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Abstract

Induced regulatory T-cells (iT-reg) and T helper type 17 (Th17) in the mouse share common CD4 progenitor cells and exhibit
overlapping phenotypic and functional features. Here, we show that human Th17 cells endowed with suppressor activity
(supTh17) can be derived following exposure of iT-reg populations to Th17 polarizing conditions. In contrast to
‘‘pathogenic’’ Th17, supTh17 display immune suppressive function and express high levels of CD39, an ectonucleotidase
that catalyzes the conversion of pro-inflammatory extracellular nucleotides ultimately generating nucleosides. Accordingly,
supTh17 exhibit nucleoside triphosphate diphosphohydrolase activity, as demonstrated by the efficient generation of
extracellular AMP, adenosine and other purine derivatives. In addition supTh17 cells are resistant to the effects of adenosine
as result of the low expression of the A2A receptor and accelerated adenosine catalysis by adenosine deaminase (ADA).
These supTh17 can be detected in the blood and in the lamina propria of healthy subjects. However, these supTh17 cells are
diminished in patients with Crohn’s disease. In summary, we describe a human Th17 subpopulation with suppressor activity,
which expresses high levels of CD39 and consequently produces extracellular adenosine. As these uniquely suppressive
CD39+ Th17 cells are decreased in patients with inflammatory bowel disease, our findings might have implications for the
development of novel anti-inflammatory therapeutic approaches in these and potentially other immune disorders.
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Introduction

CD4+CD25highFOXP3+ regulatory T-cells (T-reg) are central to

the maintenance of immune homeostasis [1–4]. T-reg prevent or

even reverse experimental autoimmunity, and T-reg cellular

defects have been observed in association with various autoim-

mune disorders, such as those associated with vascular thrombo-

philia as in inflammatory bowel disease [1–3]. T-reg exert

suppressive function by releasing inhibitory cytokines, such as

IL-10 [5,6], TGF-b [7,8] and IL-35 [9]; by cytolysis, mainly

mediated by granzyme B [10]; by modulating the maturation and

the antigen presenting ability of dendritic cells [11]; or by

metabolic disruption either by depriving of IL-2 effector cells [12]

or by hydrolyzing pro-inflammatory ATP into immunomodulato-

ry adenosine, secondary to the specific co-expression of CD39 and

CD73 ectonucleotidases by such cells [13,14].

In contrast, T helper type 17 lymphocytes (Th17) are an effector

subset that develops independently of Th1 and Th2 cell lineages.

Th17 cells drive inflammatory and autoimmune conditions in both

mice and humans and have been linked to intestinal inflammation

[15,16]. CD4+ T-cells can be differentiated into Th17 cells when

exposed to TGF-b in combination with IL-6 or IL-21 in mice and

to IL-6, TGF-b and IL-1b in humans, or into induced (i)T-reg

under the influence of TGF-b [15,16]. Additional studies have

shown that, in addition to TGF-b, other factors including IL-2

[17,18] and anti-CD3/anti-CD28 [19] play a role in iT-reg

generation, even after a short stimulation period [19]. iT-reg and

Th17 cells, however, may not be terminally differentiated and iT-

reg in particular show phenotypic and functional plasticity [20].

Using genetic lineage tracing of Foxp3 T-reg, Zhou and

colleagues observed that a significant proportion of Foxp3+ cells

undergo down-regulation and in some cases loss of Foxp3

expression is noted [21]. These ‘ex-Foxp3’ cells display an effector

memory cell phenotype, produce pro-inflammatory cytokines and

are numerically increased in experimental autoimmune diabetes

[21]. Moreover, exposure of T-reg to IL-6 can down-regulate both

Foxp3 and IL-17 expression, suggesting that T-reg may be

‘subverted’ to Th17-like cells [22]. In addition, it has been

reported that T-reg can further acquire effector properties - i.e.

IFNc production - when cultured in the presence of IL-12 [23].

These ‘Th1-like’ T-reg show diminished suppressive activity that
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can be only partially reversed by blockade of IFNc or IL-12

removal [23].

The stimulation of naı̈ve T-cells with TGF-b and IL-6 triggers

IL-17 production but it also induces the expression of IL-10,

limiting the pathogenic potential of these cells [24]. Indeed,

additional studies have reported that IL-17+ T-cells can limit tissue

damage during inflammation [25,26]. In experimental murine

tumor settings, it has been demonstrated that CD39 and CD73

expressed by ‘suppressor’ Th17 cells (supTh17) suppress tumor-

specific immunity [27]. Whether comparable human supTh17

cells exist has been unexplored to date.

CD39 hydrolyses ATP and ADP into AMP, which is then

converted into adenosine by CD73. The regulatory properties of

CD39 were initially noted in studies conducted on CD39null mice

in which an enhanced production of IFNc, IL-1b, IL-6 and TNF-

a was found [28,29]. CD39 and CD73 expression on murine T-

reg is required for the suppressive function of these cells, which

results from the production of adenosine [4]. Accordingly, T-reg

isolated from CD39null mice are unable to block allograft rejection

in adoptive transfer studies [13].

Expression of CD39 has been reported on human T-reg in

parallel to FOXP3 and low levels of CD127 [30,31]. Human T-

reg do not co-express high levels of CD73 with CD39 in contrast

to murine counterparts. Thus AMP conversion to adenosine by

human CD39+ T-reg is thought to result from paracrine

mechanisms by the presence of CD73 on target or neighboring

cells [31]. Regardless of the molecular mechanism involved, it has

been shown that human CD39+ T-reg exert preferential suppres-

sion on CD4 target cell IL-17 production [32].

Defective numbers of CD39+ T-reg have been reported in

patients with multiple sclerosis, autoimmune hepatitis [33] and

CD39 polymorphisms linked to low-level CD39 expression have

also been described in Crohn’s disease [30,32,34]. Recent studies

have shown that in addition to T-reg, CD39 is also expressed on a

subset of memory cells with effector function [35]. Although this

expression of CD39 by human T-reg has been reported and

putative roles dissected, the demonstration and relevance of

specific CD39 expression by human Th17 cells has been

unexplored to date.

