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CD4+ T-cell depletion is pathognomonic for AIDS in both HIV and simian
immunodeficiency virus (SIV) infections. It occurs early, is massive at mucosal sites, and
is not entirely reverted by antiretroviral therapy (ART), particularly if initiated when T-cell
functions are compromised. HIV/SIV infect and kill activated CCR5-expressing memory
and effector CD4+ T-cells from the intestinal lamina propria. Acute CD4+ T-cell depletion is
substantial in progressive, nonprogressive and controlled infections. Clinical outcome is
predicted by the mucosal CD4+ T-cell recovery during chronic infection, with no recovery
occurring in rapid progressors, and partial, transient recovery, the degree of which
depends on the virus control, in normal and long-term progressors. The
nonprogressive infection of African nonhuman primate SIV hosts is characterized by
partial mucosal CD4+ T-cell restoration, despite high viral replication. Complete, albeit very
slow, recovery of mucosal CD4+ T-cells occurs in controllers. Early ART does not prevent
acute mucosal CD4+ T-cell depletion, yet it greatly improves their restoration, sometimes
to preinfection levels. Comparative studies of the different models of SIV infection support
a critical role of immune activation/inflammation (IA/INFL), in addition to viral replication, in
CD4+ T-cell depletion, with immune restoration occurring only when these parameters are
kept at bay. CD4+ T-cell depletion is persistent, and the recovery is very slow, even when
both the virus and IA/INFL are completely controlled. Nevertheless, partial mucosal CD4+

T-cell recovery is sufficient for a healthy life in natural hosts. Cell death and loss of CD4+ T-
cell subsets critical for gut health contribute to mucosal inflammation and enteropathy,
which weaken the mucosal barrier, leading to microbial translocation, a major driver of IA/
INFL. In turn, IA/INFL trigger CD4+ T-cells to become either viral targets or apoptotic,
fueling their loss. CD4+ T-cell depletion also drives opportunistic infections, cancers, and
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comorbidities. It is thus critical to preserve CD4+ T cells (through early ART) during HIV/SIV
infection. Even in early-treated subjects, residual IA/INFL can persist, preventing/delaying
CD4+ T-cell restoration. New therapeutic strategies limiting mucosal pathology, microbial
translocation and IA/INFL, to improve CD4+ T-cell recovery and the overall HIV prognosis
are needed, and SIV models are extensively used to this goal.
Keywords: human immunodeficiency virus, simian immunodeficiency virus (SIV), AIDS, microbial translocation,
immune activation (IA), inflammation, CD4+ T cells
INTRODUCTION

Even before HIV was formally established as the cause of AIDS,
CD4+ T-cell depletion was identified as a key feature of HIV
infection. Indeed, lymphocytopenia was among the first
biological findings described in the early days of the AIDS
pandemic (1). Lymphocytopenia was notably due to a
depletion of CD4+ T cells and, in addition to their decrease in
absolute number and percentage of total T cells, residual CD4+ T
cells were dysfunctional in AIDS patients (1). Later, CD4 was
identified as HIV/SIV receptor (2, 3), and CD4+ T cell counts in
peripheral blood were reported to predict the risk of progression
to AIDS (4).

However, the notions of CD4+ T-cell depletion and
restoration encompass processes that are vastly different for
different CD4+ T-cell subsets and according to their tissue
location (5–8). As longitudinal studies cannot access and
sample all body compartments, reasonable knowledge on
CD4+ T-cell dynamics during HIV infection was obtained
from descriptive studies of cohorts of HIV-1 infected patients
and experimental studies of simian immunodeficiency virus
(SIV) infection in nonhuman primates (NHP). Depending on
whether or not an NHP is a natural host of SIV (9), the infection
will be nonpathogenic or pathogenic, respectively, and CD4+ T-
cell dynamics will also vary accordingly.

Here, we will review the general features of the depletion of
the different CD4+ T-cell subsets and their restoration during
pathogenic and nonpathogenic HIV/SIV infections, as well as the
consequences of CD4+ T-cell depletion, and the potential
approaches that could help reverse CD4+ T-cell depletion and
prevent its deleterious consequences.
CD4+ T-CELL SUBSETS

Different CD4+ T-cell subsets are defined, according to their
differentiation status or phenotype. CD4+ T cells from humans
and NHP are classified as naïve (CD45RA+ CCR7+ CD28+

CD95neg) or memory T cells (CD45RO+ CD95+) (10, 11).
Memory T cells are subdivided into stem cell memory (Tscm;
CD45RA+ CCR7+ CD28+ CD95+) (12, 13), central memory (Tcm;
CD45RAneg CCR7+ CD62L+) (11), transitional memory
(Ttm; CD45RAneg CCR7neg CD95+ CD62L+), effector memory
(Tem; CD45RAneg CCR7neg CD95+ CD28neg CD62Lneg) (14),
terminal effector (Tte; CD45RA+ CCR7neg CD95+ CD28neg
org 2
CD62Lneg) (14) and resident memory (Trm; CD45RAneg

CCR7neg CD69+ ± CD103+) (15) T cells. Meanwhile, based
on their functional status, CD4+ T cells can be classified as Th1
(IFN-g producing; transcription factor: T-bet), Th2 (IL-4
producing; GATA3), Th17 (IL-17 producing; RORgt),
regulatory T cells (Tregs) (suppressive function; FoxP3) and
follicular helper T cells (Tfh) (IL-21 producing; Bcl6).

Additional phenotypic markers can be used to differentiate
CD4+ T cells, notably CCR5, the main coreceptor of HIV/SIV
(16–18), and markers of cell proliferation (Ki-67, BrdU),
activation (HLA-DR, CD38, CD69), exhaustion (PD-1, CTLA-
4, Tim-3) or senescence (CD57, KLRG-1) (19).

Finally, CD4+ T cells can also be subdivided according to their
metabolic status, with memory cells tending to have higher
metabolic activities, notably glycolysis and oxidative
phosphorylation (20).

The multiple CD4+ T cell populations defined using any of
these features are differentially infected, depleted, and restored.
Note that during the course of the HIV/SIV infection other
immune cells (CD4+CD8+ T cells, gdTCR T cells, innate
lymphoid cells type 2 and 3, circulating dendritic cells) (21–26)
can be depleted and restored, but their dynamics will not be
detailed in this review.
CD4+ T-CELL DEPLETION IN
PATHOGENIC HIV/SIV INFECTIONS

Circulation and Lymph Nodes
When CD4+ T-cell depletion was first investigated in people with
HIV (PWH), research focused on CD4+ T cells dynamics in
blood and superficial LNs, notably tonsils, as they were more
accessible. Circulating CD4+ T cells are moderately depleted
during acute HIV or SIV infection (21, 27, 28). A slight increase
in the CD4+ T cell counts occurs as a consequence of the
postacute partial control of viral replication and establishment
of the steady-state set-points (27, 29). During chronic HIV/SIV
infection, a slow and continuous decline of circulating CD4+ T
cells is observed, eventually leading to severe lymphopenia,
rendering persons living with HIV susceptible to opportunistic
infections and eventually leading to AIDS (30). Annual rate of
CD4+ T cell decline in circulation in untreated patients is
correlated to plasma viral loads, and was found to be higher in
persons living with HIV-1 than with HIV-2 (-15.9% vs. -4.1% per
year, respectively), due to major differences in the levels of viral
July 2021 | Volume 12 | Article 695674
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replication between these two infections (31). Meanwhile, in the
superficial and mesenteric lymph nodes, CD4+ T-cell depletion is
minimal during acute HIV or SIV infection (32–35). However,
during the very advanced stages of HIV/SIV infection, CD4+ T-
cell depletion may occur even in lymph nodes and is associated
with lymphadenopathy and fibrosis (34, 36, 37).

With the discovery that HIV-1, HIV-2, and most of the SIV
use the chemokine receptor CCR5 as a coreceptor (16–18), and
therefore preferentially infect memory T cells (38, 39), numerous
studies then aimed at describing the dynamics of the different
CD4+ T-cell subsets in PWH and SIV-infected NHPs. In young,
uninfected humans, most CD4+ T cells in peripheral circulation
and the lymph nodes are naïve, while the fraction of naïve CD4+

T cells declines in older individuals (40). Naïve T cells also
represent the majority of CD4+ T cells in blood and lymph nodes
of young (less than 4 years) rhesus macaques (RMs), the animal
model of reference for HIV infection (11, 30). In Indian RMs, it
has been estimated that, on average, less than 15% of CD4+ T
cells from circulation and the lymph nodes express CCR5 (30, 32,
41), while over 75% of them express CXCR4. In both humans
and macaques, the vast majority of CCR5+ CD4+ T cells are
memory T cells (30, 42, 43). As a result, the majority of
circulating CD4+ T cells are not direct targets for HIV and
SIV, as emphasized by the low fraction of circulating CD4+ T
cells that are HIV-infected (44). This could explain why the loss
of peripheral CD4+ T cells is limited to 50-60% in most patients
during acute HIV infection, with a median nadir of CD4+ T cells
ranging between 340 and 510/mm3 (27, 45, 46). Similar decline
in circulating CD4+ T cells is also observed in SIV-infected NHP
during acute pathogenic (21), non-pathogenic (47) and
controlled SIV infections (48). In addition to this total CD4+

T-cell depletion, a preferential depletion of the memory CD4+ T
cells, especially those expressing CCR5, can be seen as early as 7-
14 days postinfection (dpi) in the lymph nodes and periphery,
whereas naïve T cells are preserved (6, 28, 32, 49).

Once the strategies for the detailed characterization of the
different memory CD4+ T-cell subsets, notably Tcm, Ttm, Tem,
became available, studies were performed on sorted CD4+ T-cell
subsets to assess the frequency of infection, in addition to
monitoring the evolution of each of those subsets throughout
HIV/SIV infection. These studies established that, in blood,
Tcms represent the major cellular reservoir in HIV-1 infected
individuals (50), while Ttms and/or Tems form the bulk of the
reservoir in HIV-1 long term nonprogressors, SIVsmm-infected
sooty mangabeys (a prototypic nonpathogenic infection) and
HIV-2-infected individuals (51–53). In pathogenic hosts of SIV,
the frequency of HIV/SIV infected cells is also high in the
recently described Tscm subset, which expresses high levels of
CCR5 (5, 54). In patients with progressive infection, as a result of
a prolonged and continuous depletion of the target Tcm and
Tem cells, due to cell death and reduced proliferation of Tcm, the
majority of the remaining CD4+ T cells are naïve (5, 6).

Dynamics of the CD4+ T cells with specific functions have
also been probed. Both HIV and SIV preferentially infect Th1
and Th17 cells (55). As a result, HIV and SIV infections are
characterized by a switch from Th1 to Th2 phenotype (56), and a
Frontiers in Immunology | www.frontiersin.org 3
significant depletion of Th17 cells is observed among circulating
lymphocytes throughout the infection (7). HIV-1 can also infect
Tregs (57), and, although reduced (7, 58–60), stable, and
increased (61, 62) absolute circulating Treg counts have all
been reported during chronic infections, a decreased Th17/
Treg ratio is commonly observed in pathogenic infections and
was linked to immune activation and disease progression (7, 62).
Furthermore, a selective depletion of circulating CD4+ T cells
with gut homing potential (i.e., expressing the a4b7 integrin)
preferentially occurs in untreated PWH (63) and in SIV-infected
RMs in which those cells are selectively infected in the first days
of infection (8). Most CD4+ T cells expressing a4b7 integrin are
Tcm with a Th17 phenotype, and their dynamics in blood reflects
the evolution of intestinal CD4+ T cells in jejunum (8, 64).

A subset of CD4+ T cells T follicular helper (Tfh), identified
based on the expression of the surface markers CXCR5+ PD-
1high, and preferentially found in B follicles in lymph nodes and
spleen, can also be infected by HIV/SIV and is slightly depleted
during acute infection, before accumulating during chronic
infection (65–68). This chronic accumulation of Tfh might be
due to a lack of regulation by the local Tregs, the follicular
regulatory T cells (Tfr), as suggested by the decreased Tfr/Tfh
ratio (69). Tfh cells are depleted during the AIDS stage (65).
Signals provided by Tfh cells are crucial for the development of
memory B cells, and the expansion of Tfh cells has been
associated with B cell dysregulation, notably a reduced number
of antigen-specific memory B cells, increased germinal center B
cells, hypergammaglobulinemia, and lower Env-specific
antibody titers (67, 70).

Finally, in vivo, CD4+ T cells can be also selectively infected
according to their metabolic status (71). HIV-1 tends to infect
CD4+ T cells with high oxidative phosphorylation and glycolysis,
two metabolic activities more frequently enhanced in memory
CD4+ T cells (71). The dynamics of CD4+ T cells during HIV/
SIV infection according to their metabolic activities remain to
be determined.

Gastrointestinal (GI) Tract
While the circulating lymphocytes only account for 2 to 5% of
the total lymphocytes, intestinal lymphocytes represent a
tremendous fraction of total lymphocytes (over 60%) in both
humans and NHPs. In the GI tract, lymphocytes exist in three
major forms: (i) intraepithelial lymphocytes (IEL), (ii) lamina
propria lymphocytes (LPL), and iii) lymphocytes organized in
lymphoid formations (i.e., the Peyer’s patches and the solitary
lymphoid follicles). There are strong similarities between human
and NHPs’ gut-associated lymphoid tissue (GALT) regarding the
distribution of the immune cells, with the CD4/CD8 ratios being
about 1:2 and 1:1 in IEL and LPL, respectively (72).

In the years following the identification of AIDS, prompted
partly by the high frequency of enteropathies in PWH (73),
histological studies identified a loss of CD4+ T cells in
gastrointestinal biopsies of PWH (74–79). Lim and colleagues
also proved that, similar to circulation, memory CD4+ T cells
were the preferentially depleted cell subset in the gut during HIV
infection (80). However, results were sometimes contradictory,
July 2021 | Volume 12 | Article 695674
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some studies reported that CD4+ T-cell depletion only affected
the LPLs, while others described CD4+ T-cell depletion as
impacting both LPLs and IELs (77, 81). Furthermore, almost
all intestinal biopsies were obtained from clinically indicated
procedures in patients presenting with AIDS or late-stage
disease, limiting the insights on the dynamics of CD4+ T-cell
depletion at this site (75).

It was only a decade later that, due to research performed in
SIV-infected RMs, the early dynamics of CD4+ T-cell depletion
in GI tissues were described (21, 33, 82). These studies reported
that a massive CD4+ T-cell depletion occurs as early as 7 dpi in
SIVmac-infected RMs, leading to more than 90% of intestinal
CD4+ T cells being lost at 14-21 dpi (21, 33, 83) (Figure 1). SIV-
infected cells can be detected within 7 dpi in the gut (21, 33, 93).
The peak of viral replication in the gut occurs approximately 10
dpi and the vast majority of the SIV-infected cells during the
acute infection are found within the lamina propria, the
remaining infected cells being mainly detected in organized
lymphoid tissues and macrophages (33, 77, 94). CD4+ T-cell
depletion occurs earlier in the jejunum than in the ileum and
colon, and affects mostly LPL (33), probably because most of the
lymphocytes in jejunum are found within the lamina propria,
while organized lymphoid tissues are more common to the ileum
and colon. The first studies reporting this massive and rapid
Frontiers in Immunology | www.frontiersin.org 4
CD4+ T-cell depletion in the gut were performed on animals
intravenously inoculated, but later the same pathogenic features
were confirmed in studies in which animals were infected either
intrarectally or intravaginally (83, 94).

Phenotypic analyses of the intestinal CD4+ T cells enabled
further characterization of the CD4+ T-cell subsets that were
preferentially depleted in the gut. Contrary to circulating
lymphocytes, most of the CD4+ T LPL have an activated
(HLA-DR+ CD25+) and memory (CD45RAneg CD95+)
phenotype (49, 95). Activated, CCR5-expressing memory
CD4+ T cells, which are the preferential targets of HIV and
SIV, are frequent in the gut (30, 49, 96). The predominance of
this activated, memory CD4+ T cell phenotype at the mucosal
sites is common to both humans and macaques, being observed
even in the newborns (95), and likely occurs as a consequence of
exposure to antigens in utero. Interestingly, mucosal CD4+ T
cells of humans and NHPs that are not natural hosts of SIV
express higher levels of CCR5 compared to African natural host
species (30, 41, 47, 84). At 14 dpi, virtually all memory CCR5+

CD4+ T cells are lost in the lamina propria and effector sites of
the gut of SIV-infected RMs, with the spared intestinal
CCR5+CD4+ T cells being naïve T cells (30). This swift
depletion of CD4+ T cells has been confirmed to occur as well
during acute HIV-1 infections (35, 97–99), and intestinal CD4+
FIGURE 1 | Comparative dynamics of intestinal CD4+ T-cell depletion, plasma viral loads and immune activation/inflammation in untreated HIV and SIV infections.
Schematic representation of intestinal CD4+ T-cell depletion, viral replication and immune activation is inferred from data reported in references (21, 33, 48, 84–91).
Longitudinal data are presented, with the X axis representing days (D), months (M) and years (Y) postinfection. The Y axis illustrates the magnitude of lamina propria
CD4+ T-cell depletion (upper panels, blue), viral replication (middle panels, green), and the levels of T-cell activation (lower panels, yellow). Intestinal CD4+ T-cell
depletion is illustrated as the index of lamina propria CD4+ T cells (i.e., percentage of CD4+ T cell fraction within the CD3+ T cell population, divided by this
percentage at baseline). Viral replication is represented as plasma viral loads. From the plethora of biomarkers of immune activation/inflammation, we selected the
fold-change of HLA-DR+ CD8+ T cells in SIV-infected NHPs, compared to the baseline preinfection levels, except for persons living with HIV, for which the fold-
changes of HLA-DR+ CD38+ CD8+ T cells were used. Note that in other primate models of rapid progressors, T-cell activation might be more blunted (92). AGM,
African green monkeys; PTM, Pigtailed macaques; RM, Rhesus macaques.
July 2021 | Volume 12 | Article 695674
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T-cell depletion persists through the course of the disease in
untreated PWH (35) (Figure 1).

As described for the circulating CD4+ T cells, several
experiments have shown that the initial CD4+ T-cell depletion
in the gut is driven by the coreceptor usage of the virus. NHP
infection with X4-tropic viruses resulted in a rapid, profound
depletion of the naïve CXCR4+ CD4+ T cells from the circulation
and the lymph nodes, instead of the canonical depletion of
memory CD4+ T cells in the GALT, typical of the R5-tropic
viruses (100–102).

Furthermore, mucosal CD4+ T-cell depletion in the gut
directly affects cell subsets that are involved in the
maintenance of the mucosal barrier. As such, HIV/SIV
infection can disrupt the production of IL-17 and IL-22, two
cytokines that are essential for maintaining the tight epithelial
barrier of the GI tract and gut integrity, by selectively depleting
the lymphocytes producing those cytokines. Indeed, while Th1
and Th17 cell subsets are equally depleted in peripheral blood
and they did not differ in frequency of infected cells, Th17
memory CD4+ T cells are selectively depleted from the lamina
propria and effector sites of the GI tract of PWH and SIV-
infected RMs, as early as 2 weeks postinfection (55, 62, 85, 103).
lL-22 producing lymphocytes are also depleted during SIV (104,
105) and HIV infections (85). Other IL-17 and/or IL-22
producing cells exist in the GI tract, but for most of them a
preferential depletion and/or a reduced IL-17 production has
been reported during SIV infection (25, 105–107). Moreover, IL-
21-producing CD4+ T lymphocytes are also depleted during SIV
infection, thus limiting Th17 differentiation pathways, which are
controlled by IL-21 in vivo (108).

Despite being susceptible to HIV and SIV infections,
intestinal Tregs are increased during chronic infections, leading
to a decreased Th17/Treg ratio (60, 62, 109). This could be due to
limited productive infection and reduced cell death in the Tregs,
as well as to an increased differentiation of naïve CD4+ T cells
into Tregs in the GI tract (109–112).

Note that, in addition to CD4+ T-cell loss, RMs infected with
SIVmac were reported to suffer a massive loss of the “double
positive” (CD4+ CD8+) T cells, which express high levels of
CCR5 and are highly activated (113), within days following SIV
infection (30, 62).

Other Organs
CD4+ T-cell depletion is not limited to the GI tract, lymph nodes,
or circulation. It also occurs in the spleen and in the liver of
NHP, within 21 dpi in the spleen and during the AIDS stage in
the liver (67, 114, 115). In the bone marrow, the reduction of the
pool of CD4+ T cells reflects decreases in circulating CD4+ T
cells, with the loss affecting mainly memory cells (116).
Meanwhile, CD4+ T cell counts in the bronchoalveolar lavages
(BAL) have been used as a proxy for the CD4+ T cell counts in
the lung parenchyma. Most CD4+ T cells in the lung are of
memory phenotype and express CCR5. A nearly complete loss of
the CD4+ T cells was observed in the BAL by 3 weeks
postinfection (114), while other teams reported that both
memory CCR5+ CD4+ T cells and Th17 cell subsets were
maintained in the lungs (55, 117). Recently, a study in
Frontiers in Immunology | www.frontiersin.org 5
humanized mice demonstrated that SIV and HIV infections
lead to a rapid loss of resident-memory CD4+ T cells from the
lung interstitium in the first weeks postinfection, which could
participate in the increased susceptibility to pulmonary
infections (118).

Finally, CD4+ T-cell depletion can also be detected in the
genital tract. As for CD4+ T cells in the GI tract, most of the
CD4+ T cells found in the vaginal mucosa display an activated,
memory phenotype (119). Differently from the intestinal CD4+ T
cells, almost all CD4+ T cells from the vaginal mucosa express
CXCR4, while CCR5 is expressed by only half of them. Within 14
dpi, depletion of CD4+ T cells, particularly those with CCR5+

expression, occurs in the vaginal mucosa of SIV-infected RMs,
and lasts throughout the follow-up, until progression to AIDS
(119). In HIV-infected women, vaginal CD4+ T-cell depletion is
strongly correlated to the depletion of circulating CD4+ T cells
(120). Regarding the male genital tract, CD4+ T cells are depleted
in the semen of PWH (121) and of SIV-infected cynomolgus
macaques during acute and chronic infections (122).
CD4+ T-CELL DYNAMICS DURING THE
NONPATHOGENIC AND CONTROLLED
SIV INFECTIONS

CD4+ T-cell dynamics during nonpathogenic and controlled SIV
infections have been extensively studied. Acute SIV infection
induces a slight decline in the CD4+ T cell counts from the lymph
nodes and circulation in natural hosts (e.g., sooty mangabeys,
African green monkeys, mandrills etc.), which is followed by a
return to virtually preinfection levels at both sites within the first
year (47, 123). As a result, the levels of circulating CD4+ T cells
are virtually normal in chronically SIV-infected African NHPs
(124–127). Meanwhile, acute SIV infection induces a massive
CD4+ T-cell depletion at the mucosal sites, which largely exceeds
the number of CCR5-expressing CD4+ T cells that is particularly
low at the mucosal sites in the natural hosts of SIVs (47, 84). This
excess of CD4+ T-cell depletion is not due to a different
coreceptor usage by SIVs compared to HIV-1, as most SIV use
CCR5 (128). The exceptions are strains of SIVsab that naturally
infect sabaeus AGMs in West Africa and SIVmnd-1 that infects
mandrills, which were reported to also use CXCR4 and/or
CXCR6 (129–131), and SIVrcm that naturally infects red-
capped mangabeys in West-Central African that was reported
to exclusively use CCR2 (132–134). However, in vivo, SIVsab was
shown to use CCR5 and preferentially deplete CCR5-expressing
CD4+ T cells (84).

Thus, severe acute CD4+ T-cell depletion in GALT is not
specific to pathogenic infection, nor is it predictive of the
virulence of a retroviral infection, as shown by Pandrea et al.,
who proposed that the magnitude of the CD4+ T-cell restoration
was a better predictor of disease progression (84). This
conclusion was also supported by studies in rhesus macaques
(6). Interestingly, when cross-species infections of rhesus
macaques with SIVsmm (47) and SIVagm (48) were
performed, they resulted in pathogenic and controlled
July 2021 | Volume 12 | Article 695674
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infections, respectively. Yet, despite these completely opposite
outcomes, in both instances, a severe mucosal CD4+ T-cell
depletion occurred during acute and early chronic infection
(47, 48) (Figure 1). However, later on in the follow-up, a
nearly complete restoration to baseline levels was observed in
SIVagm-infected rhesus macaques (48), similarly to long-term
nonprogressors (135), while SIVsmm-infected rhesus macaques
experienced a progressive loss of intestinal CD4+ T cells (47)
(Figure 1). The SIVsmm-infected rhesus macaques eventually
progressed to AIDS (47), and were classified as slow progressors,
in comparison to rapid progressors (86, 136) and normal
progressors (21, 33). In Figure 1, the rapidly progressive and
normal progressive SIV infections are illustrated by the dynamics
observed in SIVagm-infected pigtailed macaques and
SIVmac-infected rhesus macaques, respectively. Note that such
different patterns of disease progression can be observed in
multiple species.

The presentation of SIV infection in natural hosts is
intermediate between the two extreme patterns described above
(i.e., pathogenic and controlled infections), consisting of a massive
intestinal CD4+ T-cell depletion during acute infection followed
by a partial CD4+ T-cell restoration during chronic SIV infection
(Figure 1). This pattern is characteristic to SIVsmm infection of
sooty mangabeys, SIVagm infection of African green monkeys
and patas monkeys, and SIVmnd infection of mandrills (47, 84,
126, 137, 138). A relatively limited impact of the SIV infection on
the mucosal CD4+ T cells can also be observed in a subset of
animals with pathogenic infections, the long-term nonprogressors
which restore intestinal CD4+ T lymphocytes and CCR5+

memory T cells to higher values than normal progressors (97,
139), as long as viral replication is limited (Figure 1).

The relatively robust mucosal CD4+ T-cell restoration occurs
in natural hosts of SIV in the context of the control of chronic T-
cell activation and inflammation. Thus, while T-cell activation
and inflammation transiently increase during acute SIV
infection, immune activation and inflammation are resolved
during the transition between acute and chronic SIV infection,
in spite of a relatively sustained, robust viral replication (47, 84,
123, 126, 140). This supports a paradigm in which acute CD4+ T-
cell depletion is driven in natural hosts of SIV by both viral
replication and increased inflammation and immune activation,
while partial recovery of intestinal CD4+ T cells during chronic
infection is enabled by the control of immune activation and
inflammation, with the remaining mucosal CD4+ T-cell loss
being due to the persistent viral replication.

Two important lessons can be drawn from nonpathogenic
and controlled SIV infections. First, nonpathogenic SIV
infections highlight that a moderate mucosal CD4+ T-cell
depletion has no discernible pathogenic consequences if
immune activation and inflammation are kept at bay. Second,
when immune activation, inflammation and viral replication are
entirely contained, such as in the controlled SIV infections, total
recovery of intestinal CD4+ T cells is achievable, although it
might take years to reach the preinfection levels (48) (Figure 1).

In the natural hosts, the control of the deleterious
consequences of SIV infection (which include a moderate
Frontiers in Immunology | www.frontiersin.org 6
chronic CD4+ T-cell depletion) resulted from multiple host
adaptations that occurred over millions of years of host
coevolution with their species-specific viruses (141). One of the
keys to this exquisite control of the deleterious consequences of
SIV infection in natural hosts of SIVs is the maintenance of the
epithelial gut integrity via enhanced repair mechanisms (142,
143) and the absence of consequent microbial translocation,
which is the main trigger of chronic T-cell activation in
pathogenic infections (144). Some of the other host
adaptations to elude SIV pathogenicity involve protection from
CD4+ T-cell depletion, either by preserving the pool of
precursors, or by limiting the number of target cells.
Interestingly, species which are natural SIV hosts usually
present a reduced expression of CCR5 on circulating and
mucosal CD4+ T cells (41). It has also been reported that Tcm
from sooty mangabeys were less frequently infected, potentially
due to their lower CCR5 expression (52). By sparing Tcm
precursors, as well as Tscm, sooty mangabeys might preserve
their capacity to restore the pool of intestinal CD4+ T cells (5,
52). Furthermore, lower levels of immune activation and
apoptosis of the CD4+ T cells from the LNs and circulation
may help protect the immune system of the natural SIV hosts
from the immune exhaustion described in the late-stage diseases
of pathogenic HIV/SIV infections (92, 140, 145). This might be
partly due to difference in the dynamics of type 1 interferons.
Type 1 interferons are beneficial in the control of SIV infection
during acute infection (146, 147), but persistent, dysregulated
production is known to contribute to immune activation (147,
148), to induce the expression of proapoptotic markers in
uninfected cells (149), and to be associated with disease
progression (146). Interestingly, during chronic SIV infection,
type 1 interferon response returns to preinfection levels in
natural SIV hosts, while it remains elevated during pathogenic
infections (62, 150, 151). Thus, the early control of type 1
interferon production in natural SV hosts might also play a
role in preventing disease progression, by limiting immune
activation and apoptosis of nearby uninfected CD4+ T cells.

Additionally, limited CD4+ T cell proliferation was described
in AGMs, sooty mangabeys, and mandrills, notably among Tcm,
with limited to no increase in proliferating CD4+ T cells after
acute infection (137, 152–156). Additionally, during SIV
infection, CCR5 expression is not upregulated on memory
CD4+ T cells in sooty mangabeys, limiting new rounds of
infection (52). By limiting bystander apoptosis, controlling cell
proliferation after acute infection, and by limiting upregulation
of CCR5 expression on the surface of the CD4+ T cells, natural
hosts of SIVs limit the production of new susceptible cells which
might slow down the pace of CD4+ T cell destruction.

Another consequence of the limited expression of CCR5 on
the surface of target cells at the mucosal sites is the reduction in
the virus ability to initiate mucosal infection (157). Limited
expression of CCR5 by the CD4+ T cells in the GI mucosa
may also significantly impact the rates of maternal-to-infant
transmission. CCR5 expression on the CD4+ T cells is extremely
low at birth and increases with age in both pathogenic and
nonpathogenic hosts (156). However, this increase is delayed in
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natural hosts of SIVs, and memory CD4+ T cells from the
newborns express lower percentages of CCR5+ compared to
non-natural SIV hosts, which creates the premise for a reduced
rate of maternal-to-infant transmission rates of SIV in natural
hosts (about 5%, compared to 20-25% in HIV-1, prior to
antiretroviral therapy) (9, 158).

Another significant particularity of several African NHP
species is their ability to downregulate CD4 receptor
expression at the surface of their CD4+ T cells when they enter
in the memory pool, rendering them resistant to SIV infection
(137, 159, 160).

Through these mechanisms, natural hosts of SIVs spare
specific CD4+ T-cell subsets, which could contribute to the
control of inflammation and maintenance of gut integrity,
despite high viral replication during chronic nonpathogenic
infections. Multiple immune cell populations are involved in
these processes. As an anti-inflammatory milieu, notably
containing TGFb, is rapidly established, this enhances Treg
production, thus preventing the chronic immune activation
(87). Furthermore, Th17 cells are spared in both gut and blood
of SIVsmm-infected SMs and SIVagm-infected AGMs (55, 62,
104). The Th17/Treg ratio remains stable during SIV infection in
natural SIV hosts, while it correlates with disease progression in
pathogenic infections (62). Similarly, Th17 cells, as well as b7hi

CD4+ T cells, are maintained in the blood and in the colon of
HIV-1 long-term nonprogressors (135). Moreover, the CD4neg
Frontiers in Immunology | www.frontiersin.org 7
CD8adim T cells and the CD4neg CD8neg (DN) T cells are able to
retain some of the helper T cells functions in the African NHPs
that are natural hosts of SIV (34, 160, 161).
MECHANISMS OF CD4+

T-CELL DEPLETION

The loss of CD4+ T cells is caused by different intertwined
mechanisms (162). Viral replication significantly contributes at
least to the initial CD4+ T cell loss, which occurs rapidly in
infected individuals and animal models during the acute stage of
infection and mirror that of the dynamics of viral replication.
Several mechanisms of cell death are directly induced by the
infection of those cells by the virus: (i) cytolysis due to increased
permeability of cell membrane after viral budding and/or
syncytium formation (163), (ii) targeting by HIV/SIV-specific
cytotoxic T lymphocytes (164, 165), and (iii) programmed cell
death of cells undergoing productive infection, due to caspase-3
and/or Bax activation (166–168) (Figure 2). Antibody-
dependent or complement-mediated mechanisms are also
involved in the destruction of HIV/SIV-infected cells
[antibody-dependent cellular cytotoxicity (ADCC) (169),
antibody-dependent phagocytosis (170), complement-mediated
phagocytosis and lysis (171)], although escape mechanisms have
been described for HIV and SIV (172–174).
FIGURE 2 | Mechanisms of CD4+ T-cell depletion. Schematic representation of different mechanisms involved in CD4+ T-cell depletion during HIV and SIV
infections. AICD, Activation-induced cell death; CTL, Cytotoxic T lymphocytes; IDO-1, Indoleamine 2,3-dioxygenase 1; NETs, Neutrophil extracellular traps.
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There are several lines of evidence to support this direct
impact of viral replication on CD4+ T-cell depletion. First, there
is a clear temporal association between viral loads and CD4+ T-
cell depletion, with the most prominent depletion in the gut
closely following the peak of viral replication, which occurs circa
one to two weeks postinfection (33, 83, 175) (Figure 1).
Moreover, there is a clear correlation between the levels of
viral replication during acute infection and the magnitude of
the CD4+ T-cell depletion, particularly in the gut (94). Studies
have shown that mucosal depletion is minimal if peak viral loads
are below 106 vRNA copies/ml of plasma (48, 137). Furthermore,
despite their exquisite ability to finely tune inflammation and T-
cell immune activation, NHP species that are natural hosts of
SIVs also experience a residual CD4+ T-cell depletion during
chronic infection when inflammation and immune activation are
controlled (47, 84), highlighting the role of viral replication in the
persistence of intestinal CD4+ T-cell depletion.

Despite this proven impact of viral replication on CD4+ T
cells at every stage of HIV/SIV infection, the extent of CD4+ T-
cell loss during the acute infection far exceeds the number of
infected lymphocytes (32, 94). Multiple mechanisms have been
proposed to explain this excess of CD4+ T-cell depletion in HIV
infection and pathogenic SIV infections (Figure 2): (i) Bystander
apoptosis (140, 176), due to viral proteins promoting apoptosis
of nearby cells, notably HIV-1 gp120 after its interactions with
CD4 and CCR5 or CXCR4 coreceptor (177, 178),; note that in
natural hosts of SIVs the levels of bystander apoptosis are kept at
bay (84, 140, 145); (ii) Activation-Induced Cell Death (AICD)
due to immune activation which induces FasL production and
Fas (CD95) expression in nearby, uninfected CD4+ T cells,
shortening their lifespan and increasing their sensibility to
AICD (179–182); interestingly, plasma FasL expression does
not significantly increase in animals with nonpathogenic SIV
infections (148, 183, 184) (iii) Abortive infection leading to
pyroptosis through the caspase-1 pathway, due to an
accumulation of incomplete reverse transcripts and induction
of antiviral and inflammatory responses (185); (iv) Trapping of
immune cells in neutrophil extracellular traps (NETs) induced
by SIV infection, followed by an induction of apoptosis or
lysis of those trapped CD4+ T cells, as recently described
(186) (Figure 2).

In addition to these general mechanisms involved in total
CD4+ T-cell depletion, preferential depletion of Th17 cells could
be partly due to the induction of indoleamine 2,3-dioxygenase
(IDO-1), caused by sustained microbial translocation and
immune activation in pathogenic infections (110, 187)
(Figure 2). Catabolites produced by the degradation of
tryptophan by IDO-1 enhance Treg and deplete Th17 cells
(110). As adaptive Tregs can produce IL-10 that inhibits T cell
proliferation (188) and increases susceptibility to AICD (180,
189), accumulation of Tregs during chronic HIV/SIV infection
could also exacerbate CD4+ T-cell depletion.

Furthermore, in late stages of HIV/SIV infection, immune
exhaustion plays a role in total CD4+ T-cell depletion. During
chronic infection, increased expression of PD-1 and other
immune check-point inhibitors is observed on CD8+ T cells,
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but also on CD4+ T cells. Exhausted HIV/SIV-specific CD4+ T
cells, which are associated with high plasma viremia, have a
decreased proliferative capacity and reduced polyfunctional
cytokine response, including decreased production of IL-2
(190–192). This fuels gradual CD4+ T-cell depletion, in
combination with the reduced production of naïve T cells by
the thymus (193) and TGF-b-driven fibrosis of lymphoid
tissues (194, 195) that are observed during HIV and SIV
infections (Figure 2).
CONSEQUENCES OF THE CD4+

T-CELL DEPLETION

The consequences of CD4+ T-cell depletion have been widely
scrutinized, highlighting the critical roles of this cell subset for
disease progression and development of comorbidities during
pathogenic infections (4, 196–198). The first observation made in
patients and NHPs with low peripheral CD4+ T-cell counts
(<200/mm3) was their extreme susceptibility to opportunistic
infections (notably fungal infections including Pneumocystis
j iroveci i pneumonia, mycobacterial infect ions, and
cytomegalovirus disease) (199, 200). In addition, PWH with a
lower nadir of CD4+ T-cell count are also at higher risk of
developing AIDS-defining cancers (non-Hodgkin lymphoma,
cervical cancer, and Kaposi sarcoma) (201, 202).

However, it was reported that the profound, but transient,
CD4+ T-cell depletion observed during acute nonpathogenic SIV
infections and the residual mucosal CD4+ T-cell depletion
persisting during chronic nonpathogenic SIV infections were
not sufficient to trigger disease progression (203). As such, a new
paradigm emerged in which the combination of CD4+ T-cell
depletion (notably Th17 cells), inflammation and immune
activation in the GI tract drive the deleterious consequences of
HIV infection. During HIV/SIV infection, CD4+ T cells but also
myeloid cells are killed, releasing inflammatory cytokines (204,
205), including IL-1b, thus creating an inflammatory
environment (185, 206). Combined with the loss of IL-17 and
IL-22-producing cells that are involved in epithelial integrity
maintenance and homeostasis, as well as in antimicrobial defense
(25, 104, 207), this leads to damage of the gut epithelial integrity,
enteropathy and microbial translocation (83, 93, 144). The role
of impaired epithelial integrity in driving microbial translocation
was confirmed by the demonstration of the leakage of microbial
products occurring near breaks in the epithelial lining (144).
Microbial translocation can be detected in mucosal tissues
(lamina propria, gut-associated lymphoid tissue, mesenteric
lymph nodes), but also in distant lymph nodes and circulation
(144, 208, 209). These microbial products fuel local and systemic
inflammation, and macrophage activation (144, 210). Sustained
inflammation and immune activation trigger a vicious cycle by
attracting new CD4+ T cells, increasing the number of
susceptible cells, and by reactivating proviruses in latently-
infected cells (206). Newly produced viral proteins and viruses
can in turn boost inflammation, tissue damage, and
microbial translocation.
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The importance of the maintenance of the integrity of the
intestinal epithelium was demonstrated recently (209). DSS-
induced colitis in SIV-infected AGMs disrupted the intestinal
epithelium integrity, recapitulating the characteristics of a
pathogenic SIV infection, i.e. increased local inflammation and
immune activation, detection of microbial products in lymphoid
tissues and increased viral replication (209). Meanwhile, in the
inflammatory bowel diseases (IBD), mucosal inflammation is
associated with loss of intestinal epithelial integrity and massive
infiltration of immune cells, including T cells, in the lamina
propria. In response to their exposure to microbial antigens,
these T cells produce inflammatory cytokines (IFNg, TNFa)
which disrupt tight-junctions function and worsen intestinal
epithelial integrity. However, unlike during HIV/SIV infection,
local inflammation does not lead to CD4+ T-cell depletion in
patients with IBD; on the contrary, most IBD patients present
with increased numbers of intestinal CD4+ T cells, including
Th17 cells (211). As such, comparison with IBD demonstrates
that inflammation per se, in the absence of the viral trigger, can
damage the gut integrity, but it is not sufficient to deplete
intestinal CD4+ T cells. However, in the context of HIV/SIV
infection, inflammation drives T-cell activation (209) and
eventually leads to T cell loss through increased viral
replication and/or activation-induced cell death (AICD). It is
possible that the persistent expression of high levels of type 1
interferons during chronic, pathogenic HIV/SIV infections play
a role in this T cell loss, as type 1 interferons are known to induce
AICD. Conversely, treatment with type 1 interferons had been
evaluated in IBD (212), due to their ability to inhibit Th17 cell
differentiation (213).

Chronic inflammation has been linked to numerous non-
AIDS comorbidities, notably cardiovascular diseases, liver
fibrosis and thromboembolism (214–216). Inflammation and
immune activation also promote a procoagulant state in
infected animals (217), and they are positively correlated with
disease progression (217).
RESTORATION OF CD4+ T CELLS
DURING ART

Assessment of the extent of CD4+ T-cell restoration in the GI
tract that can be expected in patients initiating ART during acute
or chronic HIV infection is complex, as most studies focused
on the total CD4+ T cell counts and only few investigated
specific CD4+ T-cell subsets, such as memory or Th17 cells.
Furthermore, the replenishment of mucosal CD4+ T cells can
take time, requiring long follow-up of PWH or NHP.

However, there is a general consensus in the field that the
efficacy of the CD4+ T-cell restoration on ART vastly depends on
the stage of the infection and the degree of immunosuppression
at the time of treatment initiation. Guadalupe et al., reported that
when ART was initiated at 6 weeks post-HIV infection and was
maintained for 14 months, the levels of mucosal CD4+ T cells
were close to values observed in uninfected individuals (97).
Further studies have found that, when ART was initiated in the
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first weeks postinfection, and viral replication was suppressed in
plasma and decreased by 1,000-fold in the GALT, a significant,
albeit incomplete, restoration of mucosal CD4+ T cells was
observed in all humans and macaques (88, 99, 218) (Figure 3).
In rhesus macaques in which ART was initiated prior to the acute
mucosal CD4+ T-cell depletion (i.e., 7 days post-SIVmac251
infection), ART failed to prevent CD4+ T-cell depletion in the
GALT, but enabled a virtually complete CD4+ T-cell restoration
by 6 months postinfection, particularly through a significant
increase in the Tcm levels (88). Meanwhile, while early ART
initiation at 3 to 4 days postinfection did not prevent the
establishment of the SIV reservoir in lymph nodes (222), it
prevented Th17 depletion in the lymphoid tissues (61). Similarly,
early treatment of acutely HIV-infected individuals (Fiebig stage
I or II) could not halt mucosal CD4+ T-cell depletion in the first
weeks post-treatment but generated a strong restoration of CD4+

T cells in the lamina propria at 96 weeks post-treatment
(99) (Figure 3).

Meanwhile, most data on patients which initiated ART
during chronic HIV/SIV infection suggest a modest CD4+ T-
cell restoration in the GI tract (97, 98, 219), at least when
considering the relative CD4+ T cell counts (223). Finally, in
patients in which ART was initiated during the AIDS stage, the
immune restoration was minimal and occurred very slowly
(224) (Figure 3).

In patients on ART, a more robust restoration of mucosal
CD4+ T cells was observed in patients with higher frequency of
Tcm in the lamina propria of the jejunum, suggesting that the
maintenance and/or the restoration of this subset is critical for an
important restoration of intestinal CD4+ T cells (219).
Furthermore, Th17 cells were also restored in patients
receiving ART, especially in those in which therapy was
initiated very early in infection (85). However, Th17/Treg ratio
remained reduced, as Treg cell counts in lymph nodes and in
GALT did not return to baseline levels in PWH receiving ART
(60, 61), which might be due to the residual viral replication and
immune activation in the GALT of those patients (219).

Overall, as a near-total restoration of mucosal CD4+ T cells is
observed only in early ART-treated patients, this is a strong
incentive for a generalization of early antiretroviral treatment in
all PWH.
OTHER TYPES OF CD4+

T-CELL DEPLETION

Important insight on the impact of CD4+ T-cell depletion on
HIV pathogenesis has been gained by directly depleting the
CD4+ T cells with monoclonal antibodies, or by using knock-
out models in different animal species, as well as through the
study of genetic diseases in humans.

Experimental CD4+ T-Cell Depletions
Total CD4+ T-Cell Depletion
The first studies on CD4+ cell depletion in SIV-infected and SIV-
uninfected NHP, performed with anti-CD4 monoclonal
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antibodies, were published over a decade ago (225–228), and
reported that, despite an increased percentage of proliferating
(Ki-67+) CD4+ T cells, reconstitution of CD4+ T cell population
was slower than what was reported for CD8+ T cells in CD8-
depleted animals, regardless of SIV infection status (226, 227).
Interestingly, CD4+ T-cell restoration postexperimental
depletion did not differ between natural and non-natural SIV
hosts (227), reinforcing the previous finding that the higher
restoration of intestinal CD4+ T cells in natural hosts of SIV was
not due to a higher cell proliferation.

In CD4-depleted, SIV-infected NHPs, plasma viral loads
decreased, in relation with the low number of CD4+ T cells
(225). However, when CD4+ T-cell depletion was induced prior
to SIV inoculation, this led to persisting high plasma viral loads
in CD4+ T-cell-depleted monkeys, with no postpeak decline of
viremia, and accelerated disease progression (229, 230).

Interestingly, microbial translocation was not increased in
SIV-uninfected CD4-depleted animals (227), and CD4+ T-cell
depletion was not sufficient to reactivate viral replication in CD4-
depleted, ART-treated NHPs (228). This limited clinical impact
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of experimentally-induced CD4+ T-cell depletion might be
explained by the limited CD4+ T-cell depletion at the mucosal
effector sites, notably in the GI tract (<50%), in those studies
during which anti-CD4 monoclonal antibodies were
administered over a short period of time.

Selective Treg Depletion
Since Treg are usually accumulating throughout chronic HIV/
SIV infection, are frequently infected and suppress HIV/SIV-
specific cytotoxic T cell responses (231), different Treg-specific
depletion strategies, targeting either CD25 (IL-2 receptor
subunit) (232–234) or CCR4 (234, 235), have been
investigated. Despite achieving only partial Treg depletion with
maximal effect in blood and lymph nodes, and minimal
depletion in GI tract, this usually led to increased SIV-specific
T cell responses (232, 234), and increased immune activation
(232–234). Another strategy aimed at blocking CTLA-4 also
resulted in increased SIV-specific T cell responses (236). Viral
reactivation occurred in most NHPs in which Treg functions
were blocked by anti-CTLA-4 monoclonal antibodies, or in
FIGURE 3 | Comparative dynamics of intestinal CD4+ T-cell depletion, plasma viral load and immune activation/inflammation in treated HIV infections, according to the
timing of initiation of antiretroviral therapy ART. Schematic representation of intestinal CD4+ T-cell depletion, viral replication and immune activation is inferred from data
reported in references (85, 90, 91, 99, 219–221). Longitudinal data are presented, with the X axis representing days (D), months (M) and years (Y) postinfection. The Y
axis illustrates the magnitude of mucosal CD4+ T-cell depletion (upper panels), viral replication (middle panels), and the levels of immune activation/inflammation (lower
panels). Intestinal CD4+ T-cell depletion is illustrated as the index of CD4+ T cells (i.e., percentage of CD4+ T cell fraction within the CD3+ T cell population, divided by
this percentage at baseline). Viral replication is represented as plasma viral loads. From the plethora of biomarkers of immune activation/inflammation, we selected the
fold-change of HLA-DR+ CD38+ CD8+ T cells in persons living with HIV, compared to uninfected individuals. ART, Antiretroviral therapy.
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which Treg were depleted (232–234, 237, 238). Higher viral loads
in mucosal tissues and greater loss of CCR5+ CD4+ T cells in the
rectal mucosa have been reported to occur in the NHPs receiving
an anti-CTLA-4 blocking monoclonal antibody (237).

Knock-Out Models
Numerous CD4 knock-out mice models have been developed
(239–241). In these mice, the TCRab+ gd- CD4neg CD8neg

(double negative, or DN) T-cell subset is expanded (239). The
TCR repertoire of those DN T cells is more polyclonal than in
wild-type mice, and these cells are able to maintain part of the
helper T cell functions, similarly to natural hosts of SIV (240,
241). However, it was reported that memory cytotoxic CD8+ T
lymphocytes could be reduced in CD4-deficient mice (242).

Idiopathic CD4 Lymphopenia
In the late 1980s, a severe lymphopenia, preferentially impacting
CD4+ T cells, was identified in HIV-uninfected patients with no
other condition or treatment known to induce lymphocytopenia
(243). This condition was termed idiopathic CD4 lymphopenia
(ICL) (244). This disease is rare, with less than 0.5% of blood
donors in the United States meeting the definition criteria (245,
246). Due to their low levels of circulating CD4+ T cells, ICL
patients develop opportunistic infections, some similar to AIDS
patients, notably fungal, nontuberculosis mycobacterial and HPV-
associated infections (247, 248). A recent work suggests that ICL
could have an autoimmune component linked to the production
of auto-antibodies directed against CD4+ T lymphocytes (249). In
some cases, genetic mutations have also been linked to ICL (250).

In addition to CD4+ T-cell lymphopenia, an increase in
circulating Treg was observed and, in some patients, decreases
in CD8+ T cells and/or CD19+ B cells and/or NK cell counts were
also reported (247, 248). Furthermore, CD4+ T cells are more
activated and proliferating in ICL patients than in controls (247,
251). No specific depletion of CD4+ T- cell subsets (Th1, Th2,
Th17) was observed in peripheral blood, but a reduction of the
percentage of naïve CD4+ T cells was seen, compared to controls
and PWH (251). Monitoring the CD4+ T-cell counts in the
mucosal tissues of ICL patients also identified a profound CD4+

T-cell loss, although less severe than in PWH, as only a 3-fold
reduction in the number of intestinal CD4+ T cells was observed
(252). This CD4+ T-cell loss did not affect the functionality of
mucosal Th1 and Th17 cells (252). While an initial study on 10
ICL patients reported a slight increase in microbial translocation
(251), a more recent study of 46 ICL patients found normal levels
of LPS, and only slight increases of sCD14 (252). We can
hypothesize that, similarly to natural hosts of SIV, despite
CD4+ T cell loss, the maintained functionality of remaining
Th17 cells and/or other IL-17 producing cells such as mucosa-
associated immune T cells (MAIT) might be sufficient to
preserve gut epithelial integrity and limit microbial
translocation in ICL patients (253).

Genetic Mutations
Absolute CD4+ T-Cell Depletion
Genetic mutations leading to absolute CD4+ T-cell depletion
have been reported in two patients, one 22-year-old female with
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a mutation in the translation initiation codon of the CD4 gene
(254) and a 45-year-old female with a mutation in a splice
acceptor site leading to the expression of a CD4 protein
lacking its anchoring domain to the cellular membrane (255).
In the first case, neither CD4 expression on cell membrane, nor
soluble CD4 were detected, whereas for the second patient, only
CD4 expression on cell membrane was abrogated, while soluble
CD4 could still be detected in plasma (254, 255). The first patient
was hospitalized for severe viral respiratory infection which led
to the discovery of her primary immunodeficiency. Both patients
presented numerous HPV-associated warts. However, in both
cases, immunodeficiencies were only detected when patients
were adults, later than most other primary cellular
immunodeficiencies. Interestingly, in both cases, it was shown
that helper T cell functions could be performed by DN T cells
and/or CD8+ T cells (254, 255), similarly to what has been
described in in natural hosts of SIV (160, 161) and in CD4
knock-out models in mice (240, 241). The DN T-cell subset was
also expanded, similarly to CD4 KO mice. These two reports
illustrate that this rescue mechanism can also be found in
humans. This absence of CD4+ T cells has also been reported
in one patas monkey with near-complete loss of peripheral and
mucosal CD4+ T cells, which protected it from productive SIV
infection when intravenously-inoculated with SIVsab (137).

Depletion of the Th17 Subset of CD4+ T Cells
Patients with hyper-IgE syndromes present with elevated IgE
serum levels, decreased Th17 cells, and higher susceptibility to
Staphylococcus aureus pulmonary, skin infections and Candida
infections (256, 257). Multiple genetic mutations have been
associated with this syndrome, and patients with DOCK8
mutation also present with HPV-associated warts, cutaneous
manifestations of Molluscum contagiosum and/or Herpes
simplex virus infections (258, 259). These studies highlight the
importance of Th17 cells in the protection of the organism from
bacterial and fungal infections, notably through the maintenance
of the integrity of the intestinal barrier, as also emphasized by the
increased microbial translocation observed during HIV and SIV
pathogenic infections in which Th17 cells are depleted and the
intestinal barrier is damaged, with visible breaches in the
intestinal epithelium.
PERSPECTIVES FOR THERAPEUTIC
APPROACHES AIMED AT PREVENTING
OR LIMITING CD4+ T-CELL DEPLETION
AND ITS CONSEQUENCES

The most effective treatment currently available for preventing or
limiting CD4+ T-cell depletion is the early initiation of ART,
ideally during Fiebig stages I or II. This is the only treatment
which has proved a high efficacy in restoring intestinal CD4+ T
cell in PWH and can have additional positive impact on limiting
size of viral reservoirs (Figure 3). However, as there is persistent
immune activation in PWH on ART, which could cause a limited
CD4+ T cell loss, early ART might not be sufficient to entirely
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restore mucosal CD4+ T cells in all patients. It should also be
acknowledged that, even when viral replication is suppressed,
restoration can take time, as evidenced in elite controllers
SIVagm-infected RMs, in which complete recovery of intestinal
CD4+ T cells was only observed after 4 years of absence of viral
replication in plasma and tissues (48) (Figure 1). Thus, complete
recovery of intestinal CD4+ T cells in PWH could take even
longer, especially if the treatment could not be initiated early in
the infection.

As the crucial role of IL-17 and IL-22 producing T cells in
preserving the mucosal integrity emerged recently, it has been
hypothesized that treatments aiming at maintaining or restoring
those cell subsets could limit the deleterious impact of CD4+

T-cell depletion in HIV/SIV-infected NHPs, i.e., microbial
translocation, inflammation, and immune activation. As
pointed out, a long follow-up of PWH receiving those
treatments will probably be necessary before being able to
definitively rule on their efficacy.

IL-21
IL-21 has been described to enhance several immune functions,
including long-term maintenance of CD8+ T cells, differentiation
of memory B cells and differentiation of naïve CD4+ T cells into
Th17 cells (108, 260–262). Several studies have explored its
potential to limit Th17 depletion in SIV-infected NHPs. In a
preliminary study, Micci et al., observed that, after 5 weekly doses
of recombinant IL-21, the frequency of circulating Th17 cells
increased in chronically SIVmac-infected macaques (108).
Paiardini et al., confirmed these findings in a subsequent study
in rhesus macaques treated with IL-21 between weeks 2 and 6
postinfection (263). They observed no difference with respect to
the total CD4+ T cell counts in circulation, lymph nodes and the
GI tract, but intestinal Th17 cells were maintained at week 6
postinfection in IL-21-treated macaques, while a severe depletion
was observed in controls (263). This preservation of the Th17 cell
subset was associated with lower intestinal inflammation and
microbial translocation, as expected (263). Unfortunately, this
protective effect on Th17 depletion faded away and intestinal
Th17 cell loss was similar in both groups 23 weeks postinfection
(263). Similarly, in ART-treated SIV-infected macaques,
treatment with IL-21 did not enhance total CD4+ T-cell
restoration in the circulation, lymph nodes and GI tract, but
both intestinal Th17 and IL-22- producing CD4+ T cells were
restored to near-baseline levels (264). Th17 cells were more
frequently polyfunctional in IL-21-treated macaques, and this
effect was more robust in jejunum than in rectal biopsies (265).
This was sufficient to limit neutrophil infiltration in intestinal
tissues, as well as T cell activation and proliferation. However,
these positive effects were also blunted over time (264, 265).
Conversely, one recent study reported a reduction in immune
activation and T-cell exhaustion in IL-21 treated rhesus
macaques, but did not see any impact on Th17 CD4+ T cells (266).

IL-7
IL-7 was among the first cytokines investigated, as it was shown
to boost CD4+ T-cell regeneration (267–269). In SIV-infected
rhesus macaques on ART, rsIL-7 induced a transient increase in
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CD4+ and CD8+ T-cell counts (270). Similarly, in virologically-
suppressed PWH on ART, rhIL-7 increased CD4+ T-cell counts
in circulation and in the gut (268, 271, 272). Although transient
viral reactivations were detected, mainly in patients receiving
high rhIL-7 doses (268, 271), and a slight increase in viral
reservoir was reported (273), those preliminary results were
promising for restoring T cells but clinical trials investigating
IL-7 were interrupted due to the appearance of neutralizing
antibodies in IL-7-treated patients and production issues.

IDO-1 Inhibitors
Metabolites generated by the catabolism of tryptophan by IDO-1
(kynurenine pathway) can lead to an increase in the number of
Treg while depleting Th17 CD4+ T cells (110), Specific IDO-1
inhibitors have been used in oncology, but none has been tested
in PWH and only one in SIV-infected RMs (274, 275). Until
now, in the HIV/SIV field, in order to reduce IDO-1 expression,
most studies focused on altering gut microbiota. A recent study
by Vujkovic-Cvijn and colleagues showed that dysbiosis caused
by acute SIV infection, notably loss of Lactobacillus spp,
increased IDO-1 activity and was correlated with Th17
depletion in peripheral blood (187). Interestingly, enhanced
IDO-1 activity due to SIV infection could be thwarted by
supplementing SIV-infected macaques with Lactobacillus (187).
The addition of IL-21 did not further lower IDO-1 activity (187,
265). However, the beneficial effect of those probiotic treatments
on Th17 cell restoration still has to be demonstrated.

Alterations of intestinal microbiota in PWH and in SIV-
infected NHPs have been extensively described (276). In
pigtailed macaques (PTM), prebiotics/probiotics improved
intestinal CD4+ T cell counts, enhanced functionality of
colonic Th17 and Th1 CD4+ T cells, but did not prevent
systemic microbial translocation as shown by the presence of
microbial products in peripheral lymph nodes (277). Clinical
trials have suggested a potential beneficial effect of probiotics on
circulating CD4+ T-cell counts or intestinal Th17 cells (278–
280). However, the varying compositions of probiotic
supplements hindered comparisons between studies, and most
of these studies were underpowered due to a low number of
included patients. Moreover, other confounding factors
complicated the evaluation of those strategies: both HIV-1 and
LPS induce IDO-1 expression (112, 281), and thus ART itself
could reduce IDO-1 activity in PWH (282).

Another inhibitor of the kynurenine pathway has been
recently evaluated in NHPs, a kynurenine 3-monooxygenase
inhibitor which increased circulating CD4+ T cells but failed to
increase intestinal Th17 cell restoration and to prevent microbial
translocation (283). Recently, one work reported increased Th17
and Th22 populations among circulating CD4+ T cells in ART-
treated, SIV-infected rhesus macaques that received a fecal
microbial transplantation (284). This restoration of Th17 and
Th22 subsets in the blood needs to be confirmed in intestinal
tissues in further studies.

Others
Other strategies have been suggested. One of them consists of
targeting CD4+ T cells expressing a4b7 integrin, which is a gut-
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homing signal (285), using an anti-a4b7 monoclonal antibody,
to reduce the number of susceptible cells in mucosal tissues and
preserve CD4+ T cells in the GALT (286). In preliminary works,
SIV-infected NHPs receiving anti-a4b7 monoclonal antibody
had higher CD4+ T cell counts than controls in both peripheral
blood and in intestinal tissues (286, 287). However, in PWH,
despite a slight increase in the circulating CD4+ T cell counts at
10 weeks postinfusion, this increase was not sustained (288).
Furthermore, even though gut homing was limited, treatment
with anti-a4b7 monoclonal antibody did not prevent HIV or
SIV infection, viral reservoir seeding, nor it delayed viral rebound
post-treatment interruption (288, 289). Recently, an anti-caspase
inhibitor administered to RMs in the first days following SIVmac
infection has been shown to reduce T cell death and maintenance
of CD4/CD8 T cell ratios (290). Furthermore, memory CD4+ T
cells were preserved after the early administration of this
inhibitor (290).
CONCLUSION

In his literary masterpiece “The Restaurant at the End of the
Universe”, Douglas Adams states that “It is a curious fact, and
one to which no-one knows quite how much importance to
attach, that something like 85 percent of all known worlds in the
Galaxy, be they primitive or highly advanced, have invented a
drink called jynnan tonyx, or gee-N’N-T’N-ix, or jinond-o-nicks,
[… ] ‘chinanto/mnigs,’ [… ] ‘tzjin-anthony-ks’”. Similarly, acute
mucosal CD4+ T-cell depletion is a common feature of all HIV
and SIV infections, be they pathogenic, nonpathogenic, or
controlled. However, as clearly demonstrated by the data
presented here, acute CD4+ T-cell depletion is only the spark
that can ignite the wildfire in the woods, while chronic
inflammation and immune act ivat ion that lead to
comorbidities and disease progression, and the ability of the
host to manage these features associated with HIV/SIV infection,
are driving the prognosis.

The natural hosts of SIV seem to be also a good example of
convergent evolution to develop strategies to thwart retroviral
infections. These NHP species are able to constrain this fire to a
limited timing by: (i) spacing the trees, i.e. limiting the number of
target cells by having a reduced number of CD4+ T cells
expressing CCR5 and/or down-regulating CCR5 expression
when entering the memory pool, (ii) limiting the propagation
of fire to unburnt trees, i.e. hampering by-stander apoptosis that
is the main driver of cell death in HIV/SIV infections, (iii)
preserving specific trees that protects the soil, i.e., Th17 cells
that are crucial in the maintenance of gut integrity and protecting
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from bacterial and fungal infections, or trees that will help the
regrowth of the forest, i.e. sparing Tcm cells, that have a higher
expansion potential, and (iv) growing fire-resistant trees that are
able to maintain wild-life in the absence of the other trees, i.e.
CD3+ CD4neg CD8neg T cells that exhibit some of the helper T
cell functions and that are frequent in most natural hosts of SIV.
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