52], was adopted 
with a threshold of 40% identity. Eventually the 5594 
proteins are left to form the positive data set. The negative 
dataset consists of 5594 additional protein pairs, which are 
selected at different subcellular localization. Therefore, the 
positive and negative data set each accounted for half of 
the 11188 protein pairs constitute the final data set.

As a comparison, we further assess the capabilities 
of our model in the H. pylori data set, which was described 
by Rain et al. [53]. It can be downloaded at http://www.
cs.sandia.gov/~smartin/software.html. This data set 

contains 2916 protein pairs which include half interacting 
pairs and half non-interacting pairs. It provides a platform 
for comparing different methods [30, 42, 43, 45, 46].

Position-specific scoring matrix

Position-Specific Scoring Matrix (PSSM) is 
used to detect the distantly related proteins, and 
initially introduced by Gribskov et al. [32]. It has 
made outstanding achievements in these areas: protein 
secondary structure prediction [54], prediction of 
disordered regions [55], and protein binding site prediction 
[56]. A PSSM is an L × 20 matrix, which can be denoted 
as  { }= = =PSSM a i L and j: 1   1 20i j, , where L 
denotes protein sequence length and the number of 20 is 
due to 20 amino acids. Each element PSSM (i, j) of the 
matrix is defined as follows:

L

L

M M M M

L

=PSSM

a a a

a a a

a a a

   

   

                   

   L L L

1,1 1,2 1,20

2,1 2,2 2,20

,1 ,2 ,20

 (5)

where ai j,  in the i row of PSSM means that the probability 
of the ith residue being mutated into type j of 20 native 
amino acids during the procession of evolutionary in the 
protein from multiple sequence alignments.

In order to extract the evolutionary information, 
each protein sequence in the data set is used to align and 
search homogenous sequences from SwissProt database 
by the Position Specific Iterated BLAST (PSI-BLAST) 
[57] tool. PSI-BLAST will return a 20-dimensional vector 
which indicates the probabilities of conservation against 
mutations to 20 different amino acids including its own. 
To get broad and high homologous sequences, we select 
in this study the value of e-value is 0.001 and the value of 
iterations is 3, respectively. Applications of PSI-BLAST 
and SwissProt database can be downloaded at http://blast.
ncbi.nlm.nih.gov/Blast.cgi.

Pseudo position-specific score matrix

In order to reduce the probability of missing 
sequence-order information, we introduced the concept 
of pseudo amino acid composition by Chou et al. [58].
In this article the sample of a protein sequence PSSM is 
represented by Equation 5 and PsePSSM obtained from 
the following Equation:

∑

∑ ∑
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= =
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where ai j,
0  represents the original scores directly generated 

by the PSI-BLAST, and its value is typically positive 
integers or negative integers. This is not what we want 
standardized scores, which may have zero means if 
more than 20 amino acids and may remain unchanged if 
it continues through the same conversion program. The 
positive score implies that the corresponding mutation 
appears more frequently in the alignment than expected 
by chance, and the negative score, on the contrary, implies 
that the corresponding mutation appears less frequently 
in the alignment than expected by chance. However, 
according to the definition of PSSM, different lengths 
of proteins will correspond to different rows number in 
matrices. Equation 7 is employed to express the protein 
sample PSSM, so that the PSSM descriptor can be 
represented as a uniform pattern.

=P a a a     PSSM 1 2 20  (7)

and

∑= =
=

a
L

a j 1       1..20j i ji

L

,1
 (8)

where aj  denotes the average score when the amino 
acid residues in protein P in the process of running the 
algorithm was evolved into amino acid type j. However, 
if only PPSSM  is used to represent the protein P, all the 
sequence information will be lost during evolution. In 
order to prevent the occurrence of missing all information 
of sequence-order, the thought of pseudo amino acid was 
introduced to improve the Equation 7. Hence, based on the 
Equation 9 segmented PsePSSM features can be obtained:
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where aj  is the correlation factors of amino acid type j. 
Although the value allowed for e  can be 0, 1, 2, …, or 49, 
considering the time costs and efficiency factors, we took 
e  to 0,1,2,3,4, so a total of 200-dimensional vectors are 
eventually used in this study.

