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Identification of EMT-related high-risk stage II colorectal
cancer and characterisation of metastasis-related genes
Kai Wang1, Kai Song1, Zhigang Ma2, Yang Yao2, Chao Liu2, Jing Yang1, Huiting Xiao1, Jiashuai Zhang1, Yanqiao Zhang2 and
Wenyuan Zhao1

BACKGROUND: Our laboratory previously reported an individual-level prognostic signature for patients with stage II colorectal
cancer (CRC). However, this signature was not applicable for RNA-sequencing datasets. In this study, we constructed a robust
epithelial-to-mesenchymal transition (EMT)- related gene pair prognostic signature.
METHODS: Based on EMT-related genes, metastasis-associated gene pairs were identified between metastatic and non-metastatic
samples. Then, we selected prognosis-associated gene pairs, which were significantly correlated with disease-free survival of stage II
CRC using multivariate Cox regression model, as the EMT-related prognosis signature.
RESULTS: An EMT-related signature composed of fifty-one gene pairs (51-GPS) for prediction-relapse risk of patients with stage II
CRC was developed, whose prognostic efficiency was validated in independent datasets. Moreover, 51-GPS achieved better
predictive performance than other reported signatures, including a commercial signature Oncotype Dx colon cancer and an
immune-related gene pair signature. Besides, EMT-related functional gene sets achieved high enrichment scores in high-risk
samples. Especially, loss-of-function antisense approach showed that DEGs between the predicted two clusters were metastasis-
related.
CONCLUSIONS: The EMT-related gene pair signature can identify the high relapse-risk patients with stage II CRC, which can
facilitate individualised management of patients.
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BACKGROUND
Colorectal cancer (CRC) ranks third in terms of incidence, but
second in terms of cancer-related death worldwide.1 Treatment
decision and prognosis assessment mainly depend on the
pathological stage of the tumour.2 However, about 20% patients
of stage II CRC will relapse after curative surgery.3 Therefore, some
other factors were proposed for therapy decisions. For example,
stage II patients with high-risk factors, such as T4 stage and high
tumour grade, have a greater chance of relapse and should be
treated with chemotherapy after surgery.4 But these clinicopatho-
logical risk factors do not adequately distinguish between patients
who have high or low risk of relapse, and lead to over- or under-
diagnosis.5

Several studies have developed quantitative signatures based
on gene expression for survival stratification with stage II CRC,6,7

which were developed from genome-wide, prognosis-related and
immune-related genes. Unfortunately, the clinical practice is
limited owing to issues such as overfitting on small discovery
datasets and lack of sufficient validation. Besides, this type of
prognostic signature calculated by the sum of the weighted
expression values of the characteristic genes is difficult to be
reproducible due to experimental batch effects and platform
differences.8,9 In addition, gene expression measurements are

greatly affected by the sampling locations10,11 and RNA degrada-
tion problem during sample preparation12 of tumour tissues.
Although a quantitative signature Oncotype Dx colon cancer has
been used commercially, some patients are categorised as
“intermediated risk” cluster, which complicates clinical decision-
making. To tackle the above-mentioned problems, qualitative
methods, such as TSP13 and k-TSP,14 have been proposed, which
are relatively robust to these factors. Using this method, several
qualitative signatures have been developed for prognosis/
prediction of tumours. Especially for CRC patients, based on the
within-sample relative expression orderings (REOs) of genes, our
laboratory previously reported an individual-level prognostic
signature consisting of three gene pairs for predicting the post-
surgery relapse risk of stage II CRC.15 This signature was developed
by training on microarray expression data, and validated using
independent microarray datasets. However, this signature was
not assessed in the RNA-seq platform. Wu et al.16 have also
constructed REO-based individualised prognostic signatures.
Nevertheless, the signature was developed without considering
the specificity of stage.
The epithelial-to-mesenchymal transition (EMT) is a centrally

important mechanism for the metastasis of carcinomas,17 which
was typically characterised by loss of cell–cell adhesion and apical-
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based cell polarity, as well as the increased invasion of cells.18

Furthermore, induction of EMT has been reported to lead to
patients at an early-stage CRC more prone to metastasis.19,20

Herein, we aim to construct a gene pair signature to figure
outpatients at risk of relapse using EMT-related genes in stage
II CRC.