We describe here a population of human supTh17 cells that in

contrast to prototypic pathogenic Th17 display high levels of both

CD39 and FOXP3 and exhibit immune suppressive properties.

Our new observations also provide mechanistic insights into the

development of supTh17 and indicate the role of CD39 and

purinergic immunomodulation. The pathophysiological relevance

of these cells is supported by the detection of decreased frequencies

of CD39+ supTh17 cells in both peripheral blood and lamina

propria of patients with Crohn’s disease, an illness characterized

by manifestations of unfettered intestinal inflammation.

Materials and Methods

Subjects
Peripheral blood mononuclear cells (PBMCs) were isolated from

platelet-depleted blood (leukofilters) obtained from 68 healthy

blood donors (Blood Donor Center at Children’s Hospital, Boston,

MA). PBMCs were also obtained from 25 patients with Crohn’s

disease, recruited from the Gastroenterology Division, Beth Israel

Deaconess Medical Center (BIDMC), Boston MA. Of these

patients, 11 were studied during active disease (median Harvey

Bradshaw Index, HBI: 8, range 2 to 25) while 14 were in remission

(median HBI: 0, range 0–12). At the time of investigations, 11

patients were receiving infliximab, 2 were on steroids and 2 on

immunomodulatory drugs.

Ethics Statement
The study was approved by BIDMC Institutional Review

Committee. Written consent was obtained from all study

participants.

Cell Purification
PBMCs were obtained by density gradient centrifugation on

Ficoll-Paque (GE Healthcare, Uppsala, Sweden). Cell viability,

determined by Trypan Blue exclusion, exceeded 98%. Lamina

propria mononuclear cells (LPMCs) were isolated from freshly

biopsied colonic tissue. The tissue was initially washed with PBS,

cut into small sections and incubated in calcium and magnesium-

free HBSS containing 4 mM EDTA and 1 mM dithiothreitol at

37uC for 15 min. Epithelia were removed by discarding the

supernatants. This procedure was repeated three times. The tissue

was then minced, resuspended in RPMI 1640 containing 10%

FCS, 400 U/ml collagenase D and 0.01 mg/ml DNase I, and

then incubated at 37uC for 1.5 hour with pipetting every 30 min.

The digested tissue was filtered and centrifuged at 6006g for

7 min. Collected cells were pelleted, resuspended in PBS 1% FCS

and stained as indicated below.

Cell Sorting and Culture
CD4mem and CD4naive cells were sorted as CD4+CD45RO+

and CD4+CD45RA+ from PBMCs using a BD FACSAria (BD

Biosciences, San José, CA) (purity higher than 98%). Cells were

cultured in complete RPMI 1640 medium (Invitrogen, Carlsbad,

CA) supplemented with 2 mM L-glutamine, 100 U/ml penicillin,

100 mg/ml streptomycin, 1% non-essential amino acids and 10%

FCS and exposed for 3 days to Th17 polarizing conditions (Figure

S1), i.e. IL-6 (50 ng/ml)+IL-1b (10 ng/ml)+TGF-b (3 ng/ml) [36–

38] and anti-CD3/anti-CD28 T-cell expander (bead/cell ratio: 1/

50) (Dynal Invitrogen). In some experiments cells were exposed to

additional Th17 polarizing conditions, namely IL-6+IL-1b+IL-23

(20 ng/ml) or IL-6+IL-1b+IL-23+TGF-b. All cytokines were from

R&D Systems (Minneapolis, MN). Cells were then stimulated for

Figure 1. Suppressor ability of iT-reg derived from
CD4+CD45RO+ memory (CD4mem) and from CD4+CD45RA+

naı̈ve (CD4naive) cells. The ability of iT-reg obtained from CD4mem

and CDnaive-derived Th17 cells was evaluated after 4-day co-culture by
3H-thymidine incorporation in 5 healthy subjects. Mean (+SEM)
percentage suppression of CD4 effectors by CD4mem or CD4naive iT-
reg before and after exposure to IL-6, IL-1b and rTGF-b. CD4mem but not
CD4naive iT-reg maintain their suppressor ability after exposure to Th17
driving cytokines. *P#0.05.
doi:10.1371/journal.pone.0087956.g001

CD39 Expression by Suppressor Th17 Cells
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4 days in the presence of iT-reg polarizing conditions consisting of

high concentration IL-2 (300 U/ml) and T-cell expander (bead/

cell ratio: 1/2) [39,40] and then re-exposed to the same Th17

polarizing conditions indicated above for additional 3 days (Figure

S1). Cells obtained after exposure to Th17 and iT-reg polarizing

conditions are referred to as Th17 and iT-reg; cells obtained after

iT-reg exposure to Th17 driving conditions are indicated as

supTh17 (Figure S1). Functional properties of Th17, iT-reg and

supTh17 are described in the ‘Results’ section.

Figure 2. Phenotypic properties of supTh17. Phenotype of CD4mem at baseline and of Th17, obtained from CD4mem after 3-day exposure to IL-
6+IL-1b+rTGF-b; iT-reg, obtained following exposure of Th17 to high concentration IL-2 and T-cell expander; and supTh17, obtained upon iT-reg
exposure to IL-6+IL-1b+rTGF-b. Cell phenotype was determined in 12 healthy subjects. (A) Representative flow cytometry plots of CD4 (X axis) and IL-
17, CD25 and FOXP3 (Y axis) fluorescence. (B) Representative histogram depicting RORC fluorescence in CD4mem at baseline, Th17 and supTh17;
representative flow cytometry plots of CD4 (X axis) and CCR6, IL-23R and IL-22 (Y axis) fluorescence. Compared to prototypic Th17, supTh17 display
higher frequencies of IL-17+, FOXP3+ and IL-22+ lymphocytes, express similar levels of RORC and contain comparable numbers of CCR6+ cells.
doi:10.1371/journal.pone.0087956.g002

CD39 Expression by Suppressor Th17 Cells
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Flow Cytometry
Cell phenotype was assessed by 6-colour flow cytometry

following cell incubation with FITC, PE, PE-Cy7, Pacific blue

(PB), APC and APC-Cy7-conjugated anti-human antibodies to:

