
royalsocietypublishing.org/journal/rstb
Review
Cite this article: Burridge K, Monaghan-

Benson E, Graham DM. 2019

Mechanotransduction: from the cell surface to

the nucleus via RhoA. Phil. Trans. R. Soc. B

374: 20180229.

http://dx.doi.org/10.1098/rstb.2018.0229

Accepted: 22 January 2019

One contribution of 13 to a discussion meeting

issue ‘Forces in cancer: interdisciplinary

approaches in tumour mechanobiology’.

Subject Areas:
biomechanics, cellular biology

Keywords:
RhoA, mechanotransduction, nucleus,

cell adhesion molecules, cytoskeleton, fibrosis

Author for correspondence:
Keith Burridge

e-mail: keith_burridge@med.unc.edu
& 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Mechanotransduction: from the cell
surface to the nucleus via RhoA

Keith Burridge, Elizabeth Monaghan-Benson and David M. Graham

Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, University of North
Carolina, Chapel Hill, NC 27599, USA

KB, 0000-0002-2152-9670

Cells respond and adapt to their physical environments and to the mechan-

ical forces that they experience. The translation of physical forces into

biochemical signalling pathways is known as mechanotransduction. In this

review, we focus on two aspects of mechanotransduction. First, we consider

how forces exerted on cell adhesion molecules at the cell surface regulate the

RhoA signalling pathway by controlling the activities of guanine nucleo-

tide exchange factors (GEFs) and GTPase activating proteins (GAPs).

In the second part of the review, we discuss how the nucleus contributes

to mechanotransduction as a physical structure connected to the cytoskele-

ton. We focus on recent studies that have either severed the connections

between the nucleus and the cytoskeleton, or that have entirely removed

the nucleus from cells. These actions reduce the levels of active RhoA,

thereby altering the mechanical properties of cells and decreasing their

ability to generate tension and respond to external mechanical forces.

This article is part of a discussion meeting issue ‘Forces in cancer:

interdisciplinary approaches in tumour mechanobiology’.
1. Introduction
Cells are continuously subjected to a wide variety of mechanical forces. This is

well illustrated by tumour cells, which experience many different forces as

tumours grow and invade. As a solid tumour grows, it typically becomes

denser and the tumour cells will be exposed to a more rigid physical environment.

Some of this is due to the deposition of more extracellular matrix (ECM) but it also

arises both from cell proliferation leading to tighter packing of cells within the

available tissue space and increased contractility of stromal cells [1–4]. Various

forces are encountered by tumour cells that are metastasizing, whether this

occurs by single cell invasion or by collective cell migration [5]. Squeezing

through confined spaces in the ECM exposes tumour cells to significant compres-

sive and tensile forces, which can be sufficient to induce transient rupture of the

cells’ nuclei, release of chromatin and induce DNA damage [6,7]. Those tumour

cells that metastasize to distant sites typically pass into lymphatics or blood

vessels by intravasation. This involves a series of forces as the invading cells

pass through the subendothelial basement membrane and then between the

endothelial cells lining the vessel. Transport in the blood circulation will expose

tumour cells to an extremely different mechanical environment, where the cells

experience shear stress from fluid flow, as well as repeated collisions, both with

other circulating cells and with the vessel walls. At distant sites, the tumour

cells need to extravasate out of the circulation and again this will involve a

series of different mechanical forces as the cells cross the vessel wall and under-

lying matrix to enter the target tissue. Typically, this can be expected to have a

different mechanical environment from the tissue of tumour origin.

While it has long been recognized that chemical signals regulate cell behaviour,

it is now well accepted that mechanical forces also play a critical role in regulating

cellular function. Many signalling pathways are activated in response to different
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Figure 1. RhoA regulation. RhoA bound to GDP is inactive and can be sequestered by Rho guanine nucleotide dissociation inhibitor (RhoGDI). GDP exchange for GTP
is promoted by guanine nucleotide exchange factors (GEFs), whereas GTP hydrolysis is stimulated by GTPase activating proteins (GAPs). In the active, GTP-bound
state, RhoA activates the kinase ROCK which promotes contractility and bundling of actin filaments by activating myosin via phosphorylation of the regulatory myosin
light chain (MLC). RhoA also binds and activates the formin mDia, stimulating actin polymerization.
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forms of mechanical force being exerted on the cell surface.