METHODS
Data acquisition and pre-processing
Twelve CRC gene expression datasets were collected from the
public database, including ten microarray datasets and a RNA-seq
dataset from the Gene Expression Omnibus (GEO, https://www.ncbi.
nlm.nih.gov/geo/),21 and one RNA-seq dataset from The Cancer
Genome Atlas (TCGA, https://www.cancer.gov/about-nci/
organization/ccg/research/structural-genomics/tcga),22 as described
briefly in Supplementary Table S1a. Specific clinicopathological
features are described in Supplementary Table S1b. For the datasets
from GEO, we downloaded the raw data (.CEL files) and used the
robust multi-array average (RMA) method23 for background
adjustment without quantile normalisation. Each probe ID was
mapped to Entrez gene ID with the corresponding platform files. If
a probe was mapped to multiple or zero genes, the data of this
probe were discarded. If multiple probes were mapped to the same
gene, the expression level of this gene was summarised as the
arithmetic mean of the values of multiple probes. For TCGA
transcriptional data derived from Illumina high-throughput sequen-
cing (HiSeq) platform, the raw count and fragments per kilobase of
transcript per million fragments mapped (FPKM) values were
extracted. For mutation data derived from the Illumina Genome
Analyzer DNA Sequencing GAIIx platform, only the nonsynonymous
mutations remained. Data of copy number variations (CNVs) were
processed with the GISTIC algorithm.24 Samples from GSE39582
and TCGA were used as training cohorts due to their relatively high-
quality clinical records and long-term follow-up. Datasets with
sample size more than 50 were used as independent validation
cohorts. However, as for small-sample datasets with sample size less
than 50, we combined them according to the individual platforms,
and defined Com_570 and Com_96, since different datasets could
be directly integrated based on the within-sample REOs.13

Construction of an individualised prognostic signature based on
EMT-related genes
Figure 1 describes the processes for developing and validating the
prognostic signature. Firstly, we collected EMT-related genes from
public databases (dbEMT: http://dbemt.bioinfo-minzhao.org/,25

MSigDB: http://software.broadinstitute.org/gsea/msigdb/index.
jsp) and literature (Liang et al.26). Secondly, we identified stable
expressed genes across metastatic and non-metastatic samples
with coefficient of variation (CV) less than 0.3,27 which were
defined as reference genes. In order to calculate the CV, the FPKM
values from TCGA and probe intensities from microarray were log2
transformed,28 and FPKM values less than 1 were set to 1.
Thirdly, among gene pairs composed of EMT-related and

reference genes, two genes in a gene pair, a and b, with
expression values of Ga and Gb, the Fisher’s exact test was used to
identify metastasis-associated gene pairs whose frequency of
samples with the REO pattern Ga < Gb (or Ga > Gb) was significantly
higher in the metastatic CRC than the non-metastatic CRC
samples. Then, for each of the metastasis-associated gene pairs,
we used the multivariate Cox regression model to identify
prognosis-associated gene pairs whose REOs were significantly
correlated with disease-free survival (DFS) of stage II CRC samples
treated only with curative surgery in GSE395892, which were
supposed as the candidate relapse-risk signature. Further, we
calculated the concordance index (C index)29 of each possible
threshold from one to the number of gene pairs, and selected the
one (k) that could reach the largest C index in the training data as

the appropriate threshold of the signature. A sample was classified
as a high-risk cluster if at least k gene pairs voted for high-risk,
otherwise, low-risk cluster. The prognosis-associated gene pairs
with the appropriate threshold were defined as the gene pair
signature (GPS), which could be used directly in the validation
datasets.

Survival analysis
DFS was defined as the time from surgery to relapse or the final
documented data (censored). Survival curves of DFS between
different clusters were estimated using the Kaplan–Meier (K–M)
method, the differences between the survival curves were
compared using the log-rank test30 and 95% confidence intervals
(CIs) were calculated using a univariate Cox regression model.29

The independent prognostic value of the signature was assessed
by multivariate Cox regression model after adjustment for clinical
factors. The predictive accuracy of the signature was assessed
using the receiver-operating characteristic curve (ROC, “pROC”
package, version 1.14.0). All statistical analyses were performed
using R software version 3.5.2 (https://www.r-project.org/).