Rotation forest

Rotation Forest (RF) is a novel proposed ensemble 
classifier that uses independently trained decision trees. 
The main idea of the Rotation Forest simultaneously 
encourages individual accuracy and diversity within the 
ensemble. In order to generate the training samples of the 
base classifier, the feature set is randomly divided into K 
subsets. The linear transformation method is applied to 
each subset, and retains all the principal components to 

maintain the precision of data. The rotation formed the 
training sample of new features to ensure the diversity of 
data. Hence the rotation forest can enhance the accuracy 
of individual classifier and the diversity in the ensemble 
at the same time.

Suppose that x y,i i{ }  contains N training samples, 
where x x x xi i i iD= …( , , , )1 2  be a D-dimensional feature 
vector, X=( , , , )x x xn

T
1 2 ⊃  be the training sample set 

(n×D matrix), which is composed of n observation 
feature vector composition, Y= …y y y( , , , )n

T
1 2  be the 

corresponding labels, and S be the feature set. Assuming 
that the number of decision trees in the rotation forest is 
L, expressed as …R R R, , , L1 2 , respectively, and the feature 
set is randomly divided into K subsets of equal size. The 
preprocessing steps for an individual classifier is: the first 
select the appropriate parameters K which is a factor of 
n, and S randomly divided into K disjoint subsets, so the 
number of features contained in each feature subset is C 
= n k ; the second from the training dataset X to select 
the corresponding column of the feature in the subset Ri j,
, form a new matrix Xi j, . Then the bootstrap subset of 
objects extracts three-quarters the size of the data set from 
X to construct a new training subset X i j

'
, ; The third matrix 

X i j
'
,  is used as the feature transform for producing the 

coefficients in a matrix Mi j, , which jth column coefficient 
as the characteristic component jth; and the final a sparse 
rotation matrix Mati  is formed, and its coefficients in 
matrix Mi j,  is expressed as Equation 10:
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In the prediction phase, given a test sample x, let 
d XMat( )i j i

a
,  be the probability produced by the classifier 
Ri  to the hypothesis in which x belongs to class yi . Then 
the confidence for a class can be computed according to 
the average combined method shown in Equation 11:

∑µ ( )= =
x

L
d XMat1 ( )j i j i

a
i

L

,1
 (11)

Therefore, the test sample x easily assigned to the classes 
with the greatest possible. The schematic diagram of the 
prediction model is shown in Figure 4.

CONCLUSION

In this paper, we proposed a novel method to predict 
protein-protein interactions using the Rotation Forest 
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combine with Pseudo Position-Specific Score Matrix. 
In order to preserve as much information as possible, 
we first convert the protein amino acids sequences into 
the PSSM matrix, and then extract the features using the 
PsePSSM algorithm, finally determine whether there is an 
interaction between protein pairs through the RF classifier. 
To evaluate the performance of the proposed method, we 
implement it on the Yeast, H. pylori and independent data 
sets. In addition, we also compare the proposed method 
with other excellent methods. Excellent experimental 
results demonstrate that the proposed method is feasible 
and effective in the prediction of protein interactions. The 
low standard deviation of these criterion values indicates 
that our method is stable and robust. In future studies, 
we will focus on improving the classification algorithm 
to expect higher predictive accuracy and less time 
consumption in predicting protein-protein interactions.

WEBSERVER

In order to facilitate the use of researchers, we have 
built a web server to implement the proposed prediction 
model. The web server provides the source code and the 
Yeast data sets used in this article for users to download. 
It can be accessed to at http://202.119.201.126:8888/
PsePSSM/. Users can query the predicted results of the 
Yeast data sets through the webpage and receive the 
predict results by e-mail.
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