These range from stretch-activated ion channels to activation

of kinase cascades and Rho GTPases [8,9]. Ultimately, many

of these pathways affect gene transcription. Space limitations

prevent us from considering many of these topics and here

we will focus on two: how mechanical tension exerted on cell

adhesion molecules affects the RhoA signalling pathway, and

secondly, the role of the nucleus as a physical structure in

mechanotransduction signalling.
0180229
2. RhoA signalling in mechanotransduction
The RhoA signalling pathway is central to mechanotransduc-

tion because it plays a key role in regulating the actin

cytoskeleton and its response to mechanical force [10]. RhoA

belongs to the Rho family of small GTPases, for which the

mammalian genome encodes approximately 20 members

[11]. Rho GTPases act as molecular switches, cycling between

an active GTP-bound state and an inactive GDP-bound state.

The activity of Rho GTPases is regulated by three classes of

proteins: Guanine nucleotide Exchange Factors (GEFs),

GTPase-Activating Proteins (GAPs) and Guanine nucleotide

Dissociation Inhibitors (GDIs) (figure 1). GEFs activate Rho

proteins by catalysing the exchange of GDP for GTP, whereas

GAPs promote the intrinsic GTPase activity leading to the

hydrolysis of GTP to GDP and inactivation [12,13]. GDIs

extract membrane bound GTPases into the cytosol, where

they are sequestered in their inactive conformation [14]. Rho

proteins regulate a wide variety of mechanically sensitive cellu-

lar functions including cytoskeletal organization, cell polarity,

proliferation and differentiation [15].

Contractile forces are largely generated by the interaction of

myosin II with actin filaments. GTP-bound RhoA regulates

myosin II activity by stimulating Rho kinase (ROCK), which,

in turn, enhances the phosphorylation of the regulatory

myosin light chain (MLC). This is accomplished both by direct

phosphorylation of the regulatory MLC [16] and through the

phosphorylation and consequent inhibition of the MLC phos-

phatase (MYPT) [17]. MLC phosphorylation enhances the

assembly of myosin II into filaments and promotes its ATPase

activity, thereby increasing the contractile force exerted by

myosin II on actin filaments. Assembled into filaments myosin

is also a very effective bundler of filamentous actin. Addition-

ally, ROCK phosphorylates and activates LIM kinase allowing

it to phosphorylate and inhibit the actin-severing protein cofilin

[18]. This enhances actin filament stability. RhoA also stimulates

further actin filament assembly through its effector mDia, an

actin nucleating protein in the formin family [19]. Consequen-

tly, RhoA signalling is largely responsible for much of the

intracellular force generation within cells [20].
3. Mechanical force and RhoA guanine
nucleotide exchange factor activation

A role for RhoA was established in mechanotransduction

downstream from tension exerted on fibronectin-coated beads

adhering to the cell surface [21] and subsequent work showed

that tension on integrins activates RhoA [22]. For activation to

occur, this requires either activation of a GEF or inhibition

of a GAP. Identifying which ones may be involved has been a

challenge because the number of GEFs and GAPs greatly

exceeds the number of Rho GTPases, with some showing lim-

ited specificity but others acting on many different family

members [23]. Using a strategy to identify active GEFs,

both GEF-H1 and LARG were identified, being activated

in response to tension on integrins [24]. Exploring signalling

upstream of these GEFs, LARG was found to be activated as

a result of phosphorylation by the Src family kinase Fyn,

whereas GEF-H1 was activated by the MEK/ERK pathway

downstream of FAK activation (figure 2) [24]. Somewhat simi-

lar results were observed by another group who used the

same approach of pulling on fibronectin-coated beads, but in

these experiments the beads were adhered to endothelial cells

rather than fibroblasts [25]. These investigators found that

GEF-H1 and p115RhoGEF were activated; however, LARG

was not. It should be noted that LARG and p115RhoGEF

are very similar and belong to the same subfamily of GEFs.

Exploring the pathway leading to activation, FAK was again

implicated and, additionally, a role for one of the isoforms of

Shc coupling to FAK was demonstrated to be critical.