Functional enrichment analysis
We performed gene set enrichment analysis using GSEA software
(http://software.broadinstitute.org/gsea/index.jsp) with 1000 per-
mutations. For the RNA-seq data from TCGA, FPKM values were
used to calculate the log2 fold change between high- and low-risk
clusters. The hallmark gene sets were used for the target gene sets
for GSEA. The gene sets satisfying p < 0.05 were considered
statistically significant. Besides, we assessed consensus molecular
subtype (CMS) classification between high- and low-risk clusters
using the “CMSclassifier” package, version 1.0.0.

Cell lines and transfection
HCT116 cells were purchased from the American Type Culture
Collection (Manassas, VA, USA) and cultured at 37 °C in a humified
atmosphere of 95% O2 and 5% CO2. HCT116 cells were grown in
high-glucose DMEM medium (Thermo Fisher Scientific, Waltham,
MA, USA) with 10% foetal calf serum (Thermo Fisher Scientific,
Waltham, MA, USA). ShRNA plasmids were purchased from Vigene
Biosciences. Transfections (0.5 µg of shRNA plasmid) were
performed using the Lipofectamine® 2000 kit (Thermo Fisher
Scientific, Inc.) according to the manufacturer’s protocol.

Western blotting and wound-healing assay
Total proteins were harvested from cultured cells using an ice-cold
lysis buffer. Proteins were separated by 10% SDS/PAGE and then
transferred to PVDF membranes. The membranes were blocked
with 5% non-fat milk, and then incubated with primary antibodies
and β-actin (Proteintech, Chicago, USA), followed by horseradish
peroxidase (HRP)-conjugated secondary antibodies (Proteintech).
Immunoreactive proteins were detected using a chemilumines-
cence solution (Thermo Fisher Scientific).
HCT116 cells were transfected for 24 h and seeded in six-well

plates and incubated until they were 90% confluent. A straight
scratch was then made across the base of the well. Images of the
cells were captured at ×40 magnification (Nikon, Tokyo, Japan) at
0 and 24 h, and used to determine cell migration. The width of the
wound was measured by ImageJ, and the data were used to
quantify the rate of cell migration. Each experiment was
independently performed in triplicate.

Genomic data analysis
Fisher’s exact test was used to detect genes that had significantly
different mutation or CNV frequencies. Significantly differentially
expressed genes were identified between high- and low-risk
clusters by edgeR algorithm. OncoPrint31 was used to show top 50
nonsynonymous mutant genes and significant CNVs between the
two risk clusters.
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RESULTS
Construction of prognostic signature for the relapse risk of stage II
CRC
Firstly, we validated prognostic signature previously constructed
by our laboratory in the RNA-seq dataset from TCGA. Unfortu-
nately, this signature (3-GPS) was not applicable (Supplementary
Table S2). Then, we constructed an EMT-related prognostic
signature for predicting post-surgery relapse risk of stage II CRC.
We collected a list of 1250 EMT-related genes from public

databases and literature, which involved 782 genes on the
platform of the discovery cohort. Then, we extracted 6610 stable
expressed genes (CV < 0.3) across metastatic samples (stage III
and IV CRC) and non-metastatic samples (stage I CRC)
simultaneously in GSE39582 and TCGA, which were defined as
reference genes. Among gene pairs composed of EMT-related
and reference genes, we identified 31,603 and 44,814 metastasis-
associated gene pairs between metastatic and non-metastatic
samples in the two datasets (Fisher’s exact test, adjusted p <
0.05), respectively. The two lists of gene pairs had 1726 overlaps,
and 99.9% (1725) of them had the same reversal patterns.