CD4 (clone#: OKT4), CD45RO (clone#: UCHL1), CD45RA

(clone#: HI100), CD25 (clone#: BC96), CD26 (clone#: BA5b),

CD39 (clone#: A1), CD73 (clone#: AD2), CCR6 (clone#:

G034E3) (all from Biolegend, San Diego, CA) and IL-23R (R&D

Systems, clone#: 218213). Frequency of FOXP3, RORC and

Stat-3 positive cells was assessed by intracellular staining following

cell fixation and permeabilization with Cytofix/Cytoperm (BD

Biosciences) and incubation with PB, APC and PE-conjugated

anti-human FOXP3 (Biolegend, clone#: 206D), RORC

(eBioscience, San Diego, CA; clone#: AFKJS-9) and Stat-3 (BD

Bioscience, clone #: 49/p-Stat-3). Frequency of cytokine-produc-

ing cells was determined after exposure to phorbol 12-myristate

13-acetate (PMA, 10 ng/ml, Sigma-Aldrich) and Ionomycin

(500 ng/ml) for 60 minutes and to Brefeldin A (20 mg/ml,

Sigma-Aldrich) for additional 5 hours. Staining was carried out

using PE, PB, and APC-conjugated anti-human antibodies to

IFNc (Biolegend, clone#: 45.B3), IL-17A (Biolegend, clone#:

BL168), IL-10 (BD Biosciences, clone#: JES3-19F1), IL-2 (BD

Bioscience, clone#: MQ1-17H12) and IL-22 (eBioscience,

clone#: IL22JOP). Isotype controls were from BD Biosciences.

Cells were acquired on a BD LSRII (BD Biosciences) and analyzed

using BD FACSDiva software. 3–56104 events were acquired for

each sample. Positively stained cell populations were gated based

on unstained, single stained and isotype stained controls. Effect of

adenosine (Sigma-Aldrich, St. Louis, MO) on Th17, iT-reg and

supTh17 phenotype was assessed in parallel experiments. Aden-

osine was added at 50 mM to memory CD4 cells at baseline; after

3 days when exposing cells to iT-reg polarizing conditions; and

after additional 4 days when re-stimulating cells in the presence of

Th17 skewing conditions. Controls consisted of cultures in the

absence of adenosine.

In vitro Suppression Assay
The ability of Th17, iT-reg and supTh17 to control target cell

proliferation and effector cytokine production was evaluated

following 4-day co-culture with CD4 responder cells. Following

24 hour resting in cytokine and bead-free medium, Th17, iT-reg

and supTh17 were added at 1/8 ratio to autologous CD4 target

cells (2.56104 cells/well) previously exposed to IL-2 (30 U/ml)

and T-cell expander (bead/cell ratio: 1:2) for 5 to 7 days. The 1:8

ratio was selected because capable of exerting a detectable

regulatory function in preliminary experiments where ratios of

1:16, 1:8, 1:4 and 1:2 were compared as these putatively reflect

pathophysiological proportions between suppressor and effector

lymphocytes. Parallel cultures of CD4 responder cells and of

Th17, iT-reg and supTh17 on their own were performed under

identical conditions. All experiments were performed in duplicates.

After 4 days, cultures were pulsed with 0.25 mCi/well 3H-

Figure 3. supTh17 suppressive ability. The ability of Th17, iT-reg and supTh17 cells to control CD4 target cell proliferation was evaluated after 4-
day co-culture by 3H-thymidine incorporation in 10 healthy subjects. (A) Mean (+SEM) percentage inhibition of CD4 effector cell proliferation by Th17,
iT-reg and supTh17 cells. (B) The ability of Th17, iT-reg and supTh17 cells to control CD4 target cell IL-17 and IFNc production was evaluated after 4-
day co-culture by intracellular cytokine staining in 10 healthy subjects. Mean (+SEM) percentage inhibition of CD4 effector cell IL-17 and IFNc
production by Th17, iT-reg and supTh17 cells. Compared to prototypic Th17, supTh17 exerted more effective control over CD4 cell proliferation and
pro-inflammatory cytokine production. *P#0.05; **P#0.01.
doi:10.1371/journal.pone.0087956.g003

CD39 Expression by Suppressor Th17 Cells
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thymidine and harvested 18 hours later using a cell harvester

(Tomtec, Hamden, CT). Incorporated thymidine was measured

by liquid scintillation spectroscopy. In preliminary experiments,

inhibition of CD4 target cell proliferation in the absence and

presence of suppressor cells was also analyzed using carboxy

fluorescein succinimidyl ester (CFSE) staining. As CFSE- and 3H-

thymidine-based assays gave comparable results, given the

requirement for fewer cells, 3H-thymidine was used to measure

proliferation in subsequent experiments. The ability of Th17, iT-

reg and supTh17 cells to control the production of IFNc and IL-

17 by target cells was determined by intracellular cytokine staining

after 4-day co-culture as detailed above. The effect of adenosine

on Th17, iT-reg and supTh17 ability to suppress was tested in

parallel experiments.

Quantitative Real-time PCR
Expression of A1, A2A, A2B and A3 adenosine receptors, and

of phosphodiesterases (PDE) 4A and PDE4B was determined by

real-time PCR. Total RNA was extracted from 2–36105 cells

using TRIzol reagent (Invitrogen) and mRNA was reverse

transcribed using iScript cDNA Synthesis kit (Bio-Rad Laborato-

ries, Hercules, CA) according to the manufacturer’s instructions.

Sequences of adenosine receptors were as previously described

[41]. PDE primer sequences were as follows:

PDE4A: Forward 59 ACACAGCAGTGACGCTAATCCAGA

39

Reverse 59 ATTCACTGGAGGAGGTGGCTCAAA 39

PDE4B: Forward 59 ACAGCCTGATGCTCAGGACATTCT

39

Reverse 59 AAACTTCTCCATCAGACCCTGGCA 39

PCR amplification conditions were as previously reported [41].

Samples were run on a Stratagene MX3005P (Agilent Technol-

ogies, Santa Clara, CA) and results were analyzed by matched

software and expressed as relative quantification. Relative gene

expression was determined by normalizing to human b-actin

(primer sequence as previously reported [41]).