The activation of GEFs in response to mechanical force on

fibronectin-coated beads is a downstream response to ten-

sion-mediated activation of kinases, particularly members of

the Src family of kinases (SFKs) and/or FAK. SFKs become

activated very rapidly following mechanical tension [26].

How might these kinases be activated? Several pathways

have been suggested. One involves protein tyrosine phospha-

tases (PTPs) associated with integrins, such as RPTPa [27].

Evidence has been presented that RPTPa forms a functional

complex with the integrin aVb3 and that in response to

mechanical tension RPTPa activates SFKs by removing the

inhibitory phosphorylation from the tail of SFKs that, when

present, maintains them in an inactive form [27]. Alternatively,

some integrin b-chain cytoplasmic domains have been

shown to bind to SFK SH3 domains [28], although whether

this specifically activates SFKs in response to tension has not

been established. In many situations there is a close relation-

ship between the activation of SFKs and FAK [29,30]. Many

studies have shown that FAK is activated downstream from

integrin engagement and formation of focal adhesions

[31,32]. Furthermore, inhibiting tension on integrins by
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Figure 2. Pathways by which tension on integrins may increase RhoA activity. In (A) the tyrosine kinase Fyn is activated in an unresolved manner. It phosphorylates
and activates the Rho GEF LARG. In (B), FAK is activated and via the Ras/Erk pathway activates GEF-H1. In (C), downstream from FAK, PI3 kinase (PI3 K) is activated
triggering the activation of AKT, which phosphorylates the Rho GAP DLC1, thereby decreasing its activity. In (D), DLC1 is active when bound to talin but tension
transmitted from integrins to talin, stretches talin, releasing DLC1 allowing it to adopt an inactive conformation. Some of these pathways may act in parallel and
synergize to stimulate RhoA activity in response to tension exerted on integrins.
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inhibiting myosin activity with blebbistatin decreases FAK acti-

vation [33]. Tension on integrins was shown to promote

integrin engagement with the synergy site on fibronectin

beyond the RGD binding site and that this additional engage-

ment promoted the activation of FAK [34]. Consistent with this

finding, others have shown that tension on fibronectin exposes

the synergy binding site such that the integrin a5b1 binds to

this as well as to the RGD binding site [35]. In this latter

study, it was argued that FAK becomes clustered as a result

of full integrin–fibronectin engagement and that clustered

FAK trans-phosphorylates leading to FAK activation. The acti-

vated state of FAK is sustained by the FAK FERM domain

binding to PIP2 maintaining FAK in the open active confor-

mation [35]. Using molecular dynamics and mechano-

biochemical simulations it has been argued that FAK can be

opened up and activated as a direct result of mechanical

tension. This model derives from the N-terminal FERM

domain of FAK being able to bind to PIP2 in the membrane

and the C-terminal focal adhesion targeting domain of FAK

interacting with the cytoskeleton. As a result, tension can be

exerted across FAK to release it from the auto-inhibited confor-

mation [36]. Other proteins such as talin are stretched in

response to mechanical tension exerted on integrin-mediated

adhesions [37]. It will be interesting to learn whether these

other deformations occur in parallel with or whether there is

a sequential stretching and activation of proteins such as

talin, Src, FAK, etc.

Using magnets to apply force on magnetic beads coated

with antibodies has allowed several different adhesion

molecules to be examined for how they influence RhoA activity.

Interestingly, most reveal RhoA activation but sometimes the

same GEFs are involved and sometimes different ones. Thus,

applying force on the endothelial adhesion molecule PECAM

activated GEF-H1 and LARG [38], whereas ICAM-1, also

in endothelial cells, activated LARG but not GEF-H1 [39].

Tension on JAM-A in endothelial cells activated GEF-H1 and

p115RhoGEF, but not LARG [40]. A pattern emerges that apply-

ing tension on a variety of cell adhesion molecules activates one

or two of a group of GEFs that includes GEF-H1 and the closely

related GEFs, LARG and p115RhoGEF. Whether the differences

reflect different adhesion molecule complexes, or differences

between cell types and pulling regimes, has not been resolved.