Among the 1725 gene pairs, we identified 51 prognosis-
associated gene pairs correlated with DFS of 208 stage II CRC
samples treated with surgery only in the GSE39582 dataset after
adjusting for clinical factors, including location and KRAS status
(multivariate Cox regression model, p < 0.05). The 51 prognosis-
associated gene pairs were defined 51-GPS (Supplementary
Table S3a). For all possible thresholds from 1 to 51, the largest C
index was 0.734 when threshold was 25. A sample was classified
as a high-risk cluster if at least 25 gene pairs voted for the high-
risk, otherwise, low-risk cluster. Using this signature, 120 stage II
CRC patients in the discovery cohort of GSE39582 were predicted
to be at low post-surgery relapse risk, which had a significantly
better DFS than the 78 patients who were predicted to be at high
post-surgery relapse risk (Fig. 2a, HR= 2.83, 95% CI: 1.52–5.27,
log-rank p= 6.31E−04). For dividing stage I, III and IV samples of
GSE39582, the AUC was 0.812 compared with the original labels
of the metastatic and non-metastatic samples (Fig. 2a). Besides,
the 51-GPS remained a powerful prognostic factor after
adjustment for the clinical factors (multivariate Cox regression
model, p < 0.05, Fig. 2a).

Step 1: Construction of prognostic signature for
the relapse risk of stage II CRC.

Step 2: Validation and evaluation of prognostic signature.

ROC analysis
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multi-dimensional omics analysis.
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Validation and evaluation of the 51-GPS
Then, we applied the signature to independent datasets to
validate the prognostic value. In the validation cohort with
89 stage II CRC patients treated with surgery only from the
GSE33113, 52 patients were predicted to be in the low-risk cluster,
whose DFS was significantly higher than the other 37 patients
who were predicted to be in the high-risk cluster (Fig. 2b, HR=
3.32, CI: 1.24–8.88, log-rank p= 0.0112). A similar result was shown
in GSE14333 and GSE17538 cohorts (Fig. 2c, d). Since different
datasets could be directly integrated based on the within-sample
REOs, we combined datasets with small samples (sample size <
50) according to the individual platforms and defined Com_570
and Com_96, respectively. As expected, patients in the Com_570,
combined from the GSE26906, GSE31595, GSE39084 and
GSE92921 cohorts, were significantly stratified in terms of DFS
(Fig. 2e). However, only 39 gene pairs (Supplementary Table S3b)
of 51-GPS were detected by Com_96 from the HG-U133A Array,
we recalculated the optimal vote threshold in the training dataset
as described above and a sample was classified as a high-risk
cluster if at least 20 gene pairs voted for the high-risk, otherwise,
low-risk cluster. Patients in the Com_96, combined from the

GSE12945 and GSE41258 cohorts, were also stratified into two risk
clusters with significant DFS differences by the signature (Fig. 2f).
While for 205 samples of stage II CRC patients measured by

RNA-seq in TCGA, 105 patients were predicted to be at low post-
surgery relapse risk, which had a significantly better DFS than the
100 patients who were predicted to be at high post-surgery
relapse risk (HR= 3.6, 95% CI: 1.76–7.38, log-rank p= 1.98E−04).
Multivariate Cox analyses demonstrated that 51-GPS was an
independent predictive factor after adjusting for the clinical
factors (Fig. 2g). In the above independent microarray datasets,
51-GPS performed comparably with the prognostic signature
previously constructed by our laboratory (Supplementary
Table S2).15 Even for the RNA-seq dataset where the previous
signature was not applicable, 51-GPS still showed distinct
prognostic differences. We also used 51-GPS to predict the risk
cluster of the GSE50760 dataset, which consisted of 54 samples
(normal colon, primary CRC and liver metastasis) generated from
18 CRC patients (Table 1). There were 23 of 36 tumour samples
predicted as high-risk cluster, with 15 liver metastatic samples
predicted as high-risk cluster, and all of 18 normal samples were
predicted as low-risk cluster. Comprehensively, the EMT-related
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signature (51-GPS) was a valuable prognostic factor with robust
predictive power.

Comparison with other known prognostic signatures
To further explore the predictive efficiency of the newly
developed signature, we compared the 51-GPS with other
reported signatures, including Oncotype Dx colon cancer and an
immune-related gene pair signature (IRGPI). Oncotype Dx colon
cancer, which is a quantitative transcriptional signature consisting
of 12 genes, has been used commercially for predicting post-
surgery relapse risk of stage II and III CRC. The IRGPI is also a
qualitative transcriptional signature based on immune-related
genes. As for microarray datasets, 51-GPS and IRGPS got
comparative results for the survival differences, which all achieved
a higher C index than Oncotype Dx for both training and
validation datasets (Fig. 3a). Of note, for the RNA-seq dataset from
TCGA, only 51-GPS divided patients into two risk clusters with a
significant survival difference, and obtained the largest C index
among three signatures. In summary, 51-GPS was a robust
qualitative transcription prognostic signature with a better
predictive efficiency than other known signatures.