Immunoblot Analysis
56105 cells were lysed in ice-cold RIPA buffer, containing 1%

NP-40, 0.25% sodium deoxycolate, 50 mM Tris-HCl and

150 mM NaCl and supplemented with Complete Proteinase

Inhibitor Cocktails (Roche Diagnostics, Indianapolis, IN) and

Phosphatase Inhibitor Cocktails (Sigma-Aldrich). Following 30

minutes incubation on ice, samples were spun at 14,0006g for 30

minutes. Supernatants (containing total cell lysates) were collected

and total protein concentration determined using Bio-Rad Dc

protein assay reagent (Bio-Rad Laboratories) using bovine serum

albumin as standard. Following protein denaturation with SDS,

Figure 4. Expression of CD39 and CD73 ectonucleotidases and associated ectoenzymatic activity. (A) Mean (+SEM) frequency of (A)
CD39+ cells, (B) CD39 mean fluorescence intensity (MFI) and of (C) CD39+CD73+ cells within CD4mem at baseline and within Th17, iT-reg and supTh17.
Results from 12 healthy subjects are shown. *P#0.05; **P#0.01; ***P#0.001. (D) CD39 ADPase enzymatic activity was assessed by TLC following
incubation of Th17, iT-reg and supTh17 with [14C] radiolabeled ADP substrates. A representative of 3 independent experiments is shown. In
accordance with high levels of CD39 and CD73, supTh17 generate AMP, adenosine and its derivative inosine.
doi:10.1371/journal.pone.0087956.g004
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cell lysates were separated on a 4–12% Criterion XT Bis-Tris

SDS-PAGE (Bio-Rad Laboratories). 10 mg of protein were loaded

per lane. Gels were run for 20 minutes at 80 V and then at 110 V

for additional 80 minutes. Proteins were then transferred onto

PVDF membranes (Immobilon-P, Millipore, Billerica, MA) by

semi-dry electroblotting and subsequently incubated in blocking

buffer containing 2.5% skimmed milk. Following 60 minutes,

mouse anti-adenosine deaminase (ADA) antibody (Abcam, Cam-

bridge, MA) was applied at 1 mg/ml. Following overnight

incubation membranes were incubated for 60 minutes with

HRP-labeled goat anti-mouse (Thermo Scientific, Rockford, IL)

at 1/50,000. Bands were visualized using SuperSignal West Femto

Maximum Sensitivity Substrate (Thermo Scientific) according to

the manufacturer’s instructions. For immunoblot normalization,

the same membranes were stripped (using a buffer containing 15 g

glycine, 1 g SDS and 10 ml Tween20) and re-probed with mouse

anti-human b-actin (Abcam) at 1/20,000 and subsequently with a

HRP-labeled goat anti-mouse polyclonal antibody at 1/20,000.

ADA band density was determined using Scion Image Processing

Program (Release Beta 4.0.2).

Ectonucleotidase Enzymatic Activity Analysis
Thin layer chromatography (TLC) was performed as previously

described [13,42]. 36105 Th17, iT-reg and supTh17 were

incubated with 2 mCi/ml [C14]ADP (GE Healthcare Life

Sciences) in 10 mM Ca2+ and 5 mM Mg2+. Then, 5 ml aliquots,

collected at 5, 10, 20, 40 and 60 minutes, were analyzed for the

presence of [C14]ADP hydrolysis products by TLC and applied

onto silica gel matrix plates (Sigma-Aldrich). [C14]ADP and the

radiolabeled derivatives were separated using an appropriate

solvent mixture as previously described [43].

Statistical Analysis
Results are expressed as mean6SEM (obtained from at least 5

subjects per group and from at least 3 independent in vitro

experiments). Smirnov goodness of fit test was performed to test

the normality of variable distribution. Paired and unpaired

Student’s t test were used for comparing normally distributed

data; Wilcoxon’s rank sum test and Mann Whitney test were used

for non-normally distributed data. ANOVA repeated measures or

one-way ANOVA, followed by Tukey’s multiple comparisons test,

was used to compare the means of multiple samples. For all

Figure 5. Adenosinergic effects on cell immune phenotype and function. (A) Mean (+SEM) frequency of CD39+ cells and of CD73+, FOXP3+

and IL-17+ lymphocytes within them in CD4mem at baseline, Th17, iT-reg and supTh17. Results from n=12 healthy subjects. (B) Mean (+SEM)
inhibition of CD4 T-cell proliferation by Th17, iT-reg and supTh17 in the absence or presence of adenosine. Adenosine boosts expression of CD39 and
CD73 and enhances the suppressor properties of iT-reg, while not having any effect on supTh17. *P#0.05.
doi:10.1371/journal.pone.0087956.g005

CD39 Expression by Suppressor Th17 Cells

PLOS ONE | www.plosone.org 6 February 2014 | Volume 9 | Issue 2 | e87956



CD39 Expression by Suppressor Th17 Cells

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e87956



Figure 6. Purinergic molecular signatures of supTh17 cells. (A) Relative mRNA expression of A1, A2A, A2B, A3 receptors by Th17, iT-reg and
supTh17 was determined by quantitative real-time PCR in 10 healthy subjects. Results are expressed as mean+SEM. (B) Expression of ADA was
determined by immunoblot analysis. One representative of 3 independent experiments is shown. Mean (+SEM) ADA densities noted in Th17, iT-reg
and supTh17 cells are also shown. (C) Mean (+SEM) CD26 MFI in Th17, iT-reg and supTh17 cells obtained from 5 healthy subjects was evaluated by
flow cytometry. A representative histogram of CD26 fluorescence in CD4mem at baseline, Th17, iT-reg and supTh17 is shown. (D) Mean (+SEM) relative
mRNA expression of PDE4A and PDE4B was determined by quantitative real-time PCR in 10 healthy subjects. supTh17 uniquely express low levels of
A2A adenosine receptor, exhibit ADA activity associated with CD26 but do not substantially up-regulate levels of PDE. *P#0.05; ***P#0.001.
doi:10.1371/journal.pone.0087956.g006

Figure 7. Demonstration of supTh17 cells in healthy subjects and associated decreases in Crohn’s disease. The frequency of CD4+IL-17+

and of supTh17 was determined in PBMCs and LPMCs by flow cytometry. supTh17 were identified by initially gating CD4+CD45RO+ cells within
PBMCs or LPMCs and then by determining the proportion of CD39+IL-17+ and FOXP3+ within them. Mean (+SEM) frequency of (A) CD4+IL-17+ and of
(B) supTh17 cells in the circulation and in the lamina propria. Mean (+SEM) frequency of supTh17 positive for (C) Stat-3 and for (D) TNF-a and IL-2 in
the circulation and in the lamina propria. Healthy subjects: n = 17; Crohn’s: n = 25; *P#0.05; **P#0.01; ***P#0.001.
doi:10.1371/journal.pone.0087956.g007

CD39 Expression by Suppressor Th17 Cells
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comparisons a P value #0.05 was considered significant. Statistical

analysis was performed using SPSS version 19.0.