Mechanical force can be exerted experimentally on cells in a

variety of ways. Many studies have examined cell behaviour in

response to cyclic stretching of cells plated on deformable
substrata. Using this approach with mesangial cells of the

kidney, RhoA activation was shown to occur in response to

the GEF Vav2, which was tyrosine phosphorylated and acti-

vated by Src [41]. However, cyclic stretching of pulmonary

endothelial cells resulted in activation of GEF-H1, which was

found to be dependent on stretch-induced microtubule disas-

sembly [42]. GEF-H1 was also found to be the relevant GEF

in cells responding to rigid substrata [43]. In this situation, ten-

sion is generated internally by myosin II and this tension is

exerted on the cells’ focal adhesions.
4. Mechanical force and Rho GTPase-activating
proteins

In response to integrin engagement with the ECM, there is

an initial depression of RhoA activity [44], caused by Src-

mediated activation of p190RhoGAP [45]. A similar depression

in RhoA activity was observed in endothelial cells responding

to fluid shear stress [46], and again the decrease in RhoA

activity was shown to be due to p190RhoGAP [47]. This is a

situation where mechanical force (shear stress) activates a

Rho GAP, but can force-mediated inhibition of Rho GAPs also

contribute to RhoA activation? Recent evidence strongly sup-

ports this idea. Two Rho GAPs have particularly caught the

attention of those interested in mechanotransduction and

RhoA activity: the tumour suppressor Deleted in liver cancer

1 (DLC1) and p190RhoGAP. Recently, DLC1 was shown to

be inhibited by AKT phosphorylation downstream from recep-

tor tyrosine kinase activation and this elevated RhoA activity in

response to insulin, EGF and insulin-like growth factor [48].

Since AKT is also activated downstream of mechanical force

applied to integrins [49], it seems likely that the inhibition of

DLC1 by this pathway may also contribute to elevated RhoA

activity in response to mechanical stress (figure 2).

DLC1 is notable because it is recruited to focal adhesions

[50]. One of its binding partners in focal adhesions is the

mechanosensitive protein talin. DLC1 binds to the R8 domain

of talin, which both localizes and activates DLC1 to decrease

active RhoA levels. However, upon tension sufficient to stretch

talin and open up the R8 domain, DLC1 is released in a confor-

mationally inhibited form, contributing to increased RhoA

activity [51]. The release and consequent inactivation of DLC1

from stretched talin points to another way that mechanical ten-

sion exerted on integrin adhesions may increase RhoA activity
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Figure 3. RhoA signalling in fibrosis. A positive feed-forward cycle is illustrated. Transforming growth factor-beta (TGFb) is released in response to tissue wounding. TGFb
represses synthesis of Rnd3 causing a decrease in p190RhoGAP activity and a consequent increase in RhoA activity. The increase in active RhoA stimulates both myosin-mediated
contractility and increased expression of ECM genes. In turn, these both promote increased matrix assembly resulting in a stiffer matrix. The stiff matrix further stimulates
elevated RhoA activity. The high levels of contractility and the stiff matrix promote release of more active TGFb from its inactive matrix-bound state, continuing the cycle.
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(figure 2). This work, however, also suggests a potential nega-

tive feedback pathway which may be important in limiting the

size of focal adhesions. It has been known for some time that

mechanical tension promotes the growth of focal adhesions in

a RhoA-dependent manner [52]. Tension on focal adhesions

stretches components such as talin to recruit additional binding

partners [37]. However, large adhesions have been determined

to generate less traction force than small adhesions [53], and

FRET-based tension sensors have revealed that less tension is

transmitted across components in large rather than small

focal adhesions [54–56]. A negative feedback loop must be

operating to prevent the continued growth of focal adhesions

in response to increasing tension. One possible pathway

is suggested by the recent work on DLC1 [51]. As focal

adhesions grow in response to tension, the recruitment of

more talin will result in the tension across the adhesion being

carried by more talin molecules such that individual talin mol-

ecules each bear less load. This decreased tension on talin will

allow the R8 domain to refold and consequently to sequester

and activate DLC1. In turn, this should decrease RhoA activity

and decrease the tension being generated and exerted on the

larger focal adhesions. Consequently, the growth of focal adhe-

sions is predicted to cease. Undoubtedly, other mechanisms

also counteract the continued growth of focal adhesions

driven by tension. This is an interesting topic that merits further

investigation. It will probably involve negative feedback path-

ways inhibiting GEFs and activating GAPs to decrease RhoA

activity. Additionally, other mechanisms likely come into

play, such as tension-stimulated internalization of integrins

and other disassembly mechanisms.