EMT-related functional gene sets enriched in the high-risk cluster
Stage II CRC patients of the TCGA cohort were divided into
different relapse-risk clusters according to the 51-GPS. We
performed gene set enrichment analysis (GSEA) between these
two risk clusters. Twenty-two gene sets were significantly enriched
in the high-risk cluster with p values less than 5% (Supplementary
Table S4). Among 22 gene sets, the epithelial–mesenchymal
transition gene set had the highest enrichment score (ES) among
all gene sets. Other known gene sets associated with EMT were
also significantly enriched in the high-risk cluster, including “Apical
junction”17, “KRAS signalling”32 and “TGF beta signalling”33, which
play important roles in poor outcome of CRC patients. For
example, cell polarity is defined by apical cell–cell tight junctions,

which can induce EMT directly, and provide tumour cells with the
ability to escape from the primary tumour to distant regions.17

TGF beta is a pleiotropic cytokine that regulates cell proliferation,
apoptosis, differentiation, migration and invasion, which has also
been reported to play a crucial role in EMT.33 Besides, assessing
CMS classification between high- and low risk (Fig. 3b), we found
that the number of CMS4 subtype associated with EMT, was
significantly less in the low- than in the high-risk cluster (Fisher’s
exact test, p= 2.39E−11).

Validation of the functions of metastasis-related genes
To further explore the mechanism of tumour metastasis and
identify possible drug targets, differentially expressed genes were
identified between high- and low-risk samples in stage II CRC of
TCGA. We found that most of them have been reported to be
associated with CRC metastasis, such as “S100A2”34, “ANXA1”35

and “TGFB1”36. Among the other genes that have not been
reported to be associated with CRC metastasis, we selected two
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Table 1. The predicted risk cluster of samples in GSE50760.

Pathology Primary CRC Liver metastasis Normal colon

predicted

High risk 8 15 0

Low risk 10 3 18

a

b

ctrl

OI4-ctrl OI4-sh1 OI4-sh2

OI4
-c

trl

OI4
-s

h1

OI4
-s

h2

UPA-ctrl UPA-sh1 UPA-sh2

UPA
-c

trl

UPA
-s

h1

UPA
-s

h2

Ol4

ACTIN

UPA

ACTIN

0 h

24 h

0 h

24 h

60

W
ou

nd
 c

lo
su

re
 %

40

20

0

60

W
ou

nd
 c

lo
su

re
 %

40

20

0

sh1 sh2 ctrl sh1 sh2

Fig. 4 ShRNA lentivirus suppressed CRC cell proliferation and
metastasis in vitro. Representative images of western blotting (a)
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genes (OI4, UPA) to explore their role in metastasis. We used the
loss-of-function antisense approach. The shRNA lentivirus was
used to knock down the expression of these two genes in HCT116
cell line, respectively. Western blotting demonstrated that lower
expression of these two genes, respectively, had lower prolifera-
tion ability than the control group (Fig. 4a). Furthermore, in vitro
cell wound-healing assays revealed that lower expression of these
two genes, respectively, could also reduce the migration power in
HCT116, compared with controls (Fig. 4b). Overall, these suggest
that these two genes regulated the metastatic potential of colon
cancer in vitro.

Genomic characteristics of the different prognostic clusters
For the 227 stage II patients with RNA-seq profiles, 189 and
221 samples also have somatic mutation and CNV data,
respectively. These multi-omics datasets allowed us to characterise
the genomic features of the two risk clusters.
For the 189 samples with somatic mutation data, 93 and 96

were classified into low- and high-risk samples, respectively. We
identified 210 genes that had significantly different mutation
frequencies between the two risk clusters (Fisher’s exact test, p <