Results

supTh17 are Phenotypically Different from Prototypic
Th17 Cells and Display Regulatory Function

In order to first investigate whether human Th17 cells can

acquire regulatory functions per se, we activated CD4+CD45RO+

memory (CD4mem) and CD4+CD45RA+ naı̈ve (CD4naive) T-cells

under Th17 polarizing conditions. Next, we exposed these cells to

iT-reg polarizing conditions. Finally, to evaluate the stability of the

polarized T-cells, we re-activated them in the presence of Th17

skewing conditions, as detailed in Methods (see also Figure S1). In

these studies, Th17 polarizing conditions consisted of 3-day

exposure to IL-6, IL-1band TGF-b, a cytokine cocktail previously

shown to result in the efficient differentiation of IL-17 producing

cells in humans [36–38,44], and to low dose anti-CD3/anti-CD28.

Further, iT-reg polarizing conditions consisted of 4-day stimula-

tion in the presence of high concentration IL-2 and anti-CD3/

anti-CD28, shown to be particularly effective at inducing high

numbers of effective iT-reg [39,40,44].

We found that iT-reg obtained from CD4mem-derived Th17

cells had persistent and stable suppressor activity following ‘‘re-

activation’’ in the setting of Th17 polarizing conditions (Figure 1).

In contrast, iT-reg obtained from CD4naive-derived Th17 cells,

had lost most of their suppressive ability once re-activated in the

presence of Th17 polarizing conditions (Figure 1). Therefore, we

focused consequent studies on iT-reg derived from CD4mem.

Figures 2 and S2 illustrate the phenotype of CD4mem cells at

baseline; after 3-day exposure to Th17 polarizing conditions; after

further 4-day stimulation in the presence of iT-reg polarizing

conditions; and then after 3-day re-exposure to Th17 driving

cytokines. CD4mem cells at baseline contained low frequencies of

IL-17-producing, CD25+ and FOXP3+ lymphocytes (Figures 2A

and S2A–C). Following 3-day exposure to IL-6, IL-1b and TGF-b,

CD4mem cells displayed higher numbers of IL-17-producing cells,

while maintaining low frequencies of CD25+ and FOXP3+

lymphocytes (Figures 2A and S2A–C).

Cells obtained following Th17 exposure to iT-reg polarizing

conditions displayed a decrease in the number of IL-17+

lymphocytes and an increase in the frequency of CD25+ and

FOXP3+ cells (Figures 2A and S2A–C). These cells contained

minimal proportions of effector cytokines like IFNc or IL-2 (Figure

S3). After iT-reg exposure to Th17 polarizing conditions, we noted

marked increases in the number of cells producing IL-17,

decreases in lymphocytes positive for CD25 and frequencies of

FOXP3+ lymphocytes that were similar to iT-reg although higher

than Th17 cells (Figures 2A and S2A–C). When contrasted to

prototypic Th17, these supTh17 cells displayed higher expression

of RORC, higher numbers of IL-22+ lymphocytes and similar

proportions of cells positive for CCR6 and IL-23 receptor (IL-

23R) (Figure 2B).

When next considering suppressive functions (Figures 3A and

S4A), we observed that supTh17 controlled CD4 target cell

proliferation in a comparable manner to iT-reg, and more

effectively than did prototypic Th17 cells. With regard to

suppression of pro-inflammatory cytokine production (Figures 3B

and S4B–C), supTh17 effectively controlled IL-17 and IFNc
cytokine production by CD4 effector cells. In contrast, iT-reg,

while effectively inhibiting production of IL-17, exerted only weak

control over CD4 T-cell IFNc production.

In summary, supTh17 can be obtained following exposure of

CD4mem-derived iT-reg to Th17 polarizing conditions. In contrast

to prototypic Th17, these cells contain higher frequencies of IL-17

Figure 8. SupTh17, iT-reg and purinergic control of T-cell immune responses. Both supTh17 and iT-reg cells have the capacity to suppress
effector T-cells (Teff) by generating adenosine. In a manner distinct from iT-reg which are anergic, however, supTh17 express low levels of A2A
receptor and exhibit nucleoside scavenging ecto-enzymatic activity. These properties confer on supTh17 an important intrinsic resistance to
suppressive effects of adenosine, which may develop in parallel with prolonged cellular activation in accordance with memory T-cell status. These
differences suggest that supTh17 might undergo conversion and be recruited as suppressor-type cells in the later evolution of immune responses
where these cells may persist at sites of resolving injury.
doi:10.1371/journal.pone.0087956.g008
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producing and FOXP3+ lymphocytes and furthermore display

effective and stable suppressive function.

The supTh17 Cells Express both CD39 and CD73 thereby
Generating Adenosine and other Nucleoside Derivatives

Given the regulatory properties displayed by supTh17 and the

association between CD39 and immunoregulation [13,32], we

determined the expression of CD39 in supTh17 and compared it

with that of CD4mem cells at baseline, Th17 and iT-reg. As shown

in Figure 4A and 4B, supTh17 contained the highest frequencies

of CD39+ cells and displayed the highest CD39 MFI, being

therefore clearly distinguishable from prototypic Th17 cells that

displayed low numbers of CD39+ lymphocytes and low CD39

MFI.

To evaluate whether different Th17 polarizing conditions

influence CD39 expression, we obtained Th17 and supTh17 cells

upon exposure to IL-6, IL-1b and IL-23 or IL-6, IL-1b, IL-23 and

TGF-b. As depicted in Figure S5A, no differences were observed

in the frequency of CD39+ cells in the presence of different Th17-

inducing cytokine cocktails.

We next evaluated the phenotypic properties of CD39+ cells

within supTh17 and compared with those of CD39+ cells within

CD4mem at baseline, Th17 and iT-reg (Figures 4C, S5B and S6A–

C). supTh17 cells contained proportions of cells positive for CD73

- the ectonucleotidase working in tandem with CD39 to generate

adenosine - and for FOXP3 comparable to iT-reg and higher than

Th17 cells and CD4mem cells at baseline (Figures 4C, S5B and

S6A). No significant differences in the frequencies of IL-10+ and

RORC+ cells were noted between supTh17 and the other cell

subsets (Figure S6B–C).

Given the concomitant expression of CD39 and CD73 by both

supTh17 and iT-reg, we determined the ability of these cells to

generate adenosine. Cell ectoenzymatic activity was assessed by

thin layer chromatography (TLC) following cell incubation with

[C14] radiolabeled ADP. As depicted in Figure 4D, supTh17 and

iT-reg were both able to generate adenosine that supTh17 cells

further effectively degraded into inosine. In contrast, Th17 cells

were capable of hydrolyzing ADP into AMP but did not generate

extracellular adenosine, in accordance with low levels of CD39

and CD73 expression. In keeping with concomitant CD39 and

CD73 expression, supTh17 are therefore competent in generating

adenosine, which is then effectively degraded into inosine.

Effects of Adenosinergic Signaling on Cell Phenotype and
Function

We then tested the effect of adenosine exposure on supTh17

and compared with that in iT-reg and Th17 cells. Adenosine

increased the frequency of CD39+ and CD73+ cells among iT-reg

while not having any effect on the frequency of these cells among

Th17 and supTh17 cells (Figures 5A and S7 and data not shown).

Exposure to exogenous adenosine did not affect the proportion of

FOXP3+ and IL-17+ cells in any of the three cell subsets

(Figure 5A). With regard to suppressive function, adenosine

enhanced the ability of iT-reg and, though to a lesser extent, Th17

cells to control CD4 target cell proliferation while not having any

effect on the suppression exerted by supTh17 (Figure 5B). The

above data show that adenosine boosts the phenotypic and

functional properties of iT-reg while not having any effect on

supTh17.

We then examined possible mechanisms that could further

account for resistance of supTh17 to exogenous adenosine. We

considered that resistance to adenosine may result from low

expression levels of adenosine receptors, from high levels of

adenosine deaminase (ADA), which degrades adenosine into

inosine, and/or high expression of phosphodiesterases (PDE) -

the enzymes degrading the phosphodiester bond of cAMP. Thus,

we determined the expression of A1, A2A, A2B and A3 adenosine

receptors by quantitative real-time PCR. The expression of A2A

receptor, known to be involved in down-regulation of inflamma-

tion and protection from tissue damage [45], was decreased at

mRNA levels in supTh17, when compared to Th17 and iT-reg

(Figure 6A).

In order to test whether adenosine resistance of supTh17 was

the result of enhanced adenosine clearance, we first assessed the

expression of ADA. We observed expression of ADA in Th17 and

supTh17 (Figure 6B), indicating that both these cell types have the

ability to deaminate adenosine. In contrast, ADA was only weakly

expressed in iT-reg (Figure 6B). ADA is completely functional at

the cell surface (known as ecto-ADA), where it directly interacts

with the dipeptidylpeptidase IV (CD26) and regulates adenosine

receptors. ADA activity depends on CD26, the expression of

which has been recently reported to be increased on human Th17

[46]. We therefore assessed the expression of CD26 and found that

the CD26 MFI was higher in iT-reg and supTh17 compared to

Th17 (Figure 6C). These data indicate that the effective

degradation of adenosine into inosine displayed by supTh17 relies

on the co-expression of both ADA and CD26. In contrast Th17

and iT-reg, which express either ADA (Th17) or CD26 (iT-reg),

do not display effective deamination activity (Figure 6C).

We next determined the expression of PDE4A and PDE4B. We

found that both enzymes are expressed by Th17, iT-reg and

supTh17 (Figure 6D). The supTh17, however, did not overexpress

any of the PDE, ruling out the possibility that the adenosine

resistance noted in these cells result from high levels of cAMP

clearance. We therefore conclude that supTh17 resistance to

exogenous adenosine is associated with low A2A adenosine

receptor expression and enhanced scavenging of nucleosides by

ecto-adenosine deaminase.

Demonstration of supTh17 in Healthy Subjects and in
Patients with Crohn’s Disease

To investigate the biological relevance of supTh17, the

frequency of CD4+IL-17+ and that of supTh17 was determined

in PBMCs and LPMCs obtained from healthy subjects and

Crohn’s patients. These supTh17 were identified by initially gating

CD4+CD45RO+ cells within PBMCs or LPMCs and then by

determining the proportion of CD39+IL-17+ and FOXP3+ within

this population.

While the proportion of CD4+IL-17+ in PBMCs cells was

similar in the two groups, that of CD4+IL-17+ lymphocytes

obtained from the lamina propria was higher in Crohn’s patients

than in healthy subjects (Figure 7A). In patients, the frequency of

CD4+IL-17+ cells was markedly higher in the lamina propria

compared to the circulation (Figure 7A). We then determined the

frequency of supTh17 in both compartments. These supTh17

were decreased in Crohn’s patients, when compared to healthy

subjects, both within PBMC and LPMC populations (Figures 7B

and S8). In both groups, supTh17 were increased in the lamina

propria compared to the circulation (Figures 7B and S8). When

analyzed for expression of Stat-3 known to modulate Th17

immunosuppressive activity through up-regulation of CD39 [27] -

circulating supTh17 from Crohn’s patients displayed higher

proportion of cells positive for this marker than did comparably

prepared cells from healthy subjects (Figure 7C) [27]. In both

groups, supTh17 from the lamina propria contained higher

proportions of lymphocytes that were positive for Stat-3

(Figure 7C). Analysis of cytokine profiles show that supTh17 from
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Crohn’s disease patients had higher frequencies of TNF-a+ and

IL-2+ cells - pro-inflammatory cytokines previously reported to be

decreased in populations of Th17 cells with suppressive properties

isolated from the small intestine [47], than the respective supTh17

from healthy subjects in the circulation (albeit not in the lamina

propria; Figure 7D). In both groups, supTh17 in the lamina

propria contained higher proportions of TNF-a+ and IL-2+ cells

than did the counterparts in the circulation (Figure 7D). No

differences in the frequencies of supTh17 and of TNF-a+ and IL-

2+ cells within them were noted between patients with either active

or inactive disease. The above data indicate that supTh17 are

highly represented in the lamina propria and that the frequencies

of these cells are lower in the periphery in Crohn’s disease, where

in contrast these cells also express increased levels of pro-

inflammatory cytokines.

Discussion

We have shown that a population of human supTh17 cells can

be derived following the exposure of iT-reg to Th17 polarizing

conditions in vitro. These putative supTh17 display phenotypic

features of both effector Th17 (i.e. production of IL-17 and

expression of CCR6, IL-22 and IL-23R) and iT-reg (expression of

FOXP3) and importantly control effector cell function by

inhibiting CD4 cell proliferation as well as production of IFNc
and IL-17. It is not clear whether these cells might be

representative of a late stage in Th17 differentiation, in which

the effector potential of prototypic Th17 cells is attenuated or

rather constitute unique cell subsets in which overlapping

regulatory and effector features coexist.

The robust in vitro system used in the present study enabled us to

observe changes in T-cell phenotype and function upon stimula-

tion in the presence of Th17 and iT-reg polarizing conditions.

Previous studies have documented differentiation of CD4 cells into

Th17 or iT-reg following short- and medium-term cell culture

in vitro [17,18,48,49]. These and our studies may be of particular

relevance to disease settings, in which antigen-primed CD4

memory cells may be sequentially exposed to different cytokine

milieus and undergo modulation accordingly, during either

inflammatory or remission phases.

Given the putative importance of CD39 in immunoregulation,

particularly concerning purinergic mechanisms governing the

suppressive function of iT-reg, we studied whether supTh17

expressed this ectonucleotidase. Our data show that, in contrast to

prototypic Th17 cells, supTh17 display high levels of CD39.

Furthermore, supTh17 cells also co-express ecto-59-ectonucleoti-

dase CD73, which is pivotal in the generation of adenosine from

AMP. These supTh17, in contrast to prototypic Th17, have the

potential to generate adenosine in a manner comparable to iT-reg,

which can be noted by standard biochemical tests (Figure 4D).

However, in a manner distinct from iT-reg, the extracellular

adenosine that is generated by supTh17 undergoes further

degradation, given the concomitant expression of adenosine

deaminase and CD26 by these cells. In accordance with the low

CD73 levels expressed, prototypic Th17 cells were unable to

generate adenosine.

When we examined the effect of exogenous adenosine on

supTh17 phenotypic and functional properties, we could observe

that these cells were resistant to the effect of this mediator.

Curiously, these cells did not undergo upregulation of CD39

expression nor did these cells exhibit amelioration of suppressive

function, in the manner observed in anergic type iT-reg.

Adenosine resistance in supTh17 cells is likely to be conferred

by low levels of A2A adenosine receptor and by higher levels of

adenosine catalysis. The A2A adenosine receptor is primarily

known to mediate anti-inflammatory effects: lymphocytes from

A2A receptor (2/2) mice show higher rates of cell proliferation

and produce high IFNc levels upon stimulation [50]. A2A

receptor stimulation has established inhibitory effects on Th1

and Th17 effector cell generation and, in contrast, favors

generation of FOXP3+ and LAG-3+ regulatory T-cells [51]. Our

data suggest that the most likely mechanisms for supTh17

resistance to adenosine are linked to low A2A receptor levels

and enhanced levels of adenosine catalysis, enabled by ADA and

CD26 co-expression. We have observed that iT-reg display

marked decreases in mRNA levels of the A2B adenosine receptor.

This observation might have relevance for the differential effects of

A2B versus A2A signaling by these cells. Furthermore, Moriyama

and Sitkovsky have demonstrated in studies of A2AR versus A2BR

expression in transfected cells that substantive proportions of

A2BR are preferentially degraded by the proteasome, a mecha-

nism that might be also operative here in differentiating Th17 cells

from iT-reg [52].

The observation that supTh17 are resistant to adenosinergic

modulation implies that these cells are not conventional suppres-

sors, nor are these cells anergic. The supTh17 cells might adapt

their own intrinsic ability to regulate or inflict damage according

to the immunological context in which they operate. Given that in

these cells, both regulatory (i.e. adenosine generation, suppressive

function) and pro-inflammatory (i.e. low levels of A2A and inosine

generation) features co-exist, it is plausible to suggest that supTh17

might reside in a form of ‘purinergic limbo’ and unresponsiveness

until a crucial time where this balance may be perturbed. This

temporal ‘status’ would enable supTh17 cells to influence extrinsic

homeostatic properties of target cells via suppression mediated

through generation of adenosine while maintaining intrinsic

resistance to this immune suppressive molecule. In contrast, iT-

reg exert suppression via production of adenosine, while being also

wholly susceptible to the nucleoside modulatory effects that might

stabilize their immune suppressive phenotype (Figure 8; [4,31]). At

variance with iT-reg, supTh17 are not subjected to this autocrine

loop, suggesting that these cells, in contrast, may play roles as both

regulators of late stage immune responses and in the maintenance

of T-cell memory functionality.

Another important finding of this investigation is that supTh17

could be enumerated in both circulation and lamina propria of

healthy subjects and patients with Crohn’s disease. These cells

appear to preferentially home to the intestine, as demonstrated by

their high percentages in the lamina propria, suggesting that the

intestine may be the compartment where Th17 cells undergo

regulation. Our data indicate there are higher percentages of

supTh17 cells expressing Stat-3 in the lamina propria indicating

that this transcription factor may have a role in the expression of

CD39 and induction of supTh17 in the colon [27]. In agreement

with these data, in mouse models of colitis, pathogenic Th17 cells

are also considered to undergo regulation in the intestine where

these cells acquire phenotypic and functional T-reg-like properties

[47].

Importantly, supTh17 numbers are markedly decreased in

Crohn’s patients. This decrease might theoretically result in

disease exacerbation and perpetuation because of the decreased

ability of effector Th17 to undergo regulation. Previous clinical

studies demonstrated impaired immunoregulation and particularly

numerically defective and dysfunctional T-reg in these same

disease settings [53,54].

Hence, the increased numbers of effector Th17 cells, also shown

here may originate from defective control usually operated by

active immune suppression - i.e. primarily defective T-reg, or
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alternatively be the result of decreased Th17 autoregulation.

Interestingly, supTh17 from Crohn’s patients appear skewed

towards a pro-inflammatory phenotype as these cells contain

higher frequencies of TNF-a and IL-2 pro-inflammatory cytokines

than those noted in healthy controls.

In conclusion, we have shown that human supTh17 can be

obtained upon exposure of iT-reg to Th17 driving conditions

in vitro.

High levels of CD39 expression distinguish these immune

suppressive cells from effector pathogenic Th17 cells. We propose

that these fundamental alterations in purinergic signaling might

control tissue damage while limiting cellular pathogenicity in local

and systemic inflammatory illnesses, such as in Crohn’s disease.

Promoting the local expansion of supTh17 cells and the

maintenance of these should boost local immune suppressive

activities and augment diminished T-reg functionality, as previ-

ously noted in IBD [34,55]. Indeed, these studies and development

of modalities to boost CD39 expression have implications for the

development of novel therapeutic strategies in Crohn’s disease.

Supporting Information

Figure S1 Experimental protocol for T-cell activation.
CD4mem and CD4naive T-cells, purified as CD4+CD45RO+ and

CD4+CD45RA+ cells, were initially activated under Th17

polarizing conditions. This comprised of IL-6+IL-1b+rTGF-b+
anti-CD3/anti-CD28 T-cell expander (bead/cell ratio: 1:50) for

3 days. Cells were then exposed to iT-reg skewing conditions with

high concentration IL-2 and anti-CD3/anti-CD28 T-cell expand-

er (bead/cell ratio: 1:2) for 4 days, and then were re-activated

under Th17 polarizing conditions for 3 days.

(TIF)

Figure S2 Frequency of IL-17+, CD25+ and FOXP3+ cells
in Th17, iT-reg and supTh17. Frequency of (A) IL-17+, (B)

CD25+ and (C) FOXP3+ cells in CD4mem at baseline, Th17, iT-

reg and supTh17 cells was determined in 12 healthy subjects;

***P,0.001.

(TIFF)

Figure S3 iT-reg phenotype. Flow cytometry plots of FOXP3

(X axis) and IFNc or IL-2 (Y axis) fluorescence. Frequency of cells

is shown in each quadrant. A representative of two independent

experiments is shown.

(TIFF)

Figure S4 T-cell suppressive ability. (A) Mean (+SEM)

CD4 effector cell proliferation, expressed as mean count per

minute (cpm) in the absence or presence of Th17, iT-reg and

supTh17 cells. Proliferation of Th17, iT-reg and supTh17 on their

own is also shown. (B) Mean (+SEM) CD4 effector cell IL-17 and

IFNc production in the absence or presence of Th17, iT-reg and

supTh17 cells. Production of IL-17 and IFNc by Th17, iT-reg and

supTh17, in isolation, are also shown. Results are obtained from

10 healthy subjects. *P#0.05; **P#0.01; ***P,0.001. (C)

Representative flow cytometry plots of CD4 (X axis) and IL-17

or IFNc (Y axis) fluorescence in CD4 effectors alone and in the

presence of Th17, iT-reg or supTh17 cells.

(TIF)

Figure S5 Frequency of CD39+ and CD73+ cells within
Th17, iT-reg and supTh17. (A) Frequency of CD39+ cells was

determined after exposing CD4mem cells to different Th17

polarizing conditions, i.e. 1) IL-6+IL-1b+rTGF-b; 2) IL-6+IL-

1b+IL-23; and 3) IL-6+IL-1b+rTGF-b+IL-23. Flow cytometry

plots of CD4 (X axis) and CD39 (Y axis) fluorescence. A

representative of 5 independent experiments is shown. (B) Flow

cytometry plots of CD4 (X axis) and CD73 (Y axis) fluorescence.

Cells were gated on CD39+ lymphocytes.

(TIFF)

Figure S6 Phenotype of Th1, iT-reg and supTh17 cells.
Mean (+SEM) frequency of lymphocytes positive for (A) FOXP3,

(B) IL-10 and (C) RORC within CD39+ cells in CD4mem at

baseline, Th17, iT-reg and supTh17. Results are obtained from 12

healthy subjects. *P#0.05; **P#0.01. Representative flow cytom-

etry plots of CD4 (X axis) and (A) FOXP3, (B) IL-10 and (C)

RORC (Y axis) fluorescence in CD4mem at baseline, Th17, iT-reg

and supTh17 are shown. Cells are gated on CD39+ lymphocytes.

(TIF)

Figure S7 Effect of adenosine on CD39 expression. Flow

cytometry plots of CD4 (X axis) and CD39 (Y axis) fluorescence in

Th17, iT-reg and supTh17 cells in the absence and presence of

adenosine in a representative individual of 12 healthy subjects

tested.

(TIFF)

Figure S8 Frequency of supTh17 in PBMCs and LPMCs.
supTh17 were identified by initially gating CD4+CD45RO+ cells

within PBMCs or LPMCs and then by determining the proportion

of cells positive for CD39 and IL-17 and expressing FOXP3 within

this population. Flow cytometry plots of CD4 (X axis) and IL-17 (Y

axis) fluorescence in PBMCs and LPMCs from one healthy subject

and one patient with Crohn’s disease. Cells were gated on CD39+

lymphocytes. Histograms of FOXP3 fluorescence in CD4+IL-17+

cells within CD39+ lymphocytes are also shown.

(TIFF)
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