The inhibition of p190RhoGAP has been identified as

another cause of elevated RhoA activity in situations of mech-

anical tension. This was discovered in studies of fibroblasts

from patients with idiopathic pulmonary fibrosis (IPF) [57].

The causes of IPF are not clear but elevated levels of TGFb

are a major factor promoting fibrosis and there is much evi-

dence indicating a major role for RhoA in this disease, as well

as other types of fibrosis. Exploring the signalling pathways

that elevate RhoA activity, it was found that p190RhoGAP

activity was depressed both in fibrotic fibroblasts and in

response to TGFb [57]. Investigating the mechanism revealed
that expression of Rnd3/RhoE, an activator of p190RhoGAP,

was suppressed by TGFb. A characteristic of fibrotic tissues is

their increased stiffness which arises from the deposition of

excess ECM. Elevated stiffness enhances RhoA activity [58]

and GEF-H1 has been implicated [43]. Notably, Rnd3

expression and p190RhoGAP activity are also both decreased

in fibroblasts adhering to rigid substrata, suggesting that this

pathway also contributes to elevated RhoA activity in cells

exposed to rigid environments [57]. Because TGFb activity is

also stimulated by increased mechanical tension and growth

on rigid substrata [59], this suggests a positive feed-forward

pathway involving Rnd3 and p190RhoGAP, which is illustrated

in figure 3. It should be noted that because Rnd3 expression is

regulated transcriptionally, this provides a relatively slow

mode of regulation of RhoA activity compared with the regu-

lation that is mediated by phosphorylation of GEFs or GAPs.

Fibrosis and increased stiffness are characteristics of

many solid tumours and promote tumour growth. Culturing

breast epithelial cells on soft versus rigid collagen gels

reveals that as rigidity increases there is decreased epithelial

tubulogenesis, increased contractility and enhanced prolifer-

ation [3,58,60]. Growth in a more rigid environment was

also shown to promote an invasive phenotype [61]. Under-

lying many of these characteristics is the enhanced activity

of RhoA in cells growing within a rigid environment. In pre-

liminary experiments we have found that Rnd3 levels are

depressed when normal and breast cancer epithelial cells

are cultured on more rigid substrates (E Monaghan-Benson

2018, unpublished results), suggesting that this pathway

may be important in elevating RhoA activity in tumours. In

previous work we found that drugs such as nintedanib and

pirfenidone, which have been used to treat IPF [62,63], elev-

ate Rnd3 expression and thereby decrease RhoA activity [57].

This raises the possibility that these drugs may also have

therapeutic potential for solid tumours.
5. Role of the nucleus in mechanotransduction
Much evidence supports bidirectional mechanical signalling

between the nucleus and the cytoskeleton. The mechanical
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properties of the nucleus have been of interest for some time

and were particularly stimulated when mutations in Lamin

A/C were found to underlie a range of genetic diseases with

a mechanochemical basis [64]. These laminopathies include

forms of Emery–Dreifuss muscular dystrophy, limb girdle

muscular dystrophy and dilated cardiomyopathy, but most

strikingly Hutchinson–Gilford Progeria [65]. In this premature

ageing disease the nuclei reveal altered shape, often being

lobulated, and have a thickened nuclear lamina and loss of per-

ipheral heterochromatin [66]. The nuclei are stiffer, and the cells

display altered mechanical properties having more apoptosis

in response to mechanical strain [67,68].

The idea that the nucleus is mechanically connected to the

cytoskeleton goes back a long way [69]. Penman’s group

showed electron micrographs of cytoskeletal elements envel-

oping and appearing to connect with the outer nuclear

membrane [70]. Later it was shown that applying tension at

the cell surface causes distortion of the nucleus, confirming

that tension is transmitted to this organelle via the cytoskeleton

[71]. Nuclear position differs in different cell types and this is

mediated by cytoskeletal interactions [72]. Much effort has

gone into identifying the proteins connecting the nucleus to

the cytoskeleton. A combination of techniques identified the

‘linker of nucleoskeleton and cytoskeleton’ (LINC) complex

[9,73]. Major components of the LINC complex are members

of the Nesprin family of proteins [74]. They are transmembrane

proteins that span the outer nuclear membrane binding to the

SUN proteins in the intermembrane space between the outer

and inner nuclear membranes. The SUN proteins span the

inner nuclear membrane and bind to the nuclear lamins, as

well as to other proteins such as emerin. Extending into the

cytoplasm, the nesprins bind directly or indirectly with

the actin, microtubule and intermediate filament cytoskeletons

[74]. Exerting tension on isolated nuclei by pulling on nesprins

induced a stiffening of the nucleus, confirming that the nucleus

is mechanosensitive and will respond to tension transmitted

through the cytoskeleton and the LINC complex [75].

Tension exerted on the nucleus is known to affect transcrip-

tion and the differentiated phenotype of cells. This is an

exciting area but for space reasons we will leave this topic to

other reviews [76–79] and papers in this volume. Here we

will discuss how the nucleus, as a relatively rigid intracellular

organelle that is physically connected to the cytoskeleton,

affects mechanotransduction and aspects of cell behaviour,

such as cell migration.
6. Severing the LINC complex
Two major strategies have been used to disconnect the nucleus

from the cytoskeleton: complete removal of the nucleus (enu-

cleation) and severing the LINC complex, by expression of

dominant negative KASH domains, dominant negative SUN

proteins, or by depletion of LINC complex components

[73,80,81]. Expression of dominant negative KASH domains

that compete with Nesprin binding to the SUN proteins was

found to alter the mechanical properties of the cells [80,81].

Rheological assays revealed decreased stiffness of the

transfected cell’s cytoplasm [81], as well as altered force trans-

mission across the cell and decreased nuclear deformation in

response to force applied at the cell surface [80]. Changes

were detected in the perinuclear organization of actin stress

fibres. Additionally, perturbing the LINC complex in this
way also decreased the velocity of cell migration, as well as

its directional persistence. This latter effect may reflect altered

cell polarity due to disruption of the centrosomal/nuclear

axis which was observed in response to expression of dominant

negative LINC complex constructs [80]. Dominant negative

KASH domains also blocked rearward nuclear movement

and reorientation of the centrosome in cells migrating into a

scratch wound [82].

The nuclear lamina underlying the inner nuclear membrane

is connected to the cytoskeleton via the LINC complex and is

responsible for much of the rigidity and shape of the nucleus.

Deletion of the Lamin A gene (LMNA2/2) revealed that this

Lamin is particularly relevant for these mechanical properties

[83–87]. Similar to the effects of expressing dominant negative

KASH domains, deletion of the Lamin A gene affects not only

nuclear mechanics but also the cytoskeleton, cell polarity and

cell migration [85,88]. Expressing Lamin A mutant constructs

that correspond to those responsible for the diseases of

muscle also recapitulates these effects [85,89,90]. Although

changes were not detected in the organization of stress fibres

in the Lmna2/2 cells, their focal adhesions were smaller

[85]. Examining the level of RhoA activity, Hale and colleagues

made the striking observation that this was significantly lower

in the Lamin A null cells [85]. RhoA activity was also decreased

in cells expressing a laminopathic mutant of Lamin A, although

in these cells changes in the focal adhesions were not detected.

This may reflect that the RhoA activity level was still above a

critical threshold.

7. Enucleation
Expression of dominant negative LINC complex components

or their genetic deletion are precision tools to examine the

role of nuclear/cytoskeletal connections. A much cruder

approach is to remove the nucleus completely. Although

crude, this approach does have the advantage that all connec-

tions to the nucleus will have been destroyed, whereas

severing the LINC complex may leave other cytoskeletal

interactions with the nuclear envelope intact. Strategies for

large scale enucleation of cells grown in culture were devel-

oped in the early 1970s [91]. The enucleated cells, known as

cytoplasts, were observed to contain multiple organelles

and to survive for hours or days, depending on the cell type.

When techniques for enucleation were developed there was

little, if any, interest in mechanotransduction. However, inves-

tigators were interested in whether the nucleus had any effect

on a cell’s migratory behaviour. Goldman and colleagues

found that cytoplasts could migrate on glass coverslips,

thereby establishing that possession of a nucleus is not a prere-

quisite for cell migration [92]. This result was supported by

several subsequent studies investigating the migratory proper-

ties of cell fragments lacking nuclei. For example, growth cones

no longer connected to their nerve cell bodies continued to

migrate in culture [93]. Similarly, very small membrane-

bound fragments of fibroblast cytoplasm (microplasts) exhib-

ited various motile activities, such as ruffling membranes,

filopodial extension and retraction, and membrane blebbing

[94]. Some of the fastest migrating cells are fish keratocytes,

which display a broad leading lamella. Lamellar fragments

lacking a nucleus can exhibit a polarized cytoskeletal organiz-

ation and directed migration [95]. Studying this phenomenon

further, it was found that such fragments assume either

a non-polarized symmetrical discoid shape or a polarized
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organization. In the non-polarized morphology state, they

were non-migratory, whereas in the polarized state they exhib-

ited sustained directed migration [96]. Notably, directed

migration could be induced in the non-polarized fragments

by applying mechanical force to one side.

These earlier studies revealed that many different cell types

can migrate efficiently without a nucleus. However, they did not

determine the possible role of the nucleus in cells migrating in

three dimensions or uncover the extent to which the nucleus con-

tributes to cellular mechanotransduction. Previous work has

implicated the nucleus as a major impediment to three-dimen-

sional migration [97]. However, exploring cell migration in

three-dimensional cell-derived matrices, Petrie and colleagues

found that the nucleus was required for lobopodial migration.

They showed that the nucleus acts as a piston, being pulled for-

ward by myosin contractility to generate a pressure differential

driving extension of the lobopodial protrusions at the cell front

[98]. These opposing earlier conclusions about the role of the

nucleus in cell migration stimulated us to use enucleation to

explore how the loss of the nucleus affects different types of

migration. Deriving cytoplasts from either fibroblasts or endo-

thelial cells, we confirmed that they can migrate on two-

dimensional surfaces [99]. Additionally, it was shown that cyto-

plasts can detect gradients of growth factors and ECM, moving

up these by chemotaxis and haptotaxis, respectively. The cyto-

plasts were also able to close a scratch wound made in a

monolayer, although with slightly less efficiency than their

intact parent cells. Exploring migration in three-dimensional col-

lagen gels, contrary to expectations, cytoplasts displayed very

little net migration. Nevertheless, the cytoplasts were able to

extend protrusions into the surrounding three-dimensional

matrix but this did not lead to translocation [99]. Why can cells

lacking a nucleus migrate so well on two-dimensional surfaces

but be so restricted in three-dimensional collagen matrices?

Besides the difference in dimensionality, another difference

experimentally is that migration on two-dimensional surfaces

is usually examined on very stiff substrata (glass or plastic),

whereas migration in three-dimensional matrices involves com-

paratively soft substrata. The stiffness of a three-dimensional

matrix is difficult to alter experimentally without simul-

taneously changing the porosity and/or the ligand density

(both factors that will influence migration). However, it is poss-

ible to vary the rigidity of two-dimensional surfaces relatively

easily. Comparing the migration velocity of cytoplasts and

intact cells on surfaces of different rigidity revealed similar vel-

ocity profiles but that with cytoplasts equivalent velocities

occurred on stiffer substrata (figure 4). Notably, on very soft sub-

strata where the intact cells were still migrating, cytoplasts

showed greatly reduced migration. From these experiments,

we concluded that at least one explanation for the reduced

migration of cytoplasts in three dimensions results from a

reduced ability to migrate effectively on or in soft substrata [99].
8. Cytoplasts reveal reduced
mechanotransduction

The effect of enucleation on migration velocity of intact cells

was mimicked by inhibiting myosin II activity with the

inhibitor blebbistatin [99]. Treatment of intact cells with bleb-

bistatin shifted the migration velocity peak to stiffer substrata

suggesting that enucleation might be affecting myosin

activity and cell contractility. A similar effect of myosin
inhibition enhancing cell migration on soft substrata has

been observed previously [100]. This action of blebbistatin

on cytoplasts suggests that removal of the nucleus was affect-

ing overall cell contractility and mechanotransduction.

Exploring this further, it was seen that cytoplasts were less

able to contract collagen gels and exhibited reduced traction

force on the underlying substratum compared with intact

cells [99]. Cytoplasts also showed decreased stiffening in

response to pulling on magnetic beads coated with fibronec-

tin (DM Graham 2017, unpublished results). Together these

results have led us to conclude that loss of the nucleus

reduces cell contractility and mechanotransduction. Where

in the signalling pathway from mechanical tension to

increased contractility is the nucleus having its effect?

Contractility in nonmuscle cells is the result of myosin II

activity, which is regulated by multiple pathways. As men-

tioned above, a dominant regulatory pathway involves active

RhoA stimulating ROCK, which in turn elevates phosphoryl-

ation of the regulatory MLC. Comparing the phosphorylation

of two ROCK substrates, MYPT and MLC, in cytoplasts with

intact cells revealed that both are greatly diminished in cyto-

plasts (DM Graham 2017, unpublished results). These

observations suggest RhoA activity is decreased in cytoplasts,

which has been confirmed in direct assays (figure 5).

What is the cause of decreased RhoA activity in cytoplasts?

This must reflect either decreased GEF or increased GAP

activity. As yet, this has not been resolved. One possibility is

that removal of the nucleus depletes certain GEFs such as

ECT-2 and NET-1, which are concentrated in the nucleus.

How much these GEFs contribute to the overall level of

RhoA activity in cells has not been determined. Another possi-

bility is that a rigid nucleus attached to the actin cytoskeleton

contributes significantly to the overall tension developed

within the cell. Since tension elevates the activities of several

GEFs and reciprocally decreases GAP activity (see above),

decreasing the tension by removal of the nucleus will be pre-

dicted to reduce RhoA activity in this model. This is

supported by the observation that cells lacking Lamin A have

a soft nucleus, less tension and lower RhoA activity [85]. Simi-

larly, disconnecting the nucleus from the cytoskeleton by

severing the LINC complex has been reported to decrease

levels of active RhoA [101]. Since tension elevates the activity

of GEFs, such as LARG and GEF-H1, it will be important to

http://dx.doi.org/10.1083/jcb.201706097
http://dx.doi.org/10.1083/jcb.201706097
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determine if the activity of these is decreased in cytoplasts. It

will also be important to examine whether there is an increase

in the activity of any of the GAPs, particularly examining DLC1

and p190RhoGAP.
9. Concluding remarks
Mechanical tension exerted on cells typically signals via cell

adhesion molecules to increase RhoA activity. So far most
attention has been directed towards the activation of specific

GEFs, but the level of active RhoA reflects the balance

between GEF activation and GAP inhibition. Recent work

reveals that the inhibition of GAPs may be as important as

activation of GEFs in a cell’s response to mechanical tension.

We suspect that in most situations both sides of the GEF/

GAP equation contribute to controlling the level of active

RhoA. Moving forward, we expect more attention will

be focused on RhoA GAPs, particularly on DLC1 and

p190RhoGAP, both of which have been implicated in the

response of cells to mechanical forces. In this review, we

have also discussed the role of the nucleus as a physical struc-

ture. Severing the LINC complex, or complete removal of the

nucleus, alter a cell’s mechanotransduction. Much of the

change may be due to reduced RhoA activity. The reason

why RhoA activity is decreased has not been resolved but

evidence supports a model in which a nucleus, physically

connected to the cytoskeleton, contributes to the overall

level of tension generated within the cytoskeleton. In turn,

the level of tension exerted on a cell’s adhesions has a critical

influence on the level of RhoA activity. A common theme

emerges that RhoA signalling is a key regulator of mechano-

transduction regardless of whether the mechanical stimulus

is internal and derived, for example, from perturbations of

the LINC complex, or external, as occurs in cells responding

to substrate stiffness in fibrosis.
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