0.05). Especially, 203 of 210 genes had significantly higher
mutation rates in the high- than in the low-risk cluster, suggesting
that high-risk samples had an increased degree of genomic
instability (Fig. 5a). Furthermore, some of the highly frequently
mutated genes have been reported to increase the relapse risk of
CRC patients. For example, PIK3C2A, missense mutated in 5.2% of
high-risk cluster, plays roles in cell proliferation, migration and
intracellular protein trafficking.37 Another gene, CDH9, encoding a
type II classical cadherin from the cadherin superfamily, and
mediating calcium-dependent cell–cell adhesion, can contribute
to the procession of EMT and lead to a poor outcome.38 Notably,
two EMT-related genes, TCF7L2 and SFRP4, also showed
significantly higher mutation frequencies in the high-risk cluster.
TCF7L2 was found to be under-expressed in the high-risk cluster,
the loss-of-function mutation of which has been reported to
be strongly associated with the risk of CRC.39 Conversely,
SFRP4 was overexpressed and may be a gain-of-function mutation
in the high-risk cluster.40 Genes co-expressed with SFRP4 in
stage II patients of the TCGA cohort were enriched in
“epithelial–mesenchymal transition signalling” and EMT-related
functional gene sets (GSEA analysis), such as “apical junction” and
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“interferon gamma signalling”, suggesting that SFRP4 may be a
driver gene for metastasis of CRC patients. Furthermore, as
a signature gene, the expression of SFRP4 was reversed compared
with reference genes between high- and low-risk samples
(Fig. 5b).
For the 221 samples with CNV data, we found six genomic

regions, containing three amplification regions and three deletion
regions, with significantly different CNV frequencies between the
93 low- and 96 high-risk cluster (Fisher’s exact test, p < 0.05,
Fig. 5c). Importantly, 54 EMT-related genes are located in these
chromosome regions. For example, AGR2 is a member of protein
disulfide isomerase (PDI) family, located at chromosome 7p21.3,
with significant amplification frequency that promotes migration
of CRC cells.41 PPARG located at chromosome 3p26.3, with
significantly high deletion frequency and low expression level, has
been identified as an important step in CRC progression.42 RAF1
also located at 3p26.3 is a proto-oncogene that serves as a pivotal
member downstream of epidermal growth factors, whose copy
number deletion influences cell growth, survival and differentia-
tion.43 Besides, the loss of 3p26.3 is an independent prognostic
factor in patients with oral squamous cell carcinoma.44 Especially,
our study demonstrating that SFRP4 had not only high-frequency
mutation and significantly high expression, but also significant
copy number variation in high-risk samples, reinforces the
proposed function of driving metastasis for SFRP4 in stage II CRC.
In conclusion, the high-risk samples predicted by 51-GPS had

high-frequency mutation and copy number variants, which will
lead to poor outcomes.

DISCUSSION
EMT has been reported to play a crucial role in mediating tumour
metastasis. In this study, based on the hypothesis that the stage II
patients who relapse after surgery could be primarily attributed to
micrometastasis, we developed a gene pair signature using EMT-
related genes for predicting post-surgery relapse risk of stage II
CRC patients. The signature showed robust prognostic efficiency
across different platforms, and achieved better predictive
performance than other known signatures. Although the IRGPI
was also constructed by REO-based individualised prognostic
method, it did not perform predictive capacity for the RNA-seq
dataset from TCGA, and it was validated without considering the
specificity of stage. This suggests that EMT may play a more
important role in relapse of stage II CRC than immune micro-
environmental changes.
The prognostic signature associated with EMT may open up a

special perspective for exploring the mechanism of relapse for
stage II CRC. The GSEA analysis indicted that EMT-related
functional gene sets achieved high enrichment scores in high-
risk samples. Multidimensional omics analysis demonstrated that
some EMT-related genes had high-frequency mutation and CNVs
in high-risk samples, which may be driver genes in micrometas-
tasis of CRC. Furthermore, loss-of-function antisense approach
showed that metastasis-related genes between high- and low-risk
cluster regulated the metastatic potential of colon cancer in vitro.
All the results could illustrate the role of EMT in the relapse, that is,
micrometastasis of stage II CRC.
In conclusion, the EMT-related prognostic signature can be a

useful predictive tool to figure outpatients at high risk of relapse,
and can facilitate personalised management of patients with stage
II CRC. Besides, by analysing the molecular changes between two
risk clusters, we revealed the potential molecular mechanisms for
differences in the risk of relapse in stage II CRC